

Water Resources Data Wyoming Water Year 2001

Volume 1. Surface Water

Water-Data Report WY-01-1

CALENDAR FOR WATER YEAR 2001

2000

		ОС	тов	ER					NO	/EMI	BER					DE	CEM	BER		
S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S
1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24	4 11 18 25	3 10 17 24 31	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30
										200°	1									
		JA	NUA	RY					FEE	BRUA	ARY					M	ARC	Н		
S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	s	М	Т	W	Т	F	S
7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25	5 12 19 26	6 13 20 27	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22	2 9 16 23	3 10 17 24	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31
		Δ	PRII	L					ľ	MAY						JI	JNE			
S	М	Т	W	T	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S
1 8 15 22 29	2 9 16 23 30	3 10 17 24	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25	5 12 19 26	3 10 17 24	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30
			JULY	,					AU	GUS	ST.				S	EPT	ЕМЕ	BER		
S	М	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	М	Т	W	Т	F	S
1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25	2 9 16 23 30	3 10 17 24	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29

Water Resources Data Wyoming Water Year 2001

Volume 1. Surface Water

By R.B. Swanson, R.E. Woodruff, G.A. Laidlaw, K.R. Watson, and M.L. Clark

Water-Data Report WY-01-1

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE April 2002	3. REPORT TYPE AND I Annual, October 2	DATES COVERED 000 to September 2001
4. TITLE AND SUBTITLE Water Resources Data for Wy Volume 1. Surface-water dat 6. AUTHOR(S)			5. FUNDING NUMBERS
R.B. Swanson, R.E. Woodruf	ff, G.A. Laidlaw, K.R. Wats	on, and M.L. Clark	
7. PERFORMING ORGANIZATION NAME U.S. Geological Survey, Wat 2617 E. Lincolnway, Suite B Cheyenne, Wyoming 82001-	er Resources Division		8. PERFORMING ORGANIZATION REPORT NUMBER USGS-WDR-WY-01-1
9. SPONSORING / MONITORING AGENCY U.S. Geological Survey, Wat 2617 E. Lincolnway, Suite B Cheyenne, Wyoming 82001-	er Resources Division		10. SPONSORING / MONITORING AGENCY REPORT NUMBER USGS-WDR-WY-01-1
11. SUPPLEMENTARY NOTES Prepared in cooperation with	the State of Wyoming and v	with other agencies.	
This report may be purchased National Technical Informations Springfield, VA	l from:		12b. DISTRIBUTION CODE
of streams; stage and contents 1 of this report contains discl and water quality for 33 gagi sites, not part of the systemat	s of lakes and reservoirs, and harge records for 151 gagin ing stations and 32 ungaged ic data collection program, a in Volume 2 represent pa	I water levels and water q g stations, stage and conto stations. Additional wate and are published as misco rt of the National Water	age, discharge and water quality uality of ground water. Volume ents for 12 lakes and reservoirs, or data were collected at various ellaneous measurements. These Data System operated by the
14. SUBJECT TERMS *Wyoming, *Hydrologic data ical analyses, Gaging station			
Sampling sites 17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	N 20. LIMITATION OF ABSTRACT

CONTENTS

	gaging stations, in downstream order, for which records are published
	etion
ooperat	tion
ummary	of hydrologic conditions
Pre	ecipitation
Str	reamflow
Che	emical quality of stream water
pecial	networks and programs
-	tion of the records
Sta	ation identification numbers
	Downstream order system
	Latitude-longitude system
Rec	cords of stage and water discharge
	Data collection and computation
	Data presentation
	Station manuscript
	Data table of daily mean values
	Statistics of monthly mean data
	Summary statistics
	Accuracy of the records
	Other records available
Rec	Cords of surface-water quality
1100	Classification of records
	Onsite measurements and sample collection
	Water temperature
	Sediment
	Laboratory analysis
	Presentation of water-quality records
	Remark codes
	Quality-control samples
	Blank samples
	Replicate samples
	Spike samples
.ccess t	to water data
efinit:	ion of terms
	ues of water-resources investigations of the U.S. Geological Survey
tation	records, surface water
Dis	scharge at miscellaneous sites
	Annual maximum discharge at miscellaneous sites during water year 2001
	Discharge measurements made at miscellaneous sites
Ana	alysis of samples collected at special study and miscellaneous sites
	Burger Draw coal bed methane water sample
	Fremont County weed and pest district study
	Kendrick Irrigation Study
	National water-quality assessment program
	Wind River ecology study
ndex	
	ILLUSTRATIONS
igure 1	l. Location of surface-water streamflow-gaging stations, water-quality stations, and reservoir
	stations, 2001 water year
	stations, 2001 water year
2	stations, 2001 water year
2	stations, 2001 water year
3	stations, 2001 water year
2 3 4 5	stations, 2001 water year
3 3 4 5 5 able 1	stations, 2001 water year

[Letters after station names designate type of data - **Daily tables:** (D) discharge, (C) specific conductance, (S) sediment, (T) temperature, (V) elevation or contents, (O) dissolved oxygen, (P) pH - **Periodic tables:** (c) chemical, (m) microbiological, (s) sediment]

NOTE.--Data for NAWQA stations, partial-record stations, and miscellaneous sites are published in separate sections of the data report.

MISSOURI RIVER BASIN

MISSOURI RIVER BASIN		
MADISON RIVER BASIN		
MADISON RIVER NEAR WEST YELLOWSTONE, MT (D)	06037500	41
GALLATIN RIVER BASIN		
GALLATIN RIVER NEAR GALLATIN GATEWAY, MT (DT)	06043500	43
YELLOWSTONE RIVER BASIN		
YELLOWSTONE RIVER AT YELLOWSTONE LAKE OUTLET, YELLOWSTONE NATIONAL PARK (D)	06186500	47
SODA BUTTE CREEK NEAR LAMAR RANGER STATION, YELLOWSTONE NATIONAL PARK (D)		49
LAMAR RIVER NEAR TOWER FALLS RANGER STATION, YELLOWSTONE NATIONAL PARK (D)	06188000	51
GARDNER RIVER NEAR MAMMOTH, YELLOWSTONE NATIONAL PARK (D)	06191000	53
YELLOWSTONE RIVER AT CORWIN SPRINGS, MT (D)	06191500	55
CLARKS FORK YELLOWSTONE RIVER AT MONTANA-WYOMING STATE LINE, NEAR COOKE CITY, MT (c)	06205450	57
CLARKS FORK YELLOWSTONE RIVER NEAR BELFRY, MT (D)	06207500	58
WIND RIVER NEAR DUBOIS, WY (D)	06218500	60
WIND RIVER ABOVE RED CREEK, NEAR DUBOIS, WY (Dcsm)	06220800	62
DINWOODY CREEK ABOVE LAKES, NEAR BURRIS, WY (D)	06221400	66
UPPER WIND RIVER A CANAL AT HEADWORKS, NEAR BURRIS, WY (D)	06222100	68
DRY CREEK NEAR BURRIS, WY (D)	06222500	70
DRY CREEK CANAL AT HEADGATE, NEAR BURRIS, WY (D)	06222510	72
WIND RIVER ABOVE CROW CREEK, NEAR LENORE, WY (csm)		74
WILLOW CREEK NEAR CROWHEART, WY (D)		76
BULL LAKE CREEK ABOVE BULL LAKE, WY (Dcsm)		78
BULL LAKE NEAR LENORE, WY (V)		82
BULL LAKE CREEK NEAR LENORE, WY (Dcsm)		84
WIND RIVER NEAR CROWHEART, WY (D)		88
WYOMING CANAL NEAR LENORE, WY (D)		90
WIND RIVER BELOW WYOMING CANAL DIVERSION, NEAR LENGRE, WY (CSM).		92
JOHNSTOWN DITCH AT HEADWORKS, NEAR KINNEAR, WY (D).		94
WIND RIVER NEAR KINNEAR, WY (Dcsm).		96
LEFTHAND DITCH AT HEADWORKS, NEAR RIVERTON, WY (D)		
WIND RIVER AT RIVERTON, WY (Dcsm)		
LITTLE WIND RIVER:	00228000	102
SOUTH FORK LITTLE WIND RIVER ABOVE WASHAKIE RESERVOIR, NEAR FORT WASHAKIE, WY (D)	06220250	106
SOUTH FORK LITTLE WIND RIVER BELOW WASHAKIE RESERVOIR, NEAR FORT WASHAKIE, WY (D)		
RAY CANAL AT HEADWORKS, NEAR FORT WASHAKIE, WY (D)		
NORTH FORK LITTLE WIND RIVER NEAR FORT WASHAKIE, WY (D)		
TROUT CREEK NEAR FORT WASHAKIE, WY (D)		
POPO AGIE RIVER AT HUDSON SIDING, NEAR LANDER, WY (cm)		
LITTLE POPO AGIE RIVER NEAR LANDER, WY (D)		
POPO AGIE RIVER NEAR ARAPAHOE, WY (csm)		
LITTLE WIND RIVER NEAR RIVERTON, WY (Dcsm)		
WIND RIVER ABOVE BOYSEN RESERVOIR, NEAR SHOSHONI, WY (DScm)		
FIVEMILE CREEK ABOVE WYOMING CANAL, NEAR PAVILLION, WY (D)		
FIVEMILE CREEK NEAR SHOSHONI, WY (D)		
BOYSEN RESERVOIR NEAR SHOSHONI, WY (V)		
WIND RIVER BELOW BOYSEN RESERVOIR, WY (Dcsm)		
WIND RIVER AT WEDDING OF WATER, NEAR THERMOPOLIS, WY (csm)	06259050	140
BIGHORN RIVER:		
SOUTH FORK OWL CREEK:	0.0000000	1.40
ANCHOR RESERVOIR NEAR ANCHOR, WY (V)		
SOUTH FORK OWL CREEK BELOW ANCHOR RESERVOIR, WY (D)		
BIGHORN RIVER AT LUCERNE, WY (cm)		
COTTONWOOD CREEK AT HIGH ISLAND RANCH, NEAR HAMILTON DOME, WY (D)		
BIGHORN RIVER AT BASIN, WY (Dcsm)		
GREYBULL RIVER AT MEETEETSE, WY (Dcsm)		
SHELL CREEK ABOVE SHELL RESERVOIR, WY (D)		
SHELL CREEK NEAR SHELL, WY (D)		
BIGHORN RIVER AT KANE, WY (D)	06279500	159
NORTH FORK SHOSHONE RIVER:		
CROW CREEK AT MOUTH, AT PAHASKA, WY (DCSTOPc)		
NORTH FORK SHOSHONE RIVER AT WAPITI, WY (D)		
SOUTH FORK SHOSHONE RIVER NEAR VALLEY, WY (D)		
SOUTH FORK SHOSHONE RIVER ABOVE BUFFALO BILL RESERVOIR, WY (D)		
BUFFALO BILL RESERVOIR NEAR CODY, WY (V)		
SHOSHONE RIVER ABOVE DEMARIS SPRINGS, NEAR CODY, WY (c)		
SHOSHONE RIVER BELOW BUFFALO BILL RESERVOIR, WY (D)		
BITTER CREEK NEAR GARLAND, WY (cm)	06284500	181

Station Number Page

BIGHORN RIVERContinued	
Bidhold Kivik Continued	
SHOSHONE RIVERContinued	
SHOSHONE RIVER NEAR LOVELL, WY (Dcm)(06285100
BIGHORN LAKE NEAR ST. XAVIER, MT (V)	06286400
BIGHORN RIVER NEAR ST. XAVIER, MT (D)	06287000
LITTLE BIGHORN RIVER AT STATE LINE, NEAR WYOLA, MT (Dcms)	06289000
WEST PASS CREEK NEAR PARKMAN, WY (D)(06289600
EAST PASS CREEK NEAR DAYTON, WY (D)(06289820
TONGUE RIVER NEAR DAYTON, WY (D)	06298000
WOLF CREEK AT WOLF, WY (D)(06299500
EAST FORK BIG GOOSE CREEK NEAR BIG HORN, WY (D)(WEST FORK BIG GOOSE CREEK:	06300500
CONEY CREEK ABOVE TWIN LAKES, NEAR BIG HORN, WY (D)	06301480
CONEY CREEK BELOW TWIN LAKES, NEAR BIG HORN, WY (D)	
WEST FORK BIG GOOSE CREEK NEAR BIG HORN, WY (D)(
BIG GOOSE CREEK ABOVE PK DITCH, IN CANYON, NEAR SHERIDAN, WY (D)	
LITTLE GOOSE CREEK IN CANYON, NEAR BIG HORN, WY (D)	
LITTLE GOOSE CREEK AT SHERIDAN, WY (cm)	
GOOSE CREEK BELOW SHERIDAN, WY (cm) (
GOOSE CREEK NEAR ACME, WY (D)	06305700
PRAIRIE DOG CREEK NEAR ACME, WY (Dc)	06306250
TONGUE RIVER AT STATE LINE, NEAR DECKER, MT (DCcs)	
POWDER RIVER BASIN MIDDLE FORK POWDER RIVER NEAR BARNUM, WY (D)	
NORTH FORK POWDER RIVER NEAR HAZELTON, WY (D)	
NORTH FORK POWDER RIVER BELOW PASS CREEK, NEAR MAYOWORTH, WY (D)	
SALT CREEK NEAR SUSSEX, WY (c)	
POWDER RIVER AT SUSSEX, WY (c)	
POWDER RIVER BELOW BURGER DRAW, NEAR BUFFALO, WY (C)	
DEAD HORSE CREEK NEAR BUFFALO, WY (Dc)	
CRAZY WOMAN CREEK AT UPPER STATION, NEAR ARVADA, WY (DCTcs)	
POWDER RIVER AT ARVADA, WY (Dc)	
WILDHORSE CREEK NEAR ARVADA, WY (Dc)	
ROCK CREEK NEAR BUFFALO, WY (D)	06320000
CLEAR CREEK ABOVE KUMOR DRAW, NEAR BUFFALO, WY (cm)	
SOUTH PINEY CREEK AT WILLOW PARK, WY (D)	
PINEY CREEK AT KEARNY, WY (D)	
CLEAR CREEK NEAR ARVADA, WY (c)	
POWDER RIVER AT MOORHEAD, MT (DCcs)	
LITTLE POWDER RIVER ABOVE DRY CREEK, NEAR WESTON, WY (D)	
CHEYENNE RIVER BASIN	
ANTELOPE CREEK (HEAD OF CHEYENNE RIVER), NEAR TECKLA, WY (c)	
BLACK THUNDER CREEK NEAR HAMPSHIRE, WY (c)	
BEAVER CREEK AT MALLO CAMP, NEAR FOUR CORNERS, WY (D)	
STOCKADE BEAVER CREEK NEAR NEWCASTLE, WY (D)	
CHEYENNE RIVER AT EDGEMONT (D) (
BELLE FOURCHE RIVER BELOW RATTLESNAKE CREEK, NEAR PINEY, WY (Dc)	
CABALLO CREEK AT MOUTH, NEAR PINEY, WY (c)	
DONKEY CREEK NEAR GILLETTE (D)	
DONKEY CREEK NEAR GILLETTE (D)	06426400
DONKEY CREEK NEAR GILLETTE (D) (C) (D) (D) (C) (D) (C)	
DONKEY CREEK NEAR GILLETTE (D) (STONEPILE CREEK AT MOUTH NEAR GILLETTE, WY (D) (DONKEY CREEK NEAR MOORCROFT, WY (c) (BELLE FOURCHE RIVER BELOW MOORCROFT, WY (Dcm) (C)	06426500
DONKEY CREEK NEAR GILLETTE (D) (STONEPILE CREEK AT MOUTH NEAR GILLETTE, WY (D) (DONKEY CREEK NEAR MOORCROFT, WY (c) (BELLE FOURCHE RIVER BELOW MOORCROFT, WY (Dcm) (KEYHOLE RESERVOIR NEAR MOORCROFT, WY (V) (0)	06426500 06427000
DONKEY CREEK NEAR GILLETTE (D)	06426500 06427000 06428050
DONKEY CREEK NEAR GILLETTE (D) (STONEPILE CREEK AT MOUTH NEAR GILLETTE, WY (D) (DONKEY CREEK NEAR MOORCROFT, WY (c) (BELLE FOURCHE RIVER BELOW MOORCROFT, WY (Dcm) (KEYHOLE RESERVOIR NEAR MOORCROFT, WY (V) (0)	06426500 06427000 06428050 06428200
DONKEY CREEK NEAR GILLETTE (D) (STONEPILE CREEK AT MOUTH NEAR GILLETTE, WY (D) (C) DONKEY CREEK NEAR MOORCROFT, WY (c) (C) BELLE FOURCHE RIVER BELOW MOORCROFT, WY (Dcm) (C) KEYHOLE RESERVOIR NEAR MOORCROFT, WY (V) (C) BELLE FOURCHE RIVER BELOW HULETT, WY (cm) (C) BELLE FOURCHE RIVER NEAR ALVA, WY (D) (C) BELLE FOURCHE RIVER AT WYOMING-SOUTH DAKOTA STATE LINE (D) (C) REDWATER CREEK:	06426500 06427000 06428050 06428200 06428500
DONKEY CREEK NEAR GILLETTE (D) (STONEPILE CREEK AT MOUTH NEAR GILLETTE, WY (D) (C) DONKEY CREEK NEAR MOORCROFT, WY (c) (C) BELLE FOURCHE RIVER BELOW MOORCROFT, WY (Dcm) (C) KEYHOLE RESERVOIR NEAR MOORCROFT, WY (V) (Cm) (C) BELLE FOURCHE RIVER BELOW HULETT, WY (cm) (C) BELLE FOURCHE RIVER NEAR ALVA, WY (D) (C) BELLE FOURCHE RIVER AT WYOMING-SOUTH DAKOTA STATE LINE (D) (C) REDWATER CREEK: COLD SPRINGS CREEK AT BUCKHORN, WY (D) (C)	06426500 06427000 06428050 06428200 06428500
DONKEY CREEK NEAR GILLETTE (D) (STONEPILE CREEK AT MOUTH NEAR GILLETTE, WY (D) (C) DONKEY CREEK NEAR MOORCROFT, WY (c) (C) BELLE FOURCHE RIVER BELOW MOORCROFT, WY (Dcm) (C) KEYHOLE RESERVOIR NEAR MOORCROFT, WY (V) (Cm) (C) BELLE FOURCHE RIVER BELOW HULETT, WY (cm) (C) BELLE FOURCHE RIVER NEAR ALVA, WY (D) (C) BELLE FOURCHE RIVER AT WYOMING-SOUTH DAKOTA STATE LINE (D) (C) REDWATER CREEK: COLD SPRINGS CREEK AT BUCKHORN, WY (D) (C) SAND CREEK NEAR RANCH A, NEAR BEULAH, WY (D) (C)	06426500 06427000 06428050 06428200 06428500 06429500 06429905
DONKEY CREEK NEAR GILLETTE (D)	06426500 06427000 06428050 06428200 06428500 06429500 06429905 06429997
DONKEY CREEK NEAR GILLETTE (D) (STONEPILE CREEK AT MOUTH NEAR GILLETTE, WY (D) (C) DONKEY CREEK NEAR MOORCROFT, WY (c) (C) BELLE FOURCHE RIVER BELOW MOORCROFT, WY (Dcm) (C) KEYHOLE RESERVOIR NEAR MOORCROFT, WY (V) (Cm) (C) BELLE FOURCHE RIVER BELOW HULETT, WY (cm) (C) BELLE FOURCHE RIVER NEAR ALVA, WY (D) (C) BELLE FOURCHE RIVER AT WYOMING-SOUTH DAKOTA STATE LINE (D) (C) REDWATER CREEK: COLD SPRINGS CREEK AT BUCKHORN, WY (D) (C) SAND CREEK NEAR RANCH A, NEAR BEULAH, WY (D) (C)	06426500 06427000 06428050 06428200 06428500 06429500 06429905 06429997
DONKEY CREEK NEAR GILLETTE (D)	06426500 06427000 06428050 06428200 06428500 06429500 06429905 06429997 06430500
DONKEY CREEK NEAR GILLETTE (D) (STONEPILE CREEK AT MOUTH NEAR GILLETTE, WY (D) (C) DONKEY CREEK NEAR MOORCROFT, WY (c) (C) BELLE FOURCHE RIVER BELOW MOORCROFT, WY (Dcm) (C) KEYHOLE RESERVOIR NEAR MOORCROFT, WY (V) (C) BELLE FOURCHE RIVER BELOW HULETT, WY (Cm) (C) BELLE FOURCHE RIVER NEAR ALVA, WY (D) (C) BELLE FOURCHE RIVER AT WYOMING-SOUTH DAKOTA STATE LINE (D) (C) REDWATER CREEK: COLD SPRINGS CREEK AT BUCKHORN, WY (D) (C) SAND CREEK NEAR RANCH A, NEAR BEULAH, WY (D) (C) MURRAY DITCH ABOVE HEADGATE AT WYOMING-SOUTH DAKOTA STATE LINE (D) (C) REDWATER CREEK AT WYOMING-SOUTH DAKOTA STATE LINE (D) (C) REDWATER CREEK AT WYOMING-SOUTH DAKOTA STATE LINE (D) (C) REDWATER CREEK AT WYOMING-SOUTH DAKOTA STATE LINE (D) (C) LATTE RIVER BASIN	06426500 06427000 06428050 06428500 06428500 06429905 06429905 06429905 06620000
DONKEY CREEK NEAR GILLETTE (D) (STONEPILE CREEK AT MOUTH NEAR GILLETTE, WY (D)	06426500 06427000 06428050 06428200 06428500 06429905 06429905 06429905 06429905 06429905 06620000
DONKEY CREEK NEAR GILLETTE (D) (STONEPILE CREEK AT MOUTH NEAR GILLETTE, WY (D)	06426500 06427000 06428200 06428500 06429500 06429997 06430500 06622700 06623800

Station Number Page

MISSOURI RIVER BASINContinued		
PLATTE RIVER BASINContinued MEDICINE BOW RIVER:		
ROCK CREEK ABOVE KING CANYON CANAL, NEAR ARLINGTON, WY (D)	06632400	312
LITTLE MEDICINE BOW RIVER AT BOLES SPRING, NEAR MEDICINE BOW, WY (D)	06634620	314
MEDICINE BOW RIVER ABOVE SEMINOE RESERVOIR, NEAR HANNA, WY (D)		
SEMINOE RESERVOIR NEAR LEO, WY (V) SWEETWATER RIVER NEAR ALCOVA, WY (D)		
PATHFINDER RESERVOIR NEAR ALCOVA, WY (V)		
ALCOVA RESERVOIR NEAR ALCOVA, WY (V)	06641500	324
NORTH PLATTE RIVER BELOW CASPER, WY (c)		
DEER CREEK IN CANYON, NEAR GLENROCK, WY (D) BOX ELDER CREEK AT BOXELDER, WY (D)		
GLENDO RESERVOIR NEAR GLENDO, WY (V)	06652700	333
NORTH PLATTE RIVER BELOW GLENDO RESERVOIR, WY (D)		
GUERNSEY RESERVOIR NEAR GUERNSEY, WY (V)		
LARAMIE RIVER AND PIONEER CANAL NEAR WOODS, WY (D)		
SAND CREEK AT COLORADO-WYOMING STATE LINE (D)	06659580	343
	06661000	
LARAMIE RIVER NEAR BOSLER, WY (D)		
SYBILLE CREEK ABOVE CANAL NO. 3, NEAR WHEATLAND, WY (D)		
LARAMIE RIVER NEAR FORT LARAMIE, WY (D)		
NORTH PLATTE RIVER AT WYOMING-NEBRASKA STATE LINE (Dcs)	06674500	356
CROW CREEK AT 19TH STREET, AT CHEYENNE, WY (D)	06755960	359
CROW CREEK NEAR ARCHER, WY (cm)		
COLORADO RIVER BASIN GREEN RIVER BASIN		
GREEN RIVER AT WARREN BRIDGE, NEAR DANIEL, WY (D)	09188500	362
NEW FORK RIVER:		
PINE CREEK ABOVE FREMONT LAKE, WY (D)		
PINE CREEK BELOW FREMONT LAKE, WY (D)		
GREEN RIVER NEAR LA BARGE, WY (D)		
FONTENELLE CREEK NEAR HERSCHLER RANCH, NEAR FONTENELLE, WY (D)		
GREEN RIVER BELOW FONTENELLE RESERVOIR, WY (Dc)		
BIG SANDY RIVER NEAR FARSON, WY (D)		
BIG SANDY RESERVOIR NEAR FARSON, WY (V)		
GREEN RIVER NEAR GREEN RIVER, WY (Dc)		
GREEN RIVER BELOW GREEN RIVER, WY (c)		
BLACKS FORK NEAR ROBERTSON, WY (D)		
BLACKS FORK NEAR LYMAN, WY (cms)		
HAMS FORK BELOW POLE CREEK, NEAR FRONTIER, WY (D)		
HAMS FORK NEAR DIAMONDVILLE, WY (cm)		
BLACKS FORK NEAR LITTLE AMERICA, WY (Dc)		
HENRYS FORK NEAR MANILA, UT (D) GREEN RIVER NEAR GLENDALE, UT (D)		
YAMPA RIVER:	0,23,1300	100
LITTLE SNAKE RIVER NEAR SLATER, CO (D)	09253000	402
BATTLE CREEK:		
WEST FORK BATTLE CREEK: HAGGARTY CREEK ABOVE BELVIDERE DITCH, NEAR ENCAMPMENT, WY (c)	09253455	404
WEST FORK BATTLE CREEK AT BATTLE CREEK CAMPGROUND, NEAR SAVERY, WY (c)		
SLATER FORK NEAR SLATER, CO (D)	09255000	406
LITTLE SNAKE RIVER BELOW BAGGS, WY (cs)	09259050	408
GREAT SALT LAKE BASIN		
BEAR RIVER BASIN		
BEAR RIVER NEAR UTAH-WYOMING STATE LINE (D)		
BEAR RIVER AT EVANSTON, WY (D)		
BEAR RIVER ABOVE RESERVOIR, NEAR WOODRUFF, UT (Dcsm) BEAR RIVER BELOW RESERVOIR, NEAR WOODRUFF, UT (D)		
TWIN CREEK AT SAGE, WY (cs)		
BEAR RIVER BELOW PIXLEY DAM, NEAR COKEVILLE, WY (D)		
SMITHS FORK NEAR BORDER, WY (D)	10032000	421

	Station Number	Page
GREAT SALT LAKE BASIN-continued		
BEAR RIVER BASIN-continued		
SMITHS FORK AT COKEVILLE, WY (cs)	10035000	423
BEAR RIVER BELOW SMITHS FORK, NEAR COKEVILLE, WY (Dcsm)	10038000	424
BEAR RIVER AT BORDER, WY (D)		
COLUMBIA RIVER BASIN		
SNAKE RIVER BASIN		
SNAKE RIVER ABOVE JACKSON LAKE, AT FLAGG RANCH, WY (Dcs)	13010065	432
SNAKE RIVER NEAR MORAN, WY (D)	13011000	438
PACIFIC CREEK AT MORAN, WY (D)		
BUFFALO FORK ABOVE LAVA CREEK, NEAR MORAN, WY (D)	13011900	442
SNAKE RIVER AT MOOSE, WY (Dcs)	13013650	444
GROS VENTRE RIVER AT ZENITH, WY (D)	13015000	448
FISH CREEK:		
LAKE CREEK:		
GRANITE CREEK ABOVE GRANITE CREEK SUPPLEMENTAL, NEAR MOOSE, WY (D)	13016305	450
FISH CREEK AT WILSON, WY (D)	13016450	452
FLAT CREEK:		
CACHE CREEK NEAR JACKSON, WY (D)	13018300	454
FLAT CREEK BELOW CACHE CREEK NEAR JACKSON, WY (D)	13018350	456
SNAKE RIVER BELOW FLAT CREEK, NEAR JACKSON, WY (D)	13018750	458
SNAKE RIVER ABOVE RESERVOIR, NEAR ALPINE, WY (D)	13022500	460
GREYS RIVER ABOVE RESERVOIR, NEAR ALPINE, WY (D)	13023000	462
SALT RIVER ABOVE RESERVOIR, NEAR ETNA, WY (Dcsm)	13027500	464
HENRYS FORK BASIN		
FALLS RIVER:		
BOUNDARY CREEK NEAR BECHLER RANGER STATION, WY (D)	13046680	467

The following surface-water, water-quality, sediment, and biological stations have been operated in and adjacent to Wyoming. The listing includes both discontinued and currently (2001) active stations. Reservoir stations also are included. Records have been collected and published for the period of record, expressed in calendar years, shown for each station. The listing is limited to those stations that have been part of systematic data-collection monitoring networks. Miscellaneous sites are not included. [--, drainage area not determined or no record available]

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
MISSOURI RIVER BASIN									
MADISON RIVER BASIN									
Firehole River (head of Madison River) near West									
Yellowstone, Mont	06036905	282	1983-95.		1983-93.	1988-93.			
Gibbon River below Canyon Creek, near West Yellowstone, MT	06306950					2001			
Gibbon River near West Yellowstone, Mont	06037000	118	1913-16;1983-95.		1983-93.	1988-93.			
Gibbon River at Grand Loop Road Bridge at Madison									
Junction, Yellowstone National Park	06037100	126	2001			2001			
Madison River near West Yellowstone, Mont	06037500	420	1913-73;1983-86;1988-		1983-86; 1989-96.	1989-96.			
GALLATIN RIVER BASIN									
Gallatin (West Gallatin) River near Gallatin Gateway (Bozeman), Mont	06043500	825	1889-94;1930-81;1984-		2001-				
YELLOWSTONE RIVER BASIN									
Yellowstone Lake at Bridge Bay (Lake Hotel), Yellowstone National Park	06186000	1,006	1921a-82a.						
Yellowstone River at Yellowstone Lake outlet, Yellowstone National Park	06186500	1,006	1922-86;1988-						
Tower Creek at Tower Falls, Yellowstone National Park	06187500	50.4	1922-43.						
Yellowstone River at Tower Junction, Yellowstone National Park, near	06187550	1,342	1983-86.						
Soda Butte Creek at Yellowstone National Park boundary, near Silver Gate, Mont	06187915	28.2	1998-		1999-	1999-	1999-		
Soda Butte Creek near Lamar Ranger Station, Yellowstone National Park	06187950	99.0	1988-		1988-89.	1988-89.			
Lamar River near Tower Falls Ranger Station, Yellowstone National Park	06188000	660	1922-69;1985-86;1988-		1985-86;	1988-92.			
Blacktail Deer Creek:					1988-92.				
East Fork Blacktail Deer Creek near Mammoth, Yellowstone National Park	06188500	10.3	1937-41.						

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
MISSOURI RIVER BASINcontinued									
YELLOWSTONE RIVER BASINcontinued									
Blacktail Deer Creek near Mammoth, Yellowstone National Park Gardner River:	06189000	14.3	1937-45;1988-93.		1988-89.	1988-89.			
Lava Creek:									
Lupine Creek near Mammoth, Yellowstone National Park	06190000	4.67	1937-41.						
Gardner River above Mammoth Springs outflow near Mammoth, Yellowstone National Park	06190370				1988-93.				
Mammoth Springs outflow at Mammoth, Yellowstone National Park	06190415				1988-94.				
Hot Springs), Yellowstone National Park Gardner River Sinkhole Diversion near Mammoth,	06190500	200	1922-38.						
Yellowstone National Park Hot River:	06190525				1988-92.				
Clematic Creek at Mammoth, Yellowstone									
National Park	06190530				1990-92.				
Hot River at Mammoth, Yellowstone National Park.	06190540		1988-95.		1988-94.				
Gardner River near Mammoth, Yellowstone National									
Park	06191000	202	1938-72;1984-		1984-85; 1987-93.	1988-93.			
LaDuke (Corwin) Hot Springs near Corwin Springs,	0.6101400				1987-94.				
Mont Yellowstone River at Corwin Springs (Horr), Mont	06191400 06191500	2,623	1889-1893;1910-		1988-92, 1999-	1985-92, 1999-	1999-		
Clarks Fork Yellowstone River at Montana-Wyoming State line, near Cooke City, Mont	06205450				1975-77; 1990-	1975-77.			
Clarks Fork Yellowstone River (Clarks Fork) above Squaw Creek, near Painter	06205500	194	1945-51.						
Crandall Creek: Lodgepole Creek at mouth, near Painter Clarks Fork Yellowstone River (Clarks Fork) below	06205950	8.51	1989.						
Crandall Creek, near Painter Sunlight Creek near Painter	06206000 06206500	446 135	1929-32;1949-57. 1929-32;1945-71.	 					

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
MISSOURI RIVER BASINcontinued									
YELLOWSTONE RIVER BASINcontinued									
Clarks Fork Yellowstone River above Paint Creek, near Clark	06206600				1975-77.	1975-77.			
Clarks Fork Yellowstone River (Clarks Fork) near Clark	06207000	912	1918-24.						
Clarks Fork Yellowstone River (Clarks Fork) near									
Belfry (at Chance), Mont	06207500	1,154	1921-		1965-88.	1965;1971; 1984.			
Big Sand Coulee above State ditch, near Badger									
Basin	06207507	98.3	1973-77.		1977.	1973-77.			
Big Sand Coulee at Wyoming-Montana State line	06207510	134	1973-81.		1976-81.	1973-81.			
Silver Tip Creek near Belfry, Mont	06207540	88.0	1967-75.						
Wind River (head of Bighorn River) near Dubois	06218500	232	1945-92; 2001-		1947-50; 1953; 1965-86.	1970;1980.	1973-82.		
Wagon Gulch near Dubois	06218700	4.89		1961-84.					
Warm Spring Creek near Dubois	06219000	85.8	1911-12a.		1965.				
Horse Creek at Dubois	06219500	120	1910-12.						
Wind River at Dubois	06220000	486	1910-12.		1948-49.				
East (North) Fork Wind River near Dubois	06220500	427	1950-57;1975-97.		1975-86; 1990.	1975-86.			
Wind River above Red Creek, near Dubois	06220800	1,073	1990-		1986-92; 2001-	2001-	2001-		
Red Creek near Dubois	06221000		1909a.						
Wind River tributary near Burris	06221200	4.71		1961-72.					
Dinwoody Creek above lakes, near Burris	06221400	88.2	1957-78;1988-		1988-92.	1970.			
Dinwoody Creek near Burris (Crowheart, Lenore)	06221500	100	1909;1918-30;1950-58.						
Wind River near Burris	06222000	1,236	1946-53.						
Upper Wind River A Canal at Headworks, near Burris	06222100		1997-99; 2001-						
Dry Creek near Burris, (at Crowheart) (near Lenore).	06222500	53.7	1909a;1921-40;1988-		1990.				
Dry Creek Canal at headgate, near Burris	06222510		1989-99;2001			1990.			
Wind River near Burris above Crow Creek, near Lenore, WY	06222600				2001-	2001-	2001-		
Crow Creek near Tipperary Meadow Creek near Lenore (near J. K. Ranch Post	06222700	30.2	1962-93.		1974-93.				
Office)	06223000	41.7	1909a;1921-23.						

	Drainage	Period of record, by calendar year							
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
MISSOURI RIVER BASINcontinued									
YELLOWSTONE RIVER BASINcontinued									
Wind Rivercontinued									
Willow Creek near Crowheart (at J. K. Ranch Post									
Office) (near Lenore)	06223500	55.4	1909;1921-23; 1925-40;1988-		1990.				
Sand Draw near Crowheart	06223700	12.8		1961-77.					
Wind River above Bull Lake Creek, near Crowheart	06223750				1990-91.	1990-91.			
Wind River tributary No. 2 near Crowheart	06223800	3.16		1961-81.					
Bull Lake Creek above Bull Lake (Bull Lake									
Reservoir)	06224000	187	1941-53;1966-		1974-	2001-	2001-		
Bull Lake (Bull Lake Reservoir) near Lenore	06224500	b210	1938-a						
Bull Lake Creek near Lenore	06225000	b213	1918-		1990-2001-	2001-	2001-		
Wind River near Crowheart	06225500	1,891	1945-		1976;1978; 1987-92.	1970-82; 1990-92.			
Wyoming Canal near Lenore	06226000		1941-45;1949-82;1988-		1988.	1974-82; 1988.			
Wind River below Wyoming Canal Diversion						1700.			
near Mortan	06226100				2001-	2001-	2001-		
Dry Creek:									
Little Dry Creek near Crowheart	06226200	10.5		1961-81.					
Dry Creek near Crowheart	06226300	97.9		1959; 1961- 81.					
Pilot Canal:				01.					
Pilot wasteway near Morton	06226500		1949-53.						
Pilot Canal near Morton	06227000		1949-53.		1977.				
Wyoming Canal below Pilot diversion, near Morton.	06227500		1949-53.			1975-82.			
Johnstown Ditch at Headworks, near Kinnear	06227596		1991-99;			1775-02.			
·			2001						
Wind River near Kinnear	06227600	2,194	1974-79;1991-		1985-92; 2001-	1990-92; 2001-	2001-		
LeClair Canal near Riverton	06227700					1976-77.			
Lefthand Ditch at Headworks, near Riverton	06227810		1991-99; 2001-						

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
IISSOURI RIVER BASINcontinued									
YELLOWSTONE RIVER BASINcontinued									
Wind Rivercontinued									
Wind (Big Wind) River at (near) Riverton (near									
Arapahoe Agency)	06228000	2,309	1906-8;1911-		1947-50; 1965-95; 2001-	1949-51; 1959-65; 1971;1977; 1985-95; 2001-	1973-78; 1986-95; 2001-		
South Fork Little Wind River above Washakie									
Reservoir, near Fort Washakie	06228350	90.3	1976-		1976-92.				
South Fork Little Wind River below Washakie	0.4220.420		1000		1000				
Reservoir, near Fort Washakie	06228450	93.5	1988-		1990.				
(South Fork) Little Wind River near Fort Washakie	06228500	117	1921-40.						
Ray Canal at headworks, near Fort Washakie	06228510		1989-99; 2001-						
North Fork Little Wind River near Fort Washakie	06228800	112	1988-		1990.				
North Fork Little Wind River at Fort Washakie	06229000	128	1921-40.						
Little Wind River at Fort Washakie	06229500	249	1908-9						
Sage Creek above Norkok Meadows Creek, near									
Fort Washakie	06229680	118	1990-95.		1990.				
Norkok Meadows Creek near Fort Washakie	06229700	15.4		1965-81.					
Sand Draw near Fort Washakie	06229800	99		1961-81.					
Trout Creek near Fort Washakie	06229900	16.1	1990-	1961-68; 1970-84.	1990.				
Trout Creek at Wind River	06230000	33.6	1909.						
Mill Creek above Ray Lake outlet canal, near Fort									
Washakie	06230190	15.8	1990-96.		1990.				
Ray Lake near outlet, near Fort Washakie	06230300				1960-70.				
Little Wind River near Arapahoe	06230500	618	1950-53.		1992.		1992.		
Little Wind River tributary near Hudson	06230800	2.98		1961-71.					
Little Wind River above Arapahoe (Agency)	06231000	660	1906-9;1911-18; 1979-95.		1966-92.		1973-77; 1989-92.		
Middle (Middle Fork) Popo Agie River (Popo Agie									
River) near Lander	06231500	86.5	1911-12;1918-24.						
Middle Popo Agie River below The Sinks, near									
Lander	06231600	87.5	1959-68.	1969-74.		1965.			
Baldwin Creek below Dickinson Creek, at Lander	06231930				1989-	1989-			

		Drainage		Period of record,	by calendar	year	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASIN continued							
YELLOWSTONE RIVER BASINcontinued							
Wind Rivercontinued							
Little Wind Rivercontinued							
Popo Agie Rivercontinued							
Little Popo Agie Rivercontinued Government Draw:							
Little Dickinson Creek at Lander (formerly							
Baldwin Creek at Lander)	06231950				1981.		1981.
North Popo Agie River near Milford	06232000	98.4	1945-63.		1990.		
North (North Fork) Popo Agie River near Lander	06232500	134	1938-53.				
Popo Agie River at Hudson Siding, near Lander	06232600				1983-		1983-89; 2001-
Little Popo Agie River near Atlantic City	06232800	5.99	1957-73.				
Little Popo Agie River near Lander	06233000	125	1946-				
Monument Draw at upper station, near Hudson	06233340	5.50		1965-72.			
Monument Draw at lower station, near							
Hudson	06233360	8.38		1965-84.			
Coal Mine Draw:							
Coal Mine Draw tributary near Hudson	06233440	63		1965-72.			
Little Popo Agie River at Hudson	06233500	384	1907-9;1911-17; 1938-53.				
Popo Agie River at Hudson	06233600				1966-69; 1984.		
Popo Agie River near Arapahoe	06233900	796	1979-95.		1980-92; 2001-	2001-	1983; 1989; 2001
Little Wind (Popo Agie) River below Arapahoe							
(Agency)	06234000	1,464	1906-9;1911-18.				
Beaver Creek near Lander	06234500	113	1938-41.				
South Fork Hall Creek near Lander	06234700	3.88		1960-72.			
Big Sand Draw:							
Bobcat Draw near Sand Draw	06234800	b2.89		1969; 1971- 81.			

Footnotes at end of table.

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
IISSOURI RIVER BASINcontinued									
YELLOWSTONE RIVER BASINcontinued									
Wind Rivercontinued									
Muskrat Creek:									
Beaver Creek near Arapahoe	06235000	354	1950-53.		1951; 1967-81; 1985-92.	1989-92.			
Little Wind River (Popo Agie River) near Riverton	06235500	1,904	1941-		1953-54; 1965-	1959-65; 1971; 1989-93; 2001-	1987; 2001-		
Haymaker Creek near Riverton	06235700	9.52		1961-64; 1966-73.					
Kirby Draw near Riverton	06236000	129	1951-53.	1961-84.					
Wind River above Boysen Reservoir, near Shoshoni	06236100	4,390	1990-		1973-93; 2001-	1991-	1974-89; 2001-		
Lower Fraser diversion reservoir (on Fraser Draw)	06236500	27.4	1953-67c.						
Mahoney Reservoir (on Mahoney Draw)	06237000	9.82	1952-57d.						
Conant Creek:									
Horseshoe Creek:									
Signor Reservoir (on Signor Draw)	06237500	7.15	1952-60d.						
Rongis Reservoir (on Logan Draw)	06238000	37.0	1954-60d;1961-70c.						
Rongis Reservoir Canal	06238500		1953-67c.						
Dry Cheyenne Creek:									
West Fork Dry Cheyenne Creek at upper station,									
near Riverton	06238760	.69		1965-84.					
West Fork Dry Cheyenne Creek tributary near									
Riverton	06238780	1.85		1965-72.					
West Fork Dry Cheyenne Creek near Riverton	06238790	3.52		1965-70.					
Muskrat Creek near Shoshoni	06239000	733	1950-73.			1950;1961; 1964; 1967-68; 1971-73.			
Maverick Springs Draw (head of Fivemile Creek): Coal Draw:									
Reservoir No. 9 (on Paintrock Draw)	06239500	.64	1953-60d.						
Reservoir No. 8	06240000	1.00	1953-60d.						
Reservoir No. 7	06240500	4.57	1952-56d.						

		Drainage		ear	ear		
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
IISSOURI RIVER BASIN continued							
YELLOWSTONE RIVER BASINcontinued							
Wind Rivercontinued							
Reservoir No. 10	06241000	.13	1954-60d.				
Reservoir No. 6	06241500	5.07	1954-57d.				
Reservoir No. 5	06242000	5.14	1954-60d.				
Reservoir No. 4	06242500	5.77	1954-57d.				
Reservoir No. 3	06243000	5.84	1952-57d.				
Reservoir No. 1	06243500	5.91	1954-57d.				
Fivemile Creek Reservoir	06244000	72.8	1956-70c.				
Lower Teapot Reservoir (on Teapot Draw)	06244200	13.5	1954-65c.				
Fivemile Creek above Wyoming Canal, near Pavillion							
, , , , , , , , , , , , , , , , , , ,	06244500	118	1949-75;1988-		1949-51; 1969; 1974-75; 1987-92.	1949-51; 1960-61; 1964-68; 1970-75; 1989-92.	
Fivemile Creek near Pavillion	06245000	118	1948-49.				
Powerline wasteway near Pavillion	06245500		1949-50.			1950.	
Pavillion drain near Pavillion	06246000		1948-50.		1988.	1949-50; 1988.	
Ocean drain at Ocean Lake outlet, near Pavillion	06246500		1948-53;1978-83.		1950-51; 1978-83; 1986;1988.	1950-51.	
Ocean drain near Midvale	06246800		1979-82.			1979-82.	
Ocean drain near Pavillion	06247000		1948-53.			1949-50.	
Dudley wasteway near Pavillion	06247500		1949-50.				
Kellett drain near Pavillion	06248000		1948-50.			1950.	
Dewey drain near Pavillion	06248500		1948-50.				
Fivemile 76 drain near Riverton	06249000		1949-50.				
Sand Gulch drain and wasteway near Riverton	06249500		1949-50.				
Fivemile Creek near Riverton	06250000	b356	1949-65.		1950-51.	1949-51; 1959-61; 1963-65.	
Lost Wells Butte drain near Riverton	06250500		1949-50.				
Coleman drain near Shoshoni	06251000		1948-50.			1950.	

		Drainage		Period of record	, by calendar	year	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASIN continued							
YELLOWSTONE RIVER BASINcontinued							
Wind Rivercontinued							
Sand Gulch near Shoshoni	06251500	18.6	1948-53.		1988.	1949-50; 1988.	
Eagle drain near Shoshoni	06252000		1948-50.				
Lateral P-34.9 wasteway near Shoshoni	06252500		1949-50.				
Fivemile Creek near Shoshoni	06253000	b418	1941-42;1948-83;1988-		1948-51; 1953; 1965-86; 1988.	1949-51; 1959-61; 1963-68; 1972; 1974-75; 1978-85; 1988.	
Lateral P-36.8 wasteway near Shoshoni Poison Creek:	06253500		1949-50.				
Graham Draw: East Fork Reservoir	06254000	.81	1949-60d.				
West Fork Reservoir	06254500	.38	1947-60d.				
Graham Reservoir Dead Man Gulch:	06255000	3.12	1947-60d.				
Dead Man Gulch tributary near Lysite	06255160	.54		1965-68; 1970-72.			
Dead Man Gulch near Lysite	06255190	4.11		1965-73.			
Dead Man Gulch near Moneta	06255200	4.46		1958-69.		1966.	
Poison Creek tributary near Shoshoni	06255300	.39		1959-81.			
Poison Creek near Shoshoni	06255500	500	1949-53;1955-56.	1961-68.	1951.	1949-51; 1964.	
Badwater Creek at Lybyer Ranch, near Lost Cabin	06256000	131	1948-68.				
Badwater Creek at Lost Cabin	06256500	166	1945-48.				
E-K Creek tributary near Arminto	06256550	.14		1960-68.			
Red Creek near Arminto	06256600	7.15		1963-81.		1965.	
Badwater Creek at Lysite	06256650	415	1965-73.			1966-68; 1970-73.	
Badwater Creek tributary near Lysite	06256670	5.86		1966-73.			

		Drainage		Period of record	, by calendar y	ear	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASINcontinued							
YELLOWSTONE RIVER BASINcontinued Wind Rivercontinued							
Badwater Creekcontinued							
South Bridger Creek near Lysite Bridger Creek:	06256700	10.0		1960-81.			
Bridger Creek near Lysite	06256800	182	1965-73.			1966-68; 1970-73.	
Dry Creek near Bonneville	06256900	52.6	1965-81.		1976-81.	1966-68; 1970-81.	
Badwater Creek at Bonneville	06257000	808	1947-73.			1949-51; 1960-61; 1963-68; 1970-73.	
Muddy Creek:						1970-73.	
Holland Creek:							
Warm Springs Creek near Pavillion Shotgun Creek:	06257200	5.44		1961-69.			
Shotgun Creek tributary near Pavillion	06257300	2.57		1961-81.			
Muddy Creek near Pavillion	06257500	267	1949-73.		1949-51; 1988-92.	1949-51; 1961; 1964-68; 1970-72.	
Muddy Creek near Shoshoni	06258000	332	1949-68;1972-83.		1953; 1982-84; 1986;1988.	1949-51; 1960-61; 1964-68; 1982-85; 1988.	
Cottonwood Creek drain near Shoshoni	06258010					1979-82.	
Birdseye Creek near Shoshoni	06258400	13.2		1959-72.			
Bonneville	06258500	165	1949-53.		1949-50; 1976.		
Boysen Reservoir	06258900	7,700	1951-a				

		Drainage	Period of record, by calendar year					
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology	
IISSOURI RIVER BASIN—continued								
YELLOWSTONE RIVER BASINcontinued								
Wind River below Boysen Reservoir	06259000	7,701	1951-		1953-54; 1956; 1960-92; 2001-	1979-86; 2001	1973-87; 2001-	
Wind River at Wedding of Water, near Thermopolis	06259050				2001-	2001-	2001-	
Bighorn River at (near) Thermopolis	06259500	8,020	1900-5;1910-53.		1949-51; 1953-54; 1969-70.	1949-53.		
South Fork Owl Creek near Anchor	06260000	85.5	1932;1939-43;1959-85; 1991-95.		1974-85.	1965; 1977-78.	1977-78.	
Middle Fork Owl Creek above Anchor Reservoir	06260200	33.6	1959-65.					
Anchor Reservoir	06260300	131	1960-a					
South Fork Owl Creek below Anchor Reservoir	06260400	131	1959-		1974-86.			
South Fork Owl Creek above Curtis Ranch, near Thermopolis	06260500	144	1943-59.					
South Fork Owl Creek at Curtis Ranch, near Thermopolis	06261000	149	1931-32;1938-43.					
South Fork Owl Creek near Thermopolis (Owl Creek								
near Embar)	06261500	180	1921-22;1929-32.					
North Fork Owl Creek near Anchor	06262000	54.8	1941-62.					
North Fork Owl Creek above Basin Ranch (below	0.62.62000	-1	10.00 55 1001 05					
Cup Creek), near Anchor	06262300	e61	1962-75;1991-95.					
North Fork Owl Creek at Crann Ranch, near	06262500	94.2	1938-39.					
Thermopolis North Fork Owl Creek near Thermopolis	06262300	94.2 102	1930-39. 1930-32.					
Mud Creek near Thermopolis	06263500	102	1938-39.					
Owl Creek near Thermopolis	06264000	478	1936-39. 1910-17;1931-32; 1938-69.		1976.	1965.	1975.	
Owl Creek near Lucerne	06264500	509	1932-33;1938-53.					
Bighorn River at Lucerne	06264700				1966-	1990-92.	1978-	
Kirby Creek near Lucerne	06265000	199	1941-45.					
Sand Draw near Thermopolis	06265200	6.33		1960-81.				
Cottonwood Creek at High Island Ranch (at county								
bridge), near Hamilton Dome	06265337	81.4	1993-		1977-78.	1977-78.	1977-78.	
Hamilton Dome	06265410				1977-78.	1977-78.	1977-78.	

		Drainage	Period of record, by calendar year				
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASINcontinued							
YELLOWSTONE RIVER BASINcontinued							
Bighorn Rivercontinued							
Grass Creek above Little Grass Creek, near Grass					10== =0	10== =0	10== =0
Creek	06265435				1977-78.	1977-78.	1977-78.
Grass Creek near mouth, near Hamilton Dome	06265492				1977-78.	1977-78.	1977-78.
Cottonwood Creek at Winchester	06265500	416	1941-49;1977-78.		1977-78.	1965-66; 1977-78.	1977-78.
Tie Down Gulch near Worland	06265600	1.78		1961-84.			
Gooseberry Creek at Dickie	06265800	95	1957-78.		1977-78.	1977-78.	1977-78.
Gooseberry Creek near Grass CreekGillies Draw:	06266000	142	1945-57.				
Gillies Draw tributary near Grass Creek	06266320	1.30		1965-73.			
Gooseberry Creek at State Highway 431, near Grass							
Creek	06266450		1977-78.		1977-78.	1977-78.	1977-78.
Murphy Draw near Grass Creek	06266460	2.32		1965-81.			
Gooseberry Creek near Dickie	06266500	289	1938-41.		1983.		
Gooseberry Creek at Neiber (Pulliam)	06267000	361	1941-53.			1965-66.	
Bighorn River at Neiber	06267050				1965-69; 1976.		
Nowater Creek:							
East Fork Nowater Creek:							
North Prong East Fork Nowater Creek near							
Worland	06267260	3.77		1964-84.			
North Prong East Fork Nowater Creek tributary near Worland	06267270	2.11		1965-73.			
Denver Jake Reservoir (on unnamed tributary of							
East Fork)	06267300		1958-67f.				
East Fork Nowater Creek near Colter	06267400	149	1971-91.		1977-81.	1977-81.	
Fifteenmile Creek:							
Red Spires Reservoir (on Rock Waterhole Creek)	06267500	5.24	1954-59d;1960-67c.				
Middle Fork Fifteenmile Creek near Worland	06267900				1978-82.	1978-82.	1978-82.
Big Gin Reservoir (on unnamed tributary)	06268000	.94	1954-59d;1960-67c.				

		Drainage		Period of record	, by calendar y	year	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASINcontinued							
YELLOWSTONE RIVER BASINcontinued							
Bighorn Rivercontinued	0 0 - 0 0	-10	40.54.55.40.50.04	1050 50	40.5	4040 -	40=0.04
Fifteenmile Creek near Worland	06268500	518	1951-72;1978-86.	1973-78.	1965; 1978-81; 1983-86; 1989-92.	1949-51; 1959-61; 1963-68; 1970-72; 1978-86; 1989-92.	1978-81.
Bighorn River at Worland	06268600	10,810	1965-69.		1964-86.	1965-68.	
Slick Creek near Worland	06268640				1981-86.		
Bighorn River near Manderson	06269000	11,020	1949-53;1955-56.		1950-51; 1966-71.	1949-51.	
Bighorn River at Manderson Nowood River:	06269500	11,048	1941-49.		1976.		
Spring Creek near Ten Sleep	06269700	57.9		1961-74.		1967.	
Nowood River (Creek) tributary near Ten Sleep	06269750	.42		1960-81.			
Nowood River (Creek) near Ten Sleep	06270000	803	1938-43;1950-55; 1972-92.		1967-86.	1971-82.	
Tensleep Creek:							
Leigh Creek near Ten Sleep Canyon Creek:	06270200	2.54		1961-74.			
Canyon Creek tributary near Ten Sleep	06270300	.52		1961-74.			
Canyon Creek below Cooks Canyon, near Ten							
Sleep	06270450	72	1969-71.		1969-71.	1969-71.	
Canyon Creek near Ten Sleep	06270500	86.1	1939-44.				
Tensleep Creek near Ten Sleep	06271000	247	1910-12;1914-24; 1943-72.		1967.		
Brokenback Creek near Ten Sleep	06271200	55.0		1961-70.			
Paintrock Creek below Lake Solitude	06271500	16.0	1946-53.				
Paintrock Creek at Longview ranger station, near							
Hyattville	06272000	79.9	1911-12a.				
Paintrock Creek near Hyattville	06272500	164	1920-27;1941-53.		1951.		
Medicine Lodge Creek near Hyattville	06273000	86.8	1942-73.		1951;1968.		

		Drainage Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology	
MISSOURI RIVER BASINcontinued								
YELLOWSTONE RIVER BASINcontinued								
Bighorn Rivercontinued								
Nowood Rivercontinued								
Paint Rock Creek near mouth (near Bonanza),								
below Hyattville	06273500	376	1910-13;1915-22.		1951-53; 1967-84.			
Nowood River (Creek) at BonanzaSand Creek:	06274000	1,730	1910-28.					
East Fork Sand Creek near Worland	06274100	19.1		1960-71.				
Nowood River tributary No. 2 near Basin	06274190	1.51		1965-84.				
Nowood River tributary No. 2 near Manderson	06274200	1.59		1961-71.	1978.	1967.		
Nowood River at Manderson	06274220	e2,000			1965-86.	1950; 1965-67.		
Elk Creek near Basin	06274250	96.9		1959-81.		1967.		
Bighorn River at Basin	06274300	13,223	1983-		1983-	1989-	1983-	
Greybull River near Pitchfork	06274500	282	1946-49;1951-71.					
Wood River near Kirwin	06274800	7.66	1970-75.			1975.		
Wood River at Kirwin	06274810	11.4	1970-78.			1975.		
Wood River at Sunshine	06275000	e194	1945-92.			1975.		
Wood River near Meeteetse	06275500	211	1910-12;1914-17; 1929-49.					
Greybull River near Meeteetse	06276000	659	1910-12;1915-16;1920.					
Greybull River at Meeteetse	06276500	681	1897;1903;1920-		1996-	1975. 1996-	1996-	
Bench Canal near Burlington	06277000		1930-38.					
Greybull River near Basin	06277500	1,115	1930-73.		1951-53; 1965-92.	1950; 1965-66; 1972; 1989-92.		
Dry Creek:								
Twentyfour Mile Creek near Emblem	06277700	12.8		1960-81.				
Dry Creek tributary near Emblem	06277750	.65		1960-68; 1970-81.				
Dry Creek near Greybull	06277950	432	1979-81.		1979-81.	1979-80.	1979-81.	

		Drainage	Period of record, by calendar year					
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology	
ISSOURI RIVER BASINcontinued								
YELLOWSTONE RIVER BASINcontinued								
Bighorn Rivercontinued								
Dry Creek at Greybull	06278000	433	1951-53;1955-60.		1950-51; 1957-60; 1965; 1979-80.	1949-51; 1959-60; 1979-80.	1979-80.	
Shell Creek above Shell (Creek) Reservoir	06278300	23.1	1956-					
Granite Creek near Shell Creek ranger station, near								
Shell (formerly Granite Creek near Shell								
ranger station, near Shell)	06278400	11.1		1961-74.				
Shell Creek near Shell	06278500	145	1940-		1951;1976; 1982.	1967.		
Shell Creek at Shell	06279000	256	1911-23.				1973-74	
Red Gulch near Shell	06279020	47.8		1967; 1970- 81.				
Shell Creek at Porter Gulch, near Greybull	06279050				1983-89.		1989-90	
Shell Creek near Greybull	06279090	e560			1951; 1965-86.	1965-67.	1973-78	
Bighorn River at Kane	06279500	15,765	1928-		1947-53; 1955-57; 1960-97, 1999-	1949-51; 1959-61; 1964; 1969-92, 1999-2001.	1972-81 1984-89 1999-	
Willow Creek near Kane	06279700	14.0		1961-75.				
North Fork Shoshone River:								
Jones Creek at mouth, near Pahaska	06279790	24.8	1989-93.		1989-93.	1989-93.		
Crow Creek at mouth, near Pahaska	06279795	19.1	1989-93;2001.		1989-93; 2001-	1989-93; 2001-		
North Fork Shoshone River at Pahaska	06279800	108	1989-90.					
Middle Creek at East Entrance, Yellowstone								
National Park	06279850	32.6	1981-84.		1968-70.			
North Fork Shoshone River at Wapiti	06279940	669	1990-		1989-90.		1989-90	
Trout Creek near Wapiti	06279950	49.4		1961-74.				
North Fork Shoshone River near Wapiti	06280000	775	1921-26;1979-89.		1981-86.			
South Fork Shoshone River near Valley South Fork Shoshone River (Shoshone River) near	06280300	297	1956-		1984.	1958-64.		
boddi i oik biloshone River (biloshone River) hear			1915-24.					

		Drainage	Period of record, by calendar year					
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology	
MISSOURI RIVER BASIN continued								
YELLOWSTONE RIVER BASINcontinued								
Bighorn Rivercontinued								
Shoshone Rivercontinued								
South Fork Shoshone River (Shoshone River)								
above Buffalo Bill Reservoir (at Marquette)	06281000	585	1903;1905-8;1921-26; 1973-		1982-92.			
Diamond Creek near mouth, near Cody	06281400	7.34	1980-92.					
Buffalo Bill (Shoshone) Reservoir near Cody	06281500	1,498	1909-					
Shoshone River above Demaris Springs, near Cody	06281700				1987-	1989.	1989.	
Shoshone River below Buffalo Bill (Shoshone)								
Reservoir	06282000	1,538	1921-		1947-49; 1964-86.		1973-78.	
Shoshone River at (near) Cody Cottonwood Creek:	06282500	1,603	1902-9.					
Cottonwood Creek tributary near Cody	06282700	.76		1961-73.				
Shoshone River above Dry Creek, near Cody	06282900				1974-89.		1974-89.	
Shoshone River at Corbett Dam	06283000	1,793	1908-25.					
Garland Canal (Corbett Tunnel) at Corbett Dam	06283500		1909-20;1922-26.					
Shoshone River above Willwood Dam, near								
Willwood	06283800	1,830	1979-82.			1979-82.		
Shoshone River at Willwood Dam	06284000	1,833	1925-26.					
Willwood Canal near Ralston	06284005					1981-83.		
Shoshone River below Willwood Dam, near Ralston.	06284010					1972; 1981-83.		
Shoshone River at Willwood	06284200	1,980	1974-79.		1976.			
Roan Wash near Garland	06284380				1985-92.			
Shoshone River near Garland	06284400	2,036	1958-79.		1958-59; 1967-71; 1974-92.			
Bitter Creek below sewage lagoon, near Powell	06284450				1981-92.		1981-89.	
Bitter Creek near Garland	06284500	80.5	1951-53;1958-61; 1969-87.		1950-53; 1958-60 1969-	1950-51.	1973-78; 1984-89; 1993-	
Whistle Creek near Garland	06284800	101	1958-60;1968-87.		1959-60; 1969-87.			

		Drainage		Period of record,	ear		
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASINcontinued							
YELLOWSTONE RIVER BASINcontinued							
Bighorn Rivercontinued							
Shoshone River at Byron	06285000	2,345	1929-66.		1964-66; 1976.	1950.	
Shoshone River near Lovell	06285100	e2,350	1966-		1966-97; 2001-	1971-82; 1990-92; 2001-	1978-81; 1987-89; 2001-
Sage Creek at Sidon Canal, near Deaver	06285400	341	1958-60;1968-87.		1958-60; 1969-87.		
Sage Creek near Lovell	06285500	381	1951-60.		1965;1967; 1969-71.		
Shoshone River at Lovell	06286000	2,832	1897-98;1899a.		1999-		
Shoshone River at Kane	06286200	2,989	1957-58.		1958-68; 1976-89, 1999.	1959-61; 1964, 1999.	1982-89, 1999.
Bighorn River near Lovell	06286250	e18,900	1964-66.				
Big Coulee near Lovell	06286258	30.1	1970-78.			1970-74; 1976-77.	
Crooked Creek near Lovell	06286260	e119	1964-67.				
Porcupine Creek near Lovell.	06286270	e135	1964-67.				
Bighorn Lake (Yellowtail Reservoir) near St. Xavier,							
Mont	06286400	19,626	1965-				
Bighorn River near St. Xavier, Mont	06287000	19,667	1934-		1966-81.		
Little Bighorn River below Dayton Gulch, near							
Burgess Junction	06288600	15.9	1982-87.				
Dry Fork below Lick Creek, near Burgess Junction	06288700	54.1	1982-87;1992-95.				
Little Bighorn River near Parkman	06288960	137	1969-72.				
Elkhorn Creek above Fuller Ranch Ditch, near							
Parkman	06288975	4.58	1982-87.				
West Fork Little Bighorn River near Parkman	06288990	38.6	1969-72;1982-87.				
Little Bighorn (Little Horn) River at State line, near Wyola, Mont	06289000	193	1939-		1992-	1992-	1992-
Powers Upper Ditch (Spring Creek): Red Canyon Creek near Parkman	06289100	3.20	1983-90.				
Little Bighorn (Little Horn) River near Wyola, Mont	06289500	251	1983-90. 1911-24.				

		Drainage		Period of record	, by calendar y	ear	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASINcontinued							
YELLOWSTONE RIVER BASINcontinued							
Bighorn Rivercontinued							
Little Bighorn Rivercontinued							
Pass Creek:							
West Pass Creek near Parkman	06289600	15.4	1982-				
East Pass Creek near Parkman	06289800	11.6	1974-76.				
East Pass Creek near Dayton	06289820	21.7	1982-				
Twin Creek near Parkman	06289870	27.0	1982-90.				
Pass Creek near Wyola, Mont	06290000	111	1935-56.				
Little Bighorn (Little Horn) River below Pass Creek, near Wyola, Mont	06290500	428	1939-75.				
Lodge Grass Creek at State line, near Wyola, Mont	06291200	16.7	1982-89.				
North Tongue River:							
Hideout Creek near Dayton	06296400	2.89		1961-67.			
North (Fork) Tongue River near Dayton	06296500	32.4	1945-57.				
Big Willow Creek near Dayton	06296700	7.08		1961-73.			
South (Fork) Tongue River near Dayton	06297000	85	1945-72.				
Tongue River at Tongue Canyon Campground, near Dayton	06297480	202	1974-79.				
Highland ditch near Dayton	06297500		1919-23;1940-				
Tongue River near Dayton	06298000	204	1918-29;1940-		1966-81; 1987-88, 1999-2001.	1999-2001.	1973-77; 1980, 1999- 2001.
Little Tongue River at Steamboat Point, near Dayton	06298480	11.4	1974-76.				
Little Tongue River above South Fork Little Tongue							
River, near Dayton	06298490	14.1	1975-76.				
Little Tongue River near Dayton	06298500	25.1	1951-53;1955-74.		1971.		
Tongue River at Dayton	06299000	259	1903.				
Wolf Creek below Alden Creek, near Wolf	06299480	32.8	1974-76.				
Wolf Creek above Red Canyon Creek, at Wolf	06299490	33.8	1974-76.				
Wolf Creek at Wolf	06299500	37.8	1945-		1985.		
Slater Creek near Monarch	06299900	18.0		1967-81.		1967.	
Tongue River at Monarch	06299980				1974-80; 1982-83.	1976-77.	1976-80; 1982-83.

		Drainage		Period of record	, by calendar y	ear		
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology	
MISSOURI RIVER BASINcontinued								
YELLOWSTONE RIVER BASINcontinued								
Tongue River at Carneyville	06300000	495	1911-13;1915-17.					
East Fork Big Goose (East Goose) Creek near Big								
Horn	06300500	20.1	1953-					
Cross Creek above Big Horn Reservoir, near Big								
Horn	06300900	9.29	1960-71.					
Cross Creek near Big Horn	06301000	9.63	1953-60.					
West Fork Big Goose Creek:								
Coney Creek above Twin Lakes, near Big Horn	06301480	3.41	1990-					
Lost Lake Creek near Big Horn	06301485	2.14	1990-93.					
Snail Creek near Big Horn	06301490	1.36	1990-93.					
Coney Creek below Twin Lakes, near Big Horn	06301495	8.07	1990-94;1995-					
West Fork Big Goose (West Goose) Creek near Big								
Horn	06301500	24.4	1953-					
Big Goose (Goose) Creek above PK Ditch, in canyon,near Sheridan, WY	06301850		2001-					
Big Goose Creek near Sheridan	06302000	120	1929-2001.		1987-89.	1989-92.	1989-99.	
Big Goose Creek above Park Creek, near Sheridan	06302200		1999-2000		1999-2000.		1999- 2000.	
Goose Creek at Sheridan	06302500	182	1909-13;1915-16.					
Little Goose Creek:								
Willow Creek near Big Horn	06303000	2.99	1953-55.					
Little Goose Creek in canyon, near Big Horn	06303500	51.6	1941-					
Little Goose Creek above Davis Creek, near Big Horn	06303700		1999-2000.					
Little Goose Creek near Big Horn	06304000	71	1919-21.					
Little Goose Creek at Sheridan	06304500	159	1896-97;1911-12.		1979-	1990-92.	1979-	
Goose (Big Goose) Creek below Little Goose Creek,			,					
at Sheridan	06305000	341	1895;1896-97.					
Goose Creek below Sheridan	06305500	392	1941-84.		1959-64; 1967-	1971-82; 1989-92.	1973-	
Goose Creek near Acme	06305700	411	1984-		1983-89.		1983-87.	
Tongue River near Acme	06306000	894	1938-57.					
Squirrel Creek near Decker, Mont	06306100	33.6	1975-85.		1975-85.			
Prairie Dog Creek near Acme	06306250	358	1970-79; 2000-		1976-92; 2000-	1976-77.	1976-77.	

		Drainage		year			
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASINcontinued							
YELLOWSTONE RIVER BASINcontinued							
Middle Fork Powder Rivercontinued							
Tongue River at State line, near Decker, Mont	06306300	1,477	1960-		1965-	1976-77; 1979-83; 2000-	1973-89.
Deer Creek near Decker, Mont	06306800	38.3			1975-77.	1975-76.	
Middle Fork Powder River near Barnum	06309200	45.2	1961-				
Buffalo Creek above North Fork Buffalo Creek, near							
Arminto	06309260	8.80	1974-79.				
North Fork Buffalo Creek near Arminto	06309270	8.10	1974-79.				
Buffalo Creek below North Fork Buffalo Creek, near		18.6					
Arminto	06309280		1974-79.				
Beaver Creek below Bayer Creek, near Barnum	06309450	10.9	1974-89.				
Beaver Creek above White Panther Ditch, near		24.2					
Barnum	06309460		1974-89.				
Middle Fork Powder River above Kaycee	06309500	e450	1949-70;1984-92.		1949; 1952-54; 1984-92.	1966-68; 1970.	1984-92.
Red Fork near Barnum	06310000	e142	1929-32;1950-53.		1988-89.		
Middle Fork Powder River at Kaycee	06310500	647	1911-12;1929-32.		1977.		
North Fork Powder River near Hazelton	06311000	24.5	1946-				
North Fork Powder River below Bull Creek, near		32.3					
Hazelton	06311060		1974-92.		1970-71.		
North Fork Powder River below Pass Creek, near		100					
Mayoworth	06311400		1973-				
North Fork Powder River near Mayoworth	06311500	106	1940-73.		1971.		
North Fork Powder River near Kaycee	06312000	244	1911;1929-32.		1988-89.		
Powder River near Kaycee	06312500	e980	1933-35;1938-71.		1946; 1949-50; 1952-54; 1968-91.		1973-89.
South Fork Powder River near Powder River	06312700	262		1961-84.			

		Drainage Period of record, by cal-					calendar year		
Station name	Station number	(Square	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
IISSOURI RIVER BASIN continued									
YELLOWSTONE RIVER BASINcontinued									
Powder Rivercontinued									
Cottonwood Creek:									
North Fork Cottonwood Creek:									
Sanchez Creek above reservoir, near Arminto	06312795	5.53		1970-81.					
Sanchez Creek near Arminto	06312800	5.95		1961-76.					
Dead Horse Creek:									
Dead Horse Creek tributary near Midwest	06312910	1.53		1965-72.					
Dead Horse Creek tributary No. 2 near Midwest.	06312920	1.34		1965-72.					
South Fork Powder River near Kaycee	06313000	e1,150	1911;1938-40; 1950- 69; 1978-80; 1983-84.		1949; 1951-53; 1968-81; 1983-89; 1992.	1950-51; 1983-84; 1986-87.	1975-80.		
Salt Creek:									
Bobcat Creek near Edgerton	06313020	8.29		1965-81.					
Coopers Draw near Edgerton	06313030	1.11		1965-73.					
Seven L Creek near Edgerton	06313040	7.10		1965-73.					
Teapot Creek:									
East Teapot Creek near Edgerton	06313050	5.44		1965-72; 1974-79.					
Coal Draw near Midwest	06313100	11.4		1961-84.					
Dugout Creek:									
Dugout Creek tributary near Midwest	06313180	b.8	1975-83.	1965-74.		1982-83.			
Hay Draw near Midwest	06313200	1.60		1958-70.					
Salt Creek near Sussex	06313400	769	1976-81;1982-93.		1968-81 1983-	1975-81; 1983-87.	1976-77; 1980.		
North Spring Draw near Sussex	06313450	5.21		1980-81.					
Powder River at Sussex	06313500	e3,090	1938-40;1950-57; 1977-84; 1985-98.		1967-68 1976-	1967; 1976-87.	1976-81.		
Burger (Bugher) Draw near Buffalo	06313600	4.57		1961-71.					
Powder River below Burger (Bugher) Draw, near Buffalo, WY	06313605				2001				
Van Houten Draw near Buffalo	06313630	10.8		1971-81.					
Powder River above Dead Horse Creek, near Buffalo (formerly 441252106090801)	06313665				1978; 1988-89.				

		Drainage		Period of record	, by calendar y	ear	
Station name	Station number	(Square	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
IISSOURI RIVER BASINcontinued							
YELLOWSTONE RIVER BASINcontinued							
Powder Rivercontinued							
Dead Horse Creek near Buffalo	06313700	151	1971-90; 2000-01.	1958-71.	1976; 1980-81; 1989; 2000-	1976.	1976; 1978.
North Fork Crazy Woman Creek:							
Caribou Creek near Buffalo, WY	06313900	5.08		1961-74.			
North Fork Crazy Woman Creek below Pole Creek,							
near Buffalo	06313950	43.4	1973-84.				
North Fork Crazy Woman Creek near Buffalo	06314000	44.9	1942-49;1973-84.				
North Fork Crazy Woman Creek below Spring Draw,							
near Buffalo	06314500	51.7	1949-79.				
North Fork Crazy Woman Creek near Greub	06315000	174	1950-68.			1966-68.	1978.
Middle Fork Crazy Woman Creek:							
Poison Creek below Tetley Spring, near							
Mayoworth	06315480	19.0	1974-76.				
Poison Creek near Mayoworth	06315490	24.7	1974-76.				
Middle Fork Crazy Woman Creek near Greub	06315500	82.7	1942-72.				1983.
Crazy Woman Creek near Buffalo	06316000	464	1929-32.				1976-81
Crazy Woman Creek at upper station, near Arvada	06316400	e945	1963-70;1977-81.		1950; 1967-	1950; 1966-67; 1976-81; 1990-	1976-81
Headgate Draw at upper station, near Buffalo	06316480	3.1		1965-73.			
Headgate Draw at lower station, near Buffalo	06316490	e2.6		1965-73.			
Crazy Woman Creek near Arvada	06316500	956	1939-43;1950-64.				
Coal Draw near Buffalo (formerly Powder River tributary near Buffalo)	06316700	1.64		1965-84.			
Powder River at Arvada	06317000	e6,050	1919-		1946; 1948-53; 1955;1967-	1968; 1970-79; 1983-84; 1986-87.	1972-82
Wild Horse Creek at ArvadaSpotted Horse Creek:	06317020		2000-		2000-		
Spotted Horse Creek tributary near Spotted Horse.	06317050	3.98		1961-81.			
Powder River near Arvada	06317100	e6,580	1915-19.				

		Drainage]	Period of record	by calendar y	calendar year		
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biolog	
IISSOURI RIVER BASINcontinued								
YELLOWSTONE RIVER BASINcontinued								
Powder Rivercontinued								
Clear Creek:	0.621.7200	5 .00	1005.00					
Sourdough Creek near Buffalo	06317300	5.80	1985-90.					
Little Sourdough Creek near Buffalo	06317340	4.53	1985-88.					
North Fork Clear Creek near Buffalo	06317500	29.0	1949-68.					
Clear Creek at Camp Comfort, near Buffalo	06318000	e110	1911-12a.					
Clear Creek near (at) Buffalo, WY	06318500	120	1894;1896-99;1917-27; 1938-92.		1977-78.	1977-78.	1976-78	
Clear Creek at Buffalo	06319000	e130	1902a;1903-4;1911-12.					
Sand Creek near Buffalo	06319100	10.8		1969-84.				
South Rock Creek (head of Rock Creek) at forest	00317100	10.0		1707 01.				
boundary, near Buffalo	06319470	40.3	1974-76.					
South Rock Creek above Red Canyon, near Buffalo	06319480	40.5	1974-76.					
South Fork Rock Creek near Buffalo	06319500	43.8	1941-43;1950-53.					
Rock Creek near Buffalo	06320000	60.0	1941-		1978.			
Clear Creek below Rock Creek, near Buffalo	06320200	322	1971-81.		1975-91.	1975-81.	1976-89	
Clear Creek near Kumer Draw, near Buffalo	06320210				1993-		1993-	
Clear Creek at Ucross	06320400	409	1976-81.		1975-81; 1983-92.	1975-81.	1976; 1978.	
South Piney Creek (head of Piney Creek) at Willow					1,00,1		17701	
Park	06320500	33.6	1945-57;1959-					
South Piney Creek near Story	06321000	69.4	1951-80.					
Mead-Coffeen ditch above fish hatchery, near								
Story	06321020		1974-79.					
Mead-Coffeen ditch below fish hatchery, near								
Story	06321040		1974-79.					
South Piney Creek below Mead-Coffeen ditch, near								
Story	06321100	69.5	1974-79.					
North Piney Creek near Story	06321500	36.8	1951-82.		1976-77.	1976-78.	1976.	
Spring Creek near Story	06321800		1974-79.					
Cruez ditch near Story	06322000		1903a.					
Prairie Dog ditch near Story	06322500		1903a.					

		Drainage Period of record, by calendar year					
Station name	Station number	(Square	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASINcontinued							
YELLOWSTONE RIVER BASINcontinued							
Powder Rivercontinued							
Clear Creek conintued:							
Piney Creek at Kearney	06323000	118	1902-6;1910-17; 1919-23;1940-		1975-78.	1976-78.	1975-76; 1978.
Piney Creek at Ucross	06323500	267	1917-23;1950-82.		1975-92.	1976-78.	1975-80.
Clear Creek near Arvada	06324000	e1,110	1915-19;1928-29; 1939-82.		1949-54; 1966-92; 2001.	1966-67; 1975-83.	1975-80.
Powder River at Moorhead, Mont	06324500	8,088	1929-72;1974-		1950-53; 1955-57; 1968-72; 1974-92.	1974-97.	
Little Powder River:							
Little Powder River tributary near Gillette	06324800	.81		1960-81.			
Box Draw:							
Box Draw tributary near Gillette	06324810	.5		1965-72.			
Rawhide Creek tributary near Gillette	06324820	2.6		1965-72.			
Little Powder River below Corral Creek, near Weston	06324890	204	1975;1977-83.		1975-83.	1975-83.	1976-82.
Cedar Draw near Gillette (formerly Little Powder River tributary No. 2 near Gillette)	06324900	3.45		1959-81.			
Cow Creek:							
Cow Creek tributary near Weston	06324910	.72		1971-84.			
Little Powder River near Weston	06324925	540	1977-81.		1969; 1975-81.	1975-81.	1975-81.
Little Powder River above Dry Creek, near Weston	06324970	1,235	1972-		1975-82; 1985-	1975-82, 1999-2001.	1975-82, 1999; 2001.
Little Powder River near Wyoming-Montana State	06324985				1969-70.		
LITTLE MISSOURI RIVER BASIN							
Little Missouri River near New Haven CHEYENNE RIVER BASIN	06332800				1976-77.		1976-77.
Antelope Creek (head of Cheyenne River): Wind Creek:							
Reservoir No. 13	06361500	.60	1951-54g.				

		Drainage		Period of record	d, by calendar year			
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality Sediment	Biology		
MISSOURI RIVER BASIN continued								
CHEYENNE RIVER BASINcontinued								
Antelope Creekcontinued								
Sand Creek:								
Reservoir No. 35A	06362000	.61	1952-54g.					
Reservoir No. 13A	06363000	.28	1952-54g.					
Porcupine Creek:								
Reservoir No. 10B	06363500	0.20	1952-54.					
Porcupine Creek near Turnercrest	06363700	31.5		1959-76.				
Reservoir No. 10A	06364000	.43	1952-54g.					
Reservoir No. 11	06364500	2.46	1951-54g.					
Antelope Creek near Teckla	06364700	959	1977-81.		1977-81; 2001.	1977-81.	1977-81.	
Dry Fork:								
Reservoir No. 40	06365000	.71	1951-54g.					
Bear Creek:			-					
Reservoir No. 36	06365200	.48	1951-54g.					
Dry Fork Cheyenne River near Bill	06365300	128	1976-81;1985-87.		1977-81; 1987.	1977-81; 1987.	1979.	
Reservoir No. 33A	06365500	.44	1952-54g.					
Cheyenne River near Dull Center	06365900	1,527	1976-81;1985-87.		1975-81; 1987.	1975-81; 1987.	1978-81.	
Reservoir No. 14	06366000	10.9	1950-51g;1953-54g.					
Reservoir No. 31	06366500	.35	1951-52g.					
Reservoir No. 30	06367000	1.31	1951-52g.					
Reservoir No. 32	06367500	.59	1951-52g.					
Reservoir No. 26	06368000	1.51	1951-52g.					
Reservoir No. 22	06368500	.02	1951g.					
Reservoir No. 28	06369000	.68	1951-52g.					
Reservoir No. 27	06369500	1.09	1951-52g.					
Reservoir No. 24	06370000	.52	1951-52g.					
Reservoir No. 23	06370500	2.67	1951-52g.					
Reservoir No. 21	06371000	.31	1951-52g.					
Reservoir No. 18	06371500	.30	1951-52g.					
Reservoir No. 17	06372000	.06	1951-54g.					
Reservoir No. 25	06372500	.56	1951-54g.					

Station name	Station number	Drainage		Period of record,	by calendar y		
		area (square miles)	Daily or monthly discharge or content		Sediment	Biology	
MISSOURI RIVER BASINcontinued							
CHEYENNE RIVER BASINcontinued							
Reservoir No. 20	06373000	.11	1951-52g.				
Reservoir No. 19	06373500	.92	1951-54g.				
Reservoir No. 16	06374000	.18	1951-52g.				
Reservoir No. 15	06374500	9.58	1951-54g.				
Black Thunder Creek:							
Little Thunder Creek:							
Reservoir No. 10	06375000	0.66	1951-54g.				
Reservoir No. 12	06375500	.28	1951-52g.				
Little Thunder Creek near Hampshire	06375600	234	1977-81;1987-97.		1977-81; 1988; 1990-97.	1977-81; 1988; 1990-97.	1977-81.
Reservoir No. 7A	06376000	.23	1952-54g.				
Black Thunder Creek near Hampshire	06376300	e535	1972-90.		1980-81; 2001.	1980-81; 1986-87; 1989.	1980-81.
Lodgepole Creek:							
Reservoir No. 9	06376500	.94	1951-54g.				
Reservoir No. 7	06377000	2.68	1951-54g.				
Reservoir No. 8	06377500	.10	1951-54g.				
Reservoir No. 7B	06378000	1.40	1952-54g.				
Lodgepole Creek near HampshireBoggy Creek:	06378300	354	1977-81.		1978-81.	1978-81.	1978-81.
Reservoir No. 35	06378500	7.52	1950-54g.				
Lance Creek:			8				
Lance Creek tributary near Lance CreekLightning Creek:	06378640	1.20		1965-73.			
Reservoir No. 55	06379000	.05	1953-54g.				
Box Creek:			8				
Reservoir No. 41	06379500	1.27	1951-54g.				
Box Creek near Bill	06379600	112	1956-58.	1959;1961-81			
Walker Creek:				,			
Reservoir No. 56	06380000	.70	1953-54g.				
Reservoir No. 57 Dry Creek:	06380500	.21	1953-54g.				
Reservoir No. 36A	06381000	.41	1953-54g.				

		Drainage		Period of record	rd, by calendar year			
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge		Sediment	Biology	
MISSOURI RIVER BASINcontinued								
CHEYENNE RIVER BASINcontinued								
Lance Creekcontinued								
Lightning Creekcontinued								
Twentymile Creek:								
Reservoir No. 58	06381500	0.07	1953-54g.					
Reservoir No. 42 (on Twentymile Draw)	06382000	.33	1951-54g.					
Pritchard Draw near Lance Creek	06382200	5.10		1964-81.				
Cow Creek:								
Reservoir No. 34	06382500	.34	1951-54g.					
Reservoir No. 37	06383000	2.47	1951-54g.					
Reservoir No. 38	06383500	1.70	1951-54g.					
Dogie Creek:								
Reservoir No. 33	06384000	.73	1951-54g.					
Crazy Woman Creek:								
Reservoir No. 43	06384500	1.26	1951-54g.					
Reservoir No. 43A	06385000	.18	1953-54g.					
Old Woman Creek:								
Sage Creek:								
Cottonwood Creek at Hat Creek	06385400	14.5		1972-79.				
Reservoir No. 44	06385500	.92	1951-54g.					
Lance Creek (at Spencer) near Riverview	06386000	e2,070	1948-54;1956-83.		1975-83.	1971; 1975-83.	1978.	
Reservoir No. 39	06386200	.52	1951-54g.					
Cheyenne River at Riverview	06386400	e5,160			1980-92.	1981-82.	1980-82.	
(South Fork) Cheyenne River near Spencer	06386500	e5,270	1948-74.		1969-70; 1975-80.	1971-74.	1975-80.	
Beaver Creek:								
Turner Creek near Osage	06387500	47.8		1959-84.				
Reservoir No. 3	06388000	.25	1951-54g.					
Stockade Beaver Creek:								
Reservoir No. 1	06388200	.08	1951-54g.					
Skull Creek:								
Oil Creek:								
Reservoir No. 4	06388500	.11	1951-54g.					

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
MISSOURI RIVER BASIN—continued									
CHEYENNE RIVER BASINcontinued									
Cheyenne Rivercontinued									
Beaver Creekcontinued									
Blacktail Creek:									
Blacktail Creek tributary near Newcastle	06388800	0.25		1960-81.					
Reservoir No. 6	06389000	3.80	1951-54g.						
Reservoir No. 6A	06389500	.44	1952-54g.						
Reservoir No. 6C	06390000	.16	1954g.						
Reservoir No. 6B	06390500	1.52	1953-54g.						
Reservoir No. 5A	06391500	1.39	1953-54g.						
Reservoir No. 2	06392000	6.06	1951-53g.						
Reservoir No. 5	06392500	.54	1951-54g.						
Beaver Creek at Mallo Camp, near Four Corners	06392900	10.3	1974-82;1991-						
Stockade Beaver Creek near Newcastle	06392950	107	1974-82;1991-						
Redbird Canyon:									
Gillette Canyon:									
Reservoir No. 45, S. Dak	06393000	1.02	1951-54.						
Beaver Creek near Newcastle	06394000	e1,320	1943;1945-97.		1946-47; 1949-53; 1967-86.	1977-78.	1978.		
Beaver Creek near Burdock (Edgemont), S. Dak	06394500	e1,540	1904-6;1928-32.						
Reservoir No. 39A	06394700	.12	1953-54g.						
Reservoir No. 46, S. Dak	06394800	.30	1951-54g.						
Cheyenne River at Edgemont, S. Dak	06395000	7,143	1903-6;1928-33;1946-						
Cottonwood Creek:									
Reservoir No. 47B	06395500	.05	1952-54g.						
Reservoir No. 47A, S. Dak	06396000	.05	1952-54g.						
Belle Fourche River:			C						
Belle Fourche River tributary near Turnercrest	06425700	.35		1961-71.					
Belle Fourche River below Rattlesnake Creek, near									
Piney	06425720	495	1975-83;2001.		1975-83; 2001.	1976-79; 1981-83.	1976-77; 1980-82.		
Coal Creek near Piney	06425750	71.8	1980-83.		1981-83.	1981-83.	1981.		

		Drainage		Period of record	, by calendar y	ear	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASIN—continued							
CHEYENNE RIVER BASINcontinued							
Belle Fourche Rivercontinued							
Belle Fourche River above Dry Creek, near Piney	06425780	594	1975-83.		1975-83.	1976-83.	1976-77; 1980-82.
Caballo Creek near Gillette	06425800	122		1959-69.			
Caballo Creek at mouth, near Piney	06425900	260	1977-83.		1977-80; 1982-83; 2001.	1977-80; 1982-83.	1978-80.
Raven Creek near Moorcroft	06425950	76	1977-83.		1978-80.	1977-79.	1978-79.
Belle Fourche River near Moorcroft	06426000	e1,380	1923-33.				
Donkey Creek: Stonepile Creek:							
Burlington Lake Ditch at Gillette	06426095		1988-90.				
Stonepile Creek at Gillette	06426100	11.2	1988-92.		1988-92.	1988-92.	1988-92.
Donkey Creek near Gillette	06426130	63.4	2000-				
Stonepile Creek at mouth, near Gillette	06426160	14.5	2000-				
Donkey Creek tributary above reservoir, near							
Gillette	06426195	.2		1970-84.			
Donkey Creek tributary near Gillette	06426200	.28		1960-76.			
Donkey Creek near Moorcroft	06426400	246	1977-81.		1977-89; 2001.	1977-81.	1977-81; 1983-89.
Belle Fourche River below Moorcroft	06426500	1,690	1943-70;1975-83; 1985-87;1990-		1972;1975- 1993;1995-	1976-83; 1986-87; 1990-93.	1975-93; 1995-
Keyhole Reservoir near Moorcroft	06427000	1,953	1952-				
Belle Fourche River below Keyhole Reservoir	06427500	1,954	1951-95.		1969; 1984-90.		
Inyan Kara Creek near Upton	06427700	96.5		1959-84.	1968;1974.		
Belle Fourche River at Devils Tower	06427850				1967-92.		1973-77.
Barlow Creek near Devils Tower	06427880	21.9		1971-76.			
Blacktail Creek near Hulett	06427900	42.3		1962-69.			
Belle Fourche River at Hulett	06428000	e2,800	1929-32;1938-51.				
Belle Fourche River below Hulett	06428050				1981-		1981-89; 1993-
Belle Fourche River tributary No. 2 near Hulett	06428100	10.2		1962-84.			
Belle Fourche River near Alva	06428200	2,948	1988-98; 2001-				

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
MISSOURI RIVER BASIN continued									
CHEYENNE RIVER BASINcontinued									
Belle Fourche Rivercontinued									
Belle Fourche River at Wyoming-South Dakota State									
line	06428500	e3,280	1946-		1960; 1965-88.	1960.	1970-81.		
Redwater Creek:									
Rocky Ford Creek:									
Ogden Creek near Sundance	06429300	8.42		1962-81.					
Sundance Creek:									
Sundance Creek tributary above forest boundary,									
at Sundance	06429375	.76		1969-72.					
Sundance Creek tributary at Sundance	06429380	1.40		1965-68.					
Sundance Creek tributary near Sundance	06429400	1.80		1962-71.					
Cold Springs Creek (head of Sand Creek) at									
Buckhorn	06429500	19.0	1974-82;1991-						
Sand Creek above Ranch A, near Beulah	06429898				1987-91.				
Sand Creek at Ranch A, near Beulah	06429900	260	1974-76.		1987-91.				
Sand Creek near Ranch A, near Beulah	06429905	267	1976-83;1991-		1981-83.		1981-83.		
Murray ditch above headgate, at Wyoming-South Dakota State line	06429997		1987-						
Murray ditch at Wyoming-South Dakota State line	06430000		1954-87.						
Redwater Creek at Wyoming-South Dakota State line	06430500	471	1929-31;1936-37;1954-		1969-70.	1971-83.			
NIOBRARA RIVER BASIN		., -	-,-,,-,-,-,,,-,-						
Niobrara River at Wyoming-Nebraska State line	06454000	e450	1955-94.						
PLATTE RIVER BASIN	00.0.000	•	1,00 ,						
North Platte River near Northgate (Pinkhampton), Colo	06620000	1,431	1904;1915-		1965-86.	1971-74.	1973-82.		
Douglas Creek above Keystone	06620400	22.1	1955-65.						
Douglas Creek near Keystone	06620500	25.6	1912;1914-16.						
Douglas Creek near Foxpark	06621000	120	1946-72.						
Mullen Creek:	00021000	120	1, 10 , 2.						
North Fork Mullen (Mullen) Creek near French	06621500		1911a.						
Big Creek at Big Creek ranger station (near	00021200		1,114.						
Downington, Big Creek)	06622000	106	1911a;1912-24.						
French Creek near French	06622500	59.6	1909-24.						
North Brush Creek near Saratoga	06622700	37.4	1960-						
South Brush Creek near Saratoga	06622900	22.8	1960-74;1976-77;1979-						

		Drainage		Period of record	, by calendar y	year	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASIN continued							
PLATTE RIVER BASINcontinued							
North Platte Rivercontinued							
Brush Creek at upper station, near Saratoga (near							
Saratoga)	06623000	77.0	1941-47.				
Brush Creek at lower station, near Saratoga (near							
Saratoga)	06623500	107	1909-15.				
Encampment River above East Fork, near Encampment	06623750				1991-92.	1991-92	1991-92.
East Fork Encampment River at mouth, near							
Encampment	06623790				1991-92.	1991-92.	1991-92.
Encampment River above Hog Park Creek, near							
Encampment	06623800	72.7	1964-		1964-96.	1970-96.	1973-96.
Encampment River near Encampment	06623900	105	1956-64.				
Encampment River above Encampment	06624000	207	1940-44.				
Encampment River (Grand Encampment Creek) at							
Encampment (Perym's ranch)	06624500	211	1900;1909-24;1928-32.				
Encampment River at mouth, near Encampment	06625000	265	1940-		1965-89.		1973-78; 1982-83; 1987-89.
Cow Creek near Saratoga	06625500	58.9	1911-12.				
North Platte River at Highway 130, near Saratoga							
(formerly 412117106433201)	06625650				1977; 1984-91.		
Spring Creek:							
North Spring Creek near Saratoga	06626000	24.5	1913-15.				
Spring Creek near Saratoga	06626500	114	1911-12.				
North Platte River at Saratoga	06627000	2,840	1903-6;1909-70.		1967.		
Jack Creek at Jack Creek Park, near Saratoga	06627300	12.2	1966-68.				
Jack Creek at Matheson Ranch, near Saratoga	06627500	41.2	1913-24.				
Jack Creek below Little Jack (Willow) Creek, near							
Saratoga	06627600	98.2	1956-58;1966-68.				
Jack Creek above Coyote Draw, near Saratoga	06627800	109	1989-				
Jack Creek at Blydenburgh's ranch, near Saratoga	06628000	113	1912-14.				
Jack Creek near Saratoga	06628500	138	1911-12.				
North Platte River near Saratoga	06628550				1971-74.		

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
MISSOURI RIVER BASIN—continued									
PLATTE RIVER BASINcontinued									
North Platte Rivercontinued									
Sage Creek below Adams Reservoir, near Rawlins	06628700	24.3	1966-68.						
Sage Creek near Rawlins	06628750	52.0	1966-68.						
Sage Creek near Saratoga	06628800	263	1973-81.		1972-81.	1972-81.			
Pass Creek near Elk Mountain	06628900	91.5	1957-		1983.				
Pass Creek near Saratoga	06629000	106	1929-32.						
Rattlesnake Creek near Walcott	06629100	13.9		1962-74.	1983.				
Coal Bank Draw:									
Coal Bank Draw tributary near Walcott	06629150	3.65		1962-81.					
Coal Bank Draw tributary No. 2 near Walcott	06629200	2.41		1962-81.					
Pass Creek tributary near Walcott	06629300	.66		1963-67.					
Pass Creek near Walcott	06629500	230	1911.						
St. Mary Creek:									
St. Mary Creek tributary No. 2 near Hanna	06629600	3.90		1963-67.					
Kenny Creek near Hanna	06629650	.46		1963-67.					
St. Mary Creek tributary near Sinclair	06629700	.46		1959-71.					
Sugar Creek:									
Coal Creek near Rawlins	06629800	7.32		1959-81.					
Great Divide basin:									
Delaney Draw near Red Desert	06629850	32.8		1961-75.					
North Platte River above Seminoe Reservoir, near Sinclair						1974;	1973-99;		
(Parco)	06630000	b4,175	1939-		1960-2001.	1986-94.	2001.		
Big Ditch:									
Big Ditch tributary near Hanna	06630200	7.42		1959-81.					
Big Ditch near Coyote Springs	06630300	110	1975-81.		1976;	1976;			
N 4 Ph 4 G 4 G 4	0.6620220	22.6	1056.01		1978-81.	1978-81.			
North Ditch near Coyote Springs	06630330	22.6	1976-81.		1976; 1978-81.	1976;1980.			
Medicine Bow River at Bow Ranger Station, near Elk									
Mountain	06630440	28.7	1972-75.						
East Fork Medicine Bow River near Elk Mountain	06630480	17.8	1972-75.						
Medicine Bow River near Elk Mountain	06630500	65.6	1946-47.						
Mill Creek near Elk Mountain	06630600	25.8		1963-65.					
Bear Creek near Elk Mountain	06630800	8.93		1962-74.					

		Drainage		Period of record	, by calendar y	year	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASINcontinued							
PLATTE RIVER BASINcontinued							
North Platte Rivercontinued							
Medicine Bow River near Medicine Bow	06631000	190	1911-17;1919-24.				
Wagonhound Creek near Elk Mountain	06631100	25.6		1962-74.			
Third Sand Creek:							
Third Sand Creek tributary near Medicine Bow	06631140	.78		1965-73.			
Third Sand Creek near Medicine Bow	06631150	10.8		1965-81.			
Foote Creek near Arlington	06631200	5.49		1962-69.			
Foote Creek tributary No. 2 near Arlington	06631230	1.43		1962-65.			
Foote Creek tributary near Arlington	06631260	2.10		1962-70.			
Medicine Bow River above Rock Creek, near Medicine							
Bow	06631500	b436	1951-63.				
Rock Creek:							
Deep Creek near Arlington	06632000	3.13	1914-18.				
Carlson Creek ditch near Arlington	06632050		1992-95.				
Carlson Creek ditch above Wagonhound Creek,							
near Arlington	06632055		1994-95.				
Rock Creek above King Canyon Canal, near							
Arlington	06632400	62.9	1965-		1967.		
Rock Creek at (near) Arlington	06632500	64.5	1910-18;1939-65.				
Threemile Creek near Arlington	06632600	6.31		1962-74.			
Onemile Creek near Arlington	06632700	3.59		1962-74.			
Rock Creek near Rock River	06633000	187	1911-12;1928-33.				
Rock Creek below Rock River	06633500	218	1940-42;1951-68.		1965-68.		
Medicine Bow River at Medicine Bow	06634000	1,030	1901.				
Little Medicine Bow River at Heward Ranch	06634030				1972-73.		
Little Medicine Bow River near Shirley Basin	06634100				1972-73.		
Sheep Creek near Marshall	06634200	61.0		1961-81.			
Sheep Creek near Medicine Bow	06634300	174		1961-81.			
Muddy Creek near Shirley	06634500	76.6	1915-16.				
Little Medicine Bow River near Medicine Bow	06634600	963	1973-84.		1965-84.	1971-82.	
Little Medicine Bow River at Boles Spring, near							
Medicine Bow	06634620	969	1973-		1985-89.		
Medicine Bow River tributary near Hanna	06634910	3.01		1965-84.			

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
MISSOURI RIVER BASINcontinued									
PLATTE RIVER BASINcontinued									
North Platte Rivercontinued									
Medicine Bow Rivercontinued									
Willow Springs Draw:									
Willow Springs Draw tributary near Hanna	06634950	1.98		1965-73.					
Hanna Draw near Hanna	06634990	21.6	1975-81.		1975-81.	1975-81.			
Medicine Bow River above Seminoe Reservoir, near									
Hanna	06635000	b2,338	1939-		1965-93.	1971-82; 1987-89.			
Seminoe Reservoir near Leo	06635500	b7,230	1939-		1972-78h.		1975-78h.		
North Platte River above Pathfinder Reservoir	06636000	b7,241	1913-39;1950-59.		1969-82; 1987-89.	1987-89.			
Sage Creek above Pathfinder Reservoir	06636500	190	1915-25.						
Deweese Creek near Alcova	06637000	16.4	1918;1923-24.						
Sand Creek near Alcova	06637500	51.0	1915-24.						
Sweetwater River near South Pass City	06637550	177	1958-73.	1974-81.	1975-78.	1975-78.			
Willow Creek near Atlantic City	06637600	3.08	1957-58.						
Willow Creek near South Pass City	06637700	9.21	1957-58.						
Sweetwater River above Rock Creek, near Atlantic City	06637740					1981.			
Rock Creek above Rock Creek Reservoir	06637750	e9.2	1962-95.		1978.	1975.			
Rock Creek near South Pass City	06637800	9.87	1957-60.						
Rock Creek near Atlantic City	06637850	14.6	1957.						
Slate Creek near Atlantic City	06637900	5.92	1957-73.						
Rock Creek at Atlantic City	06637910	21.3	1957-76.		1957-59; 1966-67; 1969-71; 1976.	1964-66; 1968; 1971-72; 1976.			
Rock Creek at Oregon Trail Crossing, near Atlantic									
City	06637950					1981.			
Sweetwater River near Atlantic City	06638000	438	1946-51.						
Sweetwater River near Sweetwater Station	06638090	849	1973-92.						
Sweetwater River at Sweetwater Station, near Lander Crooks Creek:	06638100	889		1965-73.					
West Fork Crooks Creek near Jeffrey City	06638300	11.6		1961-81.	1976-78.	1976-78.			

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
MISSOURI RIVER BASINcontinued									
PLATTE RIVER BASINcontinued									
North Platte Rivercontinued									
Sweetwater Rivercontinued									
Muddy Creek:									
Coal Creek near Muddy Gap	06638350	6.08		1961-81.					
Cherry Creek near Lamont	06638400	29.4		1960-70.					
Sweetwater River at Devils Gate, near Splitrock (near									
Splitrock)	06638500	2,290	1902-3.						
Sweetwater River near Alcova	06639000	2,327	1913-24;1938-		1964-90.	1975-82. 1973-82.			
Horse Creek at Highway 220, near Alcova	06639480				1982-90.				
Horse Creek near Alcova	06639500	117	1915-20;1923-24.						
Canyon Creek near Alcova	06640000	97.1	1915-24.						
Pathfinder Reservoir near Alcova	06640500	b10,711	1909-		1975-77h.		1975-77h.		
North Platte River below Pathfinder Reservoir (at		ŕ							
Pathfinder)	06641000	b14,671	1905-60.						
Bear Springs Creek near Alcova	06641400	9.33		1960-84.					
Alcova Reservoir at Alcova	06641500	b10,766	1938-		1975-76h.		1975-76h.		
North Platte River at Alcova	06642000	b10,812	1904-5;1934-98.		1965-88; 1992-95.	1976; 1980-86; 1988.	1973-87.		
Bates Creek near Freeland	06642500	118	1940-41;1945-51.		1981-86.				
Stinking Creek near Alcova	06642650	91.8	1983-84.		1983-84.	1983-84.			
Lawn Creek near Alcova	06642700	11.5		1961-84.					
Stinking Creek tributary near Alcova	06642730	1.34		1961-71.					
Stinking Creek near Alcova	06642760	117		1961-81.					
Bates Creek near Alcova (Casper)	06643000	393	1916-24;1935-61.		1965; 1968-86; 1988; 1993.	1988.			
Coal Creek near Goose Egg	06643300	5.39		1960-84.					
North Platte River near Goose Egg (Casper)	06643500	b11,423	1917-19;1924;1947; 1950-60;1983-86; 1988-95.		1957-60. 1985-87; 1989.	1985-87.	1987.		
North Platte River near Goose Egg	06643510				1977-79; 1982-89; 1992-95.	1983;1988.	1977-79; 1982-87.		

		Drainage		Period of record,	, by calendar y	ear	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASINcontinued							
PLATTE RIVER BASINcontinued							
North Platte Rivercontinued							
Poison Spider Creek near Goose Egg	06644000	301	1950-56.		1965; 1967-70; 1979;1986; 1988; 1992-95.	1988.	
North Platte River at Mills	06644085				1970-89.	1988.	1974-77; 1982-87.
Casper Creek:							
Middle Fork Casper Creek near Bucknam	06644120				1967-75; 1988; 1992-94.		
South Fork Casper Creek:							
Clarks Gulch near Natrona	06644200	2.64		1961-72.			
Casper Creek at Casper	06644500	668	1946-56.		1965; 1967-88; 1992-95.	1988.	1974; 1982-87.
North Platte River at Casper	06644550				1971-94.	1971-82.	1982-87.
Reefs Draw tributary near CasperSand Spring Creek: McKenzie Draw:	06644700	.47		1959-71.			
McKenzie Draw tributary near Casper	06644840	2.02		1965-81.			
North Platte River below (at) Casper	06645000	b12,574	1929-59.		1949-53; 1957-59; 1967-	1971;1988.	1970-89.
Smith Creek above Otter Creek, near Casper	06645150	9.91	1974-79;1987-96.				
Smith Creek at Otter Creek, near Casper	06645160	10.9	1974-79.				
Otter Creek at mouth, near Casper	06645164	6.50	1987-96.				
Smith Creek below Otter Creek, near Casper	06645166	18.5	1987-96.				
Beaver Creek above Pole Creek, near Casper	06645174	4.67	1987-96.				
Pole Creek near Casper	06645178	2.70	1987-96.				
North Platte River at Parkerton	06645500	b17,135	1919-24.				
Deer Creek in Canyon, near Glenrock	06646000	139	1946-51;1985-		1985-91.	1985-91.	1985-91.

		Drainage	Period of record, by calendar year					
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology	
MISSOURI RIVER BASINcontinued								
PLATTE RIVER BASINcontinued								
North Platte Rivercontinued								
Deer Creekcontinued								
Little Deer Creek above East Cart Creek, near								
Glenrock	06646280	3.89	1974-76.					
Little Deer Creek below East Cart Creek, near								
Glenrock	06646300	7.48	1974-76.					
Deer Creek at Glenrock	06646500	212	1916-24;1928-33; 1935-61.					
Deer Creek below Millar wasteway, at Glenrock	06646600	213	1961-92.		1965; 1967-86.			
North Platte River below Deer Creek, near Glenrock	06646610				1979.			
Dry Creek:								
East Fork Dry Creek:								
East Fork Dry Creek tributary near Glenrock	06646700	2.60		1961-81.				
Sand Creek near Glenrock	06646780	79.9	1977-81.		1978-80.	1978-80.	1978-80.	
North Platte River near Glenrock	06646800	b13,538	1959-92.		1960-86.	1976.		
Running Dutchman Canal near Careyhurst	06647000		1935-50.					
North Platte River near Careyhurst	06647020				1969-76.			
Box Elder Creek at Boxelder	06647500	63.0	1946-51;1961-67;1971-					
Box Elder Creek near Boxelder	06647800	136	1981-84.					
Box Elder Creek at Converse County Park, near	00017000	130	1701 0 1.					
Careyhurst	06647810	138	1981-84.					
Little Box Elder Creek near Careyhurst	06647890	7.18	1974-88.					
Little Box Elder Creek at Little Box Elder Cave, near	00017070	7.10	137.1 00.					
Careyhurst	06647900	8.47	1974-88.					
Little Box Elder Spring near Careyhurst	06647910		1980-86.		1983.			
Cottonwood Creek near Careyhurst	06647920	2.33	1981-84.					
Box Elder Creek below Interstate 25, near Careyhurst.	06647990				1981-86.			
Box Elder Creek near Careyhurst	06648000	202	1911;1915-24;1928-33; 1935-69.		1965.			
Douglas (Morton) Canal near Orpha	06648500		1935-51.					
Frank Draw:								
Frank Draw tributary near Orpha	06648720	.79		1965-73.				
Sage Creek tributary near Orpha	06648780	1.38		1965-84.				

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
MISSOURI RIVER BASINcontinued									
PLATTE RIVER BASINcontinued									
North Platte Rivercontinued									
La Prele Creek near Douglas	06649000	135	1919-92.						
La Prele Creek below La Prele Reservoir	06649200	152	1961-68.		1965.				
La Prele Creek near Orpha (Fetterman)	06649500	177	1916;1918;1923-24; 1928-33;1935-70.		1981-86.				
North Platte River at Orpha	06649520				1974-75.				
North Platte River tributary near Douglas	06649900	8.53		1961-81.					
North Platte River near (at) Douglas	06650000	b18,338	1891-94;1919-23; 1929-39;1946-59.						
Wagonhound Creek near La Bonte	06650500	112	1916-24;1929-32; 1937-69.		1965;1979; 1981-86.				
La Bonte Creek:									
West Fork La Bonte Creek near La Bonte	06651000	20.6	1946-51.		1979.				
La Bonte Creek near La Bonte	06651500	287	1916-24;1928-33; 1935-69.		1965; 1981-86.				
Sand Creek near Orin	06651800	27.8		1955; 1961- 84.					
North Platte River at Orin (Orin Junction) (McKinley)	06652000	b15,025	1895-99;1917-18;1924; 1958-		1966-89.	1971-82.	1973-89.		
Shawnee Creek:									
Shawnee Creek tributary near Orin	06652200	.33		1961-76.					
Lost Creek:									
Watkins (Watson) Draw near Lost Springs	06652400	6.95		1960-84.					
Glendo Reservoir near Glendo	06652700	b15,545	1958-		1975-76h.		1975-76h.		
North Platte River below Glendo Reservoir	06652800	b15,548	1957-		1966-88.		1973-82.		
Horseshoe Creek near Esterbrook	06653000	45.5	1946-51.						
Horseshoe Creek near Binford	06653100	e110	1961-64.						
Horseshoe Creek near Cassa	06653300	195	1961-68;1988-96.		1965.				
Horseshoe Creek near Glendo	06653500	211	1916-18;1921-24; 1928-33;1935-70; 1988-96.						
North Platte River near Cassa	06654000	b19,796	1946-57.		1953.				
Cottonwood Creek near Fletcher Park	06654500	51.1	1946-51.						
Cottonwood Creek below Dagley Creek, near Binford.	06654510	54.0	1974-76.						

		Drainage]	Period of record	, by calendar y	ear	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASINcontinued							
PLATTE RIVER BASINcontinued							
North Platte Rivercontinued							
Cottonwood Creek below Tunnel Outlet, near Binford.	06654520	57.2	1974-76.				
Cottonwood Creek near Binford	06654550	61	1973-74.				
Cottonwood Creek at (near) Wendover	06655000	196	1916-24;1929-33; 1935-42;1946-55; 1973-74.				
Deadmans Gulch near Guernsey	06655360	.34		1965-72.			
Fish Canyon near Guernsey	06655380	1.06		1965-76.			
Black Canyon near Guernsey	06655400	.22		1965-70.			
Guernsey Reservoir near Guernsey	06655500	b16,224	1928-		1972-73.		
Sparks Canyon near Hartville	06655750	.74		1965-72.			
North Platte River (North Platte River and Interstate Canal) below Guernsey Reservoir (near, at Guernsey) (at, above Whalen)	06656000	b16,237	1900-98.		1950-52; 1955-58; 1965-86.	1979.	1980-81.
North Platte River near Guernsey	06656500				1981-83.		1981-83.
North Platte River (at recorder station) below Whalen	0.6657000	1.16.007	1000		1070 76		1074
(below Whalen) diversion dam	06657000	b16,237	1909-		1970-76.		1974.
Laramie River near (at) Glendevey, Colo	06657500	101	1904-5;1910-82.				
Laramie River near Jelm Laramie River at Woods Landing (Woods)	06658500 06659000	294 392	1904-5;1911-71. 1890-92;1895a; 1896-1911.		1965;1968. 		
Laramie River and Pioneer Canal near Woods	06659500	434	1912-24;1926-27;1931-				
Sand Creek at Colorado-Wyoming State line	06659580	29.2	1968-				
Sand Creek near Tie Siding	06659600	39.9	1957-68.				
Laramie River at Laramie	06660000	b1.071	1933-72.		1968-70.		
Laramie River above Howell	06660070				1980-89.		1980-89.
Laramie River at Howell	06660100				1974-80.	1974.	1974-80.
Laramie River at Two Rivers	06660500	b1,224	1908-27;1932-72.		1966-92.	177 4 .	
Little Laramie River near Filmore (Hatton)	06661000	157	1902-3;1911-26;1933-		1700-72.		
Little Laramie River at Two Rivers (at Haley's ranch, near Laramie)	06661500	b376	1903;1910-27;1933-72.		1965-87; 1990-92.		

MISSOURI RIVER BASIN—continued PLATTE RIVER BASIN—continued PLATTE RIVER BASIN—continued River—continued PLATTE RIVER BASIN—continued PLATTE RI			Drainage		Period of record	by calendar y	year	
PLATTE RIVER BASIN-continued North Platte River-continued Laranie River-continued Caranie River-continued			(square				Sediment	Biology
North Platte River-continued Laramie River-continued Fournitie Creek near Centennial 06661530 7.34 - 1963-68. -								
Laramie River-continued Fourmile Creek near Centennial 06661530 7.34 1963-68.								
Fourmile Creek near Centennial 06661530 7.34 - 1963-68	- 10-10 1000 - 10-10-							
Onemile Creek near Centennial 06661550 6.12 - 1963-65. - - - Fourmile Creek tributary near Centennial 06661580 11.2 - 1963-71. - - - Sevenmile Creek near Centennial 06661580 11.2 - 1962-84. - - - - Laramie River near Bosler 06661585 b1,790 1972- - 1990-92. 1990-92. - Dutton Creek S Sheep Creek near Arlington 06661600 19.9 1958-63. - - - - Cooper Creek near Arlington 06661700 8.51 - 1962-65. - - - - South Fork Cooper Creek near Arlington 0666170 6.41 - 1962-65. - - - - Laramie River near Lookout 0666200 b2,174 1912-17;1921-27; - 1965. - - - Wheatland Reservoir No. 2 near Lookout 0666200 b2,221 1951-66. - -<								
Fourmile Creek tributary near Centennial 06661570 2.8 - 1962-84,			7.34					
Sevenmile Creek near Centennial 06661580 11.2 1962-84. 1990-92. 1990-92. 199	Onemile Creek near Centennial	06661550	6.12		1963-65.			
Laramie River near Bosler	Fourmile Creek tributary near Centennial	06661570	.28		1963-71.			
Dutton Creek Sheep Creek near Arlington	Sevenmile Creek near Centennial	06661580	11.2		1962-84.			
Sheep Creek near Arlington	Laramie River near Bosler	06661585	b1,790	1972-		1990-92.	1990-92.	
Dutton Creek near McFadden	Dutton Creek:							
Cooper Creek near Arlington	Sheep Creek near Arlington	06661590	5.46		1962-63.			
Cooper Creek tributary near Arlington	Dutton Creek near McFadden	06661600	19.9	1958-63.				
South Fork Cooper Creek near Arlington 06661750 6.41 1962-65.	Cooper Creek near Arlington	06661700	8.51		1962-65.			
Laramie River near Lookout	Cooper Creek tributary near Arlington	06661740	1.83		1962-65.			
1932-96. 1976-80.	South Fork Cooper Creek near Arlington	06661750	6.41		1962-65.			
Laramie River at McGill	Laramie River near Lookout	06662000	b2,174	, , , , , , , , , , , , , , , , , , , ,		,		
Laramie River below Wheatland Reservoir No. 2 (below McGill)	Wheatland Reservoir No. 2 near Lookout	06662500	b2,221	1951-66.				
(below McGill) 06663500 b2,248 1916-17;1951-63. <td< td=""><td>Laramie River at McGill</td><td>06663000</td><td>b2,230</td><td>1912-15.</td><td></td><td></td><td></td><td></td></td<>	Laramie River at McGill	06663000	b2,230	1912-15.				
Laramie River below Luman Creek, near Wheatland 06663900 1989-92 1989-92 1989-92 1989-92 1989-92 1989-92 1989-92	Laramie River below Wheatland Reservoir No. 2							
Laramie River near Wheatland 06664000 b2,527 1912-16;1929-33. <	(below McGill)	06663500	b2,248	1916-17;1951-63.				
Sybille Creek above Mule Creek, near Wheatland 06664400 194 1974- 1984-87. Sybille Creek below Mule Creek, near Wheatland 06664490 219 1968-73. Sybille Creek above Bluegrass Creek, near 06664500 225 1941-68. Bluegrass Creek near Wheatland	Laramie River below Luman Creek, near Wheatland	06663900				1989-92.		
Sybille Creek below Mule Creek, near Wheatland 06664490 219 1968-73.	Laramie River near Wheatland	06664000	b2,527	1912-16;1929-33.				
Sybille Creek above Bluegrass Creek, near 06664500 225 1941-68. Bluegrass Creek near Wheatland 06664900 139 1958-63;1968-79. Sybille Creek below Bluegrass Creek, near Wheatland 06665000 366 1950-68. 1965. Wheatland Canal No. 1 near Wheatland 06665500 1952-63. 1958-59. Sybille Creek above Canal No. 3, near Wheatland 06665790 1980-	Sybille Creek above Mule Creek, near Wheatland	06664400	194	1974-		1984-87.		
Wheatland 06664500 225 1941-68. <	Sybille Creek below Mule Creek, near Wheatland	06664490	219	1968-73.				
Wheatland 06664500 225 1941-68. <	Sybille Creek above Bluegrass Creek, near							
Sybille Creek below Bluegrass Creek, near 06665000 366 1950-68. 1965. Wheatland Canal No. 1 near Wheatland		06664500	225	1941-68.				
Wheatland 06665000 366 1950-68. 1965. Wheatland Canal No. 1 near Wheatland 06665500 1952-63. 1958-59. Sybille Creek above Canal No. 3, near Wheatland 06665790 1980-	Bluegrass Creek near Wheatland	06664900	139	1958-63;1968-79.				
Wheatland 06665000 366 1950-68. 1965. Wheatland Canal No. 1 near Wheatland 06665500 1952-63. 1958-59. Sybille Creek above Canal No. 3, near Wheatland 06665790 1980-								
Sybille Creek above Canal No. 3, near Wheatland 06665790 1980		06665000	366	1950-68.		1965.		
	Wheatland Canal No. 1 near Wheatland	06665500		1952-63.		1958-59.		
Wheatland Canal No. 3 near Wheatland	Sybille Creek above Canal No. 3, near Wheatland	06665790		1980-				
	Wheatland Canal No. 3 near Wheatland	06665800		1958-63.		1958-59.		

xlix

		Drainage		Period of record	, by calendar y	ear	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASINcontinued							
PLATTE RIVER BASINcontinued							
North Platte Rivercontinued							
Laramie Rivercontinued							
Sybille Creekcontinued							
Wheatland Canal No. 2 near Wheatland	06666000		1952-63.		1958-59.		
Sybille Creek near Muleshoe Ranch, near Wheatland	06666500	507	1950-58.				
Sybille Creek at Muleshoe Ranch, near Wheatland	06666600	508	1958-63;1966-67.		1959.		
Sybille Creek near Wheatland	06667000	515	1912-16.				
Laramie River above North Laramie River, near Uva	06667060	3,131	1973-79.				
North Laramie River near Garrett	06667200	e46	1963-65.				
North Laramie River (at upper station) near Wheatland	06667500	370	1915-23;1939-71; 1973-74.				
Piney Creek:							
Piney Creek tributary at upper station, near							
Wheatland	06667560	.18		1965-72.			
Piney Creek tributary at lower station, near Wheatland	06667580	.58		1965-70.			
North Laramie River at Wilson's ranch, near							
Wheatland	06668000	377	1912-14.				
Rabbit Creek near Wheatland	06668040	1.30		1965-84.			
Fish Creek near Fletcher Park	06668200	6.33	1973-74.				
North Laramie River at Uva	06668500	530	1911-12.				
Laramie River at Uva	06669000	b3,662	1895-99;1903.				
Wheatland Creek below Wheatland	06669050				1982-		1982-
Wheatland Creek near Uva	06669100	56.7	1973-74.				
Chugwater Creek at Platte-Laramie County line, near							
Chugwater (formerly 413918105021401)	06669350				1984-89.		
Chugwater Creek at Chugwater	06669500	349	1911-21;1938-40.		1984-89.		
Chugwater Creek tributary near Chugwater	06669600	.23		1960-68.			
Chugwater Creek near Uva	06669850	654	1966-68;1973-74.		1958-59; 1965; 1984-85.		
Laramie River near Uva	06670000	b4.440	1952-68.		1956-59.		
Laramie River tributary near Guernsey	06670100	1.97	1932-06.	 1971-79.	1930-39.		
Laranne River unbutary near Quernsey	00070100	1.97		17/1-/7.			

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
MISSOURI RIVER BASINcontinued									
PLATTE RIVER BASINcontinued									
North Platte Rivercontinued									
Laramie Rivercontinued									
Laramie River tributary No. 2 near Fort Laramie	06670480	8.91		1971-76.					
Laramie River near (at) Fort Laramie	06670500	b4,564	1915-		1965-88.	1971-82.	1973-82.		
North Platte River near Lingle	06670900	b25,095	1968-75.		1969-75.	1969-75.			
Dry Rawhide Creek near Lingle	06670985	20		1969-81.					
Rawhide Creek above Interstate Canal, near Lingle	06670990				1970-73.				
Rawhide Creek near Lingle	06671000	522	1928-92.		1965; 1970-73.				
North Platte River at Vaughn	06671500	b25,648	1924.						
North Platte River at Torrington	06672000	b25,742	1917-24;1926-39.		1975-79.				
Cherry Creek drain near Torrington	06672500	356	1931-32;1935-92.		1969-72.				
Arnold drain near Torrington	06673000		1931;1940-42.		1971-72.				
Katzer drain near Henry, Nebr	06673500	b45.9	1928-92.		1971.				
Mitchell Canal at Wyoming-Nebraska State line	06674000		1938-41.						
North Platte River at Wyoming-Nebraska State line	06674500	b22,218	1929-		1964-	1971-82.	1970-89; 1998-		
Horse Creek:									
Horse Creek tributary near Little Bear	06675300	8.16		1961-81.					
Horse Creek near Meriden	06675500	425	1945-47.						
Horse Creek near Johnson Ranch, near La Grange	06675850	595	1978-79.						
Horse Creek near Little Horse Creek	06676000		1911-12.						
Horse Creek (at Wye Cross Bridge) near La Grange	06676500	645	1912-20.						
Horse Creek at WyCross Ranch, near La Grange	06676550	651	1965-73;1978-79.		1965; 1969-72; 1981-83.	1969-72.	1981-83.		
Bear Creek:									
South Fork Bear Creek near Little Bear	06676700	34.2		1960-76.					
Bear Creek near La Grange Bear Creek below Lovercheck Canyon, near	06676900	516	1978-79.						
LaGrange	06676905				1992.				
Horse Creek near Yoder	06677000	1,347	1928-33;1935-45.						
Horse Creek at lower station, near Yoder	06677010	e1,320	1965-72.		1969-72.				

		Drainage		year			
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
MISSOURI RIVER BASINcontinued							
PLATTE RIVER BASINcontinued							
North Platte Rivercontinued							
Horse Creekcontinued							
Horse Creek at Wyoming-Nebraska State line	06677100	1,530	1969-71.				
North Platte River at Mitchell, Nebr	06679500	i24,300	1901-13;1916-18; 1920-94.				
South Platte River:							
Lonetree Creek at Carr, Colo	06753400		1993-95.		1993-95.	1993-95.	
South Platte River near (at) Kersey, Colo	06754000	9,598	1901-3;1905-		1993-	1993-	
Middle (Fork) Crow Creek near Hecla	06754500	25.8	1902-3;1933-69.				
South (Fork) Crow Creek near Hecla	06755000	13.9	1933-69.				
North Fork Crow Creek near Hecla	06755500	27.9	1933-44.				
Crow Creek at Roundtop Road, near Cheyenne	06755800	239	1994-96.		1986-92.		
Diamond Creek below Roundtop Road, at F. E.							
Warren Air Force Base	06755840	10.75	1994-96.				
Diamond Creek at F.E. Warren Air Force Base	06755860	10.8	1992-96.				
Diamond Creek at mouth, at F.E. Warren Air Force							
Base	06755880	10.9	1992-96.				
Crow Creek at F.E. Warren Air Force Base	06755950	253	1994-96.		1983-94.		1987-94.
Crow Creek at 19th Street, at Cheyenne	06755960	257	1994-				
Crow Creek near Cheyenne	06756000	297	1922-24;1951-57.		1972-75; 1983-92.		1972-75; 1987-92.
Crow Creek near Archer	06756060				1990-		1990-
Crow Creek near Carpenter	06756100	415	1990-96.		1990-92.		1990-92.
Lodgepole Creek near Federal	06761000	e25	1933-38.				
South Fork Lodgepole Creek near Federal	06761500	e16	1933-38.				
Ninemile Draw:							
Ninemile Draw tributary near Federal	06761600	1.49		1960-76.			
Muddy Creek:							
Muddy Creek tributary near Burns	06761700	24.8		1960-76.			
Lodgepole Creek tributary near Pine Bluffs	06761900	.44		1960-81.			
Lodgepole Creek tributary No. 2 near Albin	06762600	5.69		1960-84.			
Lodgepole Creek tributary No. 3 near Albin	06762700	.75		1960-71.			

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
COLORADO RIVER BASIN									
GREEN RIVER BASIN									
Green River near Kendall	09188000	271	1910-12:1918.						
Green River at Warren Bridge, near Daniel	09188500	468	1932-92;1994-		1962-64; 1967-72; 1974-82.	1975-78.	1974-82.		
Beaver Creek near Daniel	09189000	141	1938-54.						
North Horse (head of Horse Creek) Creek above									
Sherman Ranger Station	09189495	42.8	1982-84.						
Horse Creek at Sherman Ranger Station	09189500	43.0	1954-74.		1976-78.	1976;1978.	1976; 1978.		
South Horse Creek near Merna	09189550	33.3	1982-85.						
Horse Creek near Daniel	09190000	106	1931-54;1982-85.		1969;1977.	1977.	1977.		
Horse Creek at Daniel	09190500	173	1913-18.						
Green River near Daniel	09191000	932	1912-32.						
Cottonwood Creek:									
South Cottonwood Creek near Big Piney	09191300	21.4	1982-84.						
Cottonwood Creek near Daniel	09191500	202	1938-54.						
Cottonwood Creek near Big Piney (North channel and									
South channel)	09192000	227	1915-19;1931-32.						
Cottonwood Creek near mouth, near Big Piney	09192500	238	1938-40.						
Green River near Big Piney	09192600	e1,260			1967-86.	1975-78.			
New Fork River above New Fork Lakes	09192750	21.8	1985.						
New Fork River (New Fork) below New Fork Lake,									
near Cora	09193000	36.2	1938-72.						
New Fork River at Alexander's Ranch, near Cora (near									
Cora)	09193500	47.3	1910-11.						
New Fork River at Pinedale crossing, near Cora (near									
Cora)	09194000	e72	1905.						
Willow Creek near Cora	09194500	41.8	1938-41.						
Lake Creek near Cora	09195000	31.6	1938-41.						
Duck Creek at Cora	09195500	e27	1938-41.						
New Fork River (New Fork) near Pinedale	09196000	241	1938-44.		1975.				
Pine Creek above Fremont Lake	09196500	75.8	1954-97;2001		1975-78; 1980; 1985-88.	1975-78.	1976.		

		Drainage	Period of record, by calendar year						
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology		
COLORADO RIVER BASIN—continued									
GREEN RIVER BASINcontinued									
Green Rivercontinued									
New Fork Rivercontinued									
Pine Creekcontinued									
Fremont Ditch near Pinedale	09196940		1985-86;1988-95.						
Highland Ditch near Pinedale	09196960		1985-86;1988-95.						
Pine Creek below Fremont Lake (at Fremont Lake									
outlet) (near Pinedale)	09197000	114	1910-12;1915-18; 1985-86;1988-						
Pine Creek near Pinedale	09197500	118	1904-6.						
Pine Creek at Pinedale	09198000	118	1903-4;1914-54.						
Pole Creek below Little Half Moon Lake, near			,						
Pinedale	09198500	87.5	1938-1971.						
Pole Creek at Fayette	09199000	126	1904-6.						
Fall Creek near Pinedale	09199500	37.2	1938-1971.						
Fall Creek near (at) Fayette	09200000	e38	1904-5.						
Pole Creek near Pinedale	09200500	167	1910a.						
New Fork River (New Fork) near Boulder	09201000	552	1914-69.		1965; 1967-71.				
Boulder Creek above Boulder Lake, near Boulder	09201500	115	1938-39.						
Boulder Creek below Boulder Lake, near Boulder	09202000	130	1938-73.						
Boulder Creek near Boulder (New Fork)	09202500	135	1903-6;1914-24; 1930-32.						
East Fork River (East Fork) near Big Sandy	09203000	79.2	1938-92.		1965;1968; 1971; 1975-78.	1975-78.	1976-77.		
East Fork at East Fork Canal	09203500	106	1915-17;1920-23.						
Silver Creek near Big Sandy	09204000	45.4	1938-1971.		1965;1977.	1977.			
East Fork at Newfork	09204500	348	1904-6;1914-24; 1930-32.						
Sand Springs Draw:									
Sand Springs Draw tributary near Boulder	09204700	2.77		1961-81.					
New Fork River near Big Piney	09205000	e1,230	1954-		1965-86.	1975-78.	1975-78.		
North Piney Creek above Apperson Creek, near Mason	09205490	29.6	1982-84.						

		Drainage		Period of record	, by calendar y	year	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
COLORADO RIVER BASINcontinued							
GREEN RIVER BASINcontinued							
Green Rivercontinued							
North Piney Creekcontinued			40474440044070		40==	40	10==
North Piney Creek near Mason (Marbleton)	09205500	e58	1915-16;1931-1972.		1977.	1977.	1977.
Middle Piney Creek below South Fork, near Big Piney	09206000	34.3	1939-54.			1981.	
Middle Piney Creek above Springman Creek, near Big		42.1					
Piney	09206500		1938-39.				
Middle Piney Creek near Big Piney	09207000	e46	1914-18;1931-32.				
South Piney Creek near Big Piney	09207500	117	1938-42.				
Dry Basin Creek near Big Piney	09207650	47.2		1971-81.	1975-76; 1978.	1965; 1975-76; 1978.	
Dry Piney Creek near Big Piney	09207700	e67	1965-73.		1990-93.	1965-68; 1971-73; 1990-93.	
La Barge Creek near La Barge Meadows ranger station	09208000	e6.3	1940-42;1950-81.		1975-78.	1975-78.	1976-78.
La Barge Creek above Viola	09208400	122	1982-84.				
La Barge Creek near Viola (La Barge)	09208500	172	1913-16;1940-49.		1977-78.	1978.	1977-78.
La Barge Creek near La Barge (Tulsa)	09209000	193	1931-39.		1963.		
Green River near La Barge	09209400	e3,910	1963-		1963-94.	1975-82; 1986-94.	1973-80; 1986-94.
Green River near Fontenelle	09209500	3,970	1946-65.		1962-63.		
Fontenelle Creek at upper station, near Fontenelle	09210000	e58	1941-42.				
Fontenelle Creek near Herschler Ranch, near							
Fontenelle	09210500	152	1951-		1975-78.	1975-78.	1977.
Fontenelle Creek near Fontenelle	09211000	224	1914-19;1931-53.				
Green River tributary near Fontenelle	09211100	3.75		1961-74.			
Fontenelle Reservoir near Fontenelle	09211150	e4,280	1964-2000.		1975.		
Green River below Fontenelle Reservoir	09211200	e4,280	1963-		1967-	1975-78; 1980.	1973-80.
Fourmile Gulch:							
Fourmile Gulch tributary near Fontenelle Big Sandy River (Creek):	09211300	14.2		1971-81.			
Squaw Creek near Big Sandy	09211500	e28	1911-12.				

		Drainage		Period of record,	, by calendar y	ear	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
COLORADO RIVER BASINcontinued							
GREEN RIVER BASINcontinued							
Green Rivercontinued							
Big Sandy Rivercontinued							
Squaw Creekcontinued							
Dutch Joe Creek near Big Sandy	09212000	17.0	1911-12.				
Big Sandy River (Creek) at Leckie Ranch, near Big							
Sandy (near Big Sandy)	09212500	e94	1910-11;1939-87.		1961-62; 1975-78.	1974-78.	1977.
Big Sandy Creek near Eden	09213000	265	1911;1912a.				
Big Sandy River (Creek) near Farson	09213500	322	1914-17;1920-24; 1926-34;1953-		1962;1972; 1975-82.	1971-82.	1977.
Big Sandy Reservoir near Farson	09213700	386	1987-				
Big Sandy River below Big Sandy Reservoir	09213705				1981-86.		
Big Sandy River at Farson	09213800				1981-86.		
Little Sandy Creek near Elkhorn	09214000	20.9	1939-71.		1961-62; 1977.	1977.	1977.
Little Sandy Creek above Eden	09214500	134	1954-81.		1962; 1975-81.	1972; 1975-81.	1977.
Jack Morrow Creek near Farson	09214955				1981.		
Pacific Creek near Farson	09215000	e500	1954-73.		1976-78.	1969; 1976-78.	1976-77.
Little Sandy Creek near Eden	09215500	823	1911-12.		1981-86.		
Big Sandy River below Farson	09215550	b1,097	1981-99.		1982-99.		
Simpson Gulch near Farson	09215990	78.5		1961-69.			
Big Sandy River (Creek) below Eden	09216000	e1,610	1954-81.		1961-64; 1967-81.	1971-81.	1975-80.
Big Sandy River at Gasson Bridge, near Eden	09216050	e1,720	1972-		1975-	1975-79; 1981-82; 1990-93.	1976-78.
East Otterman Wash near Green River	09216290	16.6		1969-84.		1976.	
Green River at Big Island, near Green River	09216300	e7,300			1966-81.	1975-79.	1973-78.
Skunk Canyon Creek near Green River	09216350	15.7		1965; 1971- 81.			
Greasewood Canyon near Green River	09216400	45.1		1959-74.			

		Drainage		Period of record	, by calendar y	ear	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
COLORADO RIVER BASINcontinued							
GREEN RIVER BASINcontinued							
Green River at Green River	09216500	e7,670	1891;1894-1906; 1914-45.				
Telephone Canyon near Green River	09216510	6.98		1965-72.			
Telephone Canyon tributary near Green River Bitter Creek: Great Divide basin:	09216520	3.44		1965-72.			
Separation Creek at upper station, near Riner	09216525	41.8			1975-76.	1975-76.	1976.
Separation Creek near Riner	09216527	55.3	1976-81.		1976-81.	1976; 1980-81.	1976.
Delaney Draw near Red Desert	09216537	34.5		1961-84.	1976-78.	1976-78.	
Bitter Creek near Bitter Creek	09216545	308	1975-81.		1975-81.	1975-81.	1976-78.
Deadman Wash near Point of Rocks	09216550	152		1961-81.	1976-78.	1976-78.	
Bitter Creek near Point of Rocks	09216560	765		1961-75.	1975-76.	1975-76.	
Bitter Creek above Salt Wells Creek, near Salt Wells	09216562	836	1976-81.		1975-81.	1975-81.	
Salt Wells Creek near South Baxter	09216565	34.7	1976-81.		1975-81.	1975-81.	1976.
Gap Creek above Beans Spring Creek, near South							
Baxter	09216570	22.0			1976;1978.	1975-76; 1978.	1976.
Beans Spring Creek near South Baxter	09216572	4.92			1975-76; 1978.	1975-76; 1978.	1975-76.
Beans Spring Creek at mouth, near South Baxter	09216574	13.1			1975-1976; 1978.	1976;1978.	1975-76.
Gap Creek below Beans Spring Creek, near South							
Baxter	09216576	35.9	1975-76.	1976-81.	1975-76; 1978.	1975-76; 1978.	1975-76.
Dry Canyon Creek near South Baxter	09216578	3.69	1976-80.		1980.	1979-80.	
Big Flat Draw near Rock Springs	09216580	19.5		1973-81.	1976.	1976-77.	
Cutthroat Draw near Rock Springs (formerly Salt							
Wells Creek tributary near Rock Springs)	09216600	7.88		1959-81.			
No Name Creek near Rock Springs	09216695	18.2		1973-81.	1975.	1975; 1977-78.	
Salt Wells Creek near Rock Springs	09216700	515		1959-76.	1975-76.	1968; 1975-76.	
Salt Wells Creek near Salt Wells	09216750	526	1976-81.		1975-81.	1975-81.	1976.

		Drainage		Period of record	, by calendar y	ear	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
COLORADO RIVER BASIN continued							
GREEN RIVER BASINcontinued							
Green Rivercontinued							
Bitter Creek above Killpecker Creek, at Rock Springs.	09216790				1983-93.	1989-93.	1989-93.
Killpecker Creek at Rock Springs	09216810				1975-80; 1983-87.		1975-80; 1982-83.
Bitter Creek below Little Bitter Creek, near Kanda	09216880				1975-83.	1978; 1980-82.	1975-82.
Bitter Creek tributary near Green River	09216900	1.65		1959-82.			
Bitter Creek near Green River	09216950				1966-72.	1966-72.	
Green River near Green River	09217000	i14,000	1951-		1951-	1960-66; 1970-71; 1973-84; 1990-92.	1973-87.
Green River below Green River	09217010				1905;1974-	1975;1977.	1974-89.
Blacks Fork above Blacks Fork ranger station, Utah	09217500	48.8	1937-39.				
Blacks Fork near Robertson	09217900	e130	1966-86;1992-				
Blacks Fork at Blacks Fork ranger station, Utah	09218000	129	1937-39.				
Blacks Fork near Millburne	09218500	152	1939-98.		1969-70; 1975-78.	1975-78.	1976-77.
Blacks Fork near Urie	09219000	261	1913-24;1937-55.				
East Fork of Smiths Fork at China Meadows, near	00210500	210	1020.20				
Robertson	09219500	36.9	1938-39.		1075.70	1075.70	
East Fork of Smiths Fork near Robertson	09220000	53.0	1939-99; 2001-		1975-78.	1975-78.	1977.
West Fork of Smiths Fork near Robertson	09220500	37.2	1939-81.		1975-78.	1975-78.	1977.
Smiths Fork near Robertson	09221000	144	1938-39.		1969-70; 1976.	1976.	1976.
Smiths Fork at Mountainview	09221500	192	1941-57.				
Smiths Fork near Lyman	09221650				1974-89.	1975-78.	1974-82.
Mud Spring Hollow tributary near Lyman Mud Spring Hollow near Church Butte, near	09221670	.97		1965-72.			
Lyman	09221680	8.83		1965-84.	1977-78.	1977-78.	
Mud Spring (Hank) Hollow near Lyman	09221700	10.2		1959-71.			
Blacks Fork near Lyman	09222000	821	1937-57;1962-83.		1962-89; 1995-	1971-81; 1995-	1973-80; 1995-

		Drainage		Period of record,	by calendar y	year	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
COLORADO RIVER BASINcontinued							
GREEN RIVER BASINcontinued							
Green Rivercontinued							
Blacks Forkcontinued							
Muddy Creek:							
Little Muddy Creek:							
Ryckman Creek near Glencoe	09222200	53.4	1980-81.		1980-81.	1980-81.	
Little Muddy Creek above North Fork, near							
Glencoe	09222250	366	1980-81.		1980-81.	1980-81.	
Little Muddy Creek near Glencoe	09222300	416	1976-80.		1975-80.	1975-80.	1976.
Muddy Creek near Hampton	09222400	963	1975-81.		1975-81.	1975-81.	1976.
Blacks Fork above Hams Fork, near (at) Granger (near							
Granger)	09222500	e2,170	1896-97.				
Hams Fork below Pole Creek, near Frontier	09223000	128	1952-		1975-78.	1975-78.	
Hams Fork near Frontier	09223500	298	1945-1972.				
Hams Fork at Diamondville (Kemmerer)	09224000	386	1917-33;1945-49.				
Hams Fork near Diamondville	09224050				1975-89; 1992-	1980-82.	1975-89; 1992-
Hams Fork near Granger	09224450	e670			1967-86.	1971-82.	1975-76.
Blacks Fork below Hams Fork, at Granger (at Granger)	09224500	e2,840	1896-1900.				
Blacks Fork tributary near Granger	09224600	5.03		1959-81.			
Blacks Fork near Little America	09224700	e3,100	1962-		1964-	1968; 1970-82; 1989.	1973-82.
Meadow Springs Wash:							
Meadow Springs Wash (Spider Creek) tributary near Green River	09224800	5.22		1962- 65; 1968-81.		1978.	
Blacks Fork tributary No. 2 near Green River	09224810	12.0		1965-81.	1978.	1978.	
Blacks Fork tributary No. 3 near Green River	09224820	3.59		1965-84.			
Blacks Fork tributary No. 4 near Green River	09224840	1.26		1965-81.			
Blacks Fork near Marston	09224900				1959-64.		
Summers Dry Creek near Green River	09224980	423		1965-81.	1976-78.	1976-78.	

		Drainage		Period of record	, by calendar y	ear	
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
COLORADO RIVER BASIN—continued							
GREEN RIVER BASINcontinued							
Green Rivercontinued							
Blacks Forkcontinued							
Blacks Fork near Green River	09225000	e3,670	1947-62.		1954-55; 1958-59; 1967.		
Squaw Hollow near Burntfork	09225200	6.57		1965-84.	1977-78.	1975; 1977-78.	
Green River tributary No. 2 near Burntfork	09225300	13.0		1959; 1961- 81.	1976.	1976-77.	
Green River near Linwood, Utah	09225500	e14,300	1928-63.				
Henrys Fork near Lonetree	09226000	e56	1942-72.		1969-72; 1976-77.	1977.	1976-77.
Middle Fork Beaver Creek near Lonetree	09226500	e28	1948-70.				
East Fork Beaver Creek near Lonetree	09227000	e8.2	1948-62.				
West Fork Beaver Creek near Lonetree	09227500	e23	1948-62.				
Henrys Fork near Burntfork	09228000	242	1942-54.				
Burnt Fork near Burntfork	09228500	52.8	1943-83.		1969-70; 1975-78.	1975-78.	1977.
Burnt Fork at Burntfork	09229000	e73	1929-43.				
Henrys Fork tributary near Manila, Utah	09229450	3.15		1965-74.			
Henrys Fork near Manila, Utah	09229500	e520	1928-93;2001-		1954-55; 1958-89.	1972; 1975-78; 1989.	1976.
Sheep Creek:							
Sheep Creek upper canal near Manila, Utah	09231000		1949-61.				
Carter Creek canal near Manila, Utah	09231200		1956-61.				
Sheep Creek lower canal near Manila, Utah	09231500		1949-61.				
Sheep Creek near Manila, Utah	09232000	42	1942-61.				
Sheep Creek at mouth, near Manila, Utah	09232500	111	1946-61.				
Flaming Gorge Reservoir at Flaming Gorge Dam, Utah	09234400	e19,350	1962-2000.				
Green River near Greendale, Utah	09234500	i19,350	1950-		1956-59; 1963-2000.	1956-59.	
Vermillion Creek near Hiawatha, Colo	09235300	196	1975-81.		1975-81.	1975-81.	1976-77.

Station name		Drainage]	ear			
	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
COLORADO RIVER BASINcontinued							
GREEN RIVER BASINcontinued							
Green Rivercontinued							
Yampa River:							
Middle Fork Little Snake River:							
North Fork Little Snake River near Encampment	09251800	9.64	1956-65.				
North Fork Little Snake River near Slater, Colo	09251900	29.3	1956-63.		1957-58; 1977-78.	1977-78.	1977.
Little Snake River near Slater, Colo	09253000	285	1943-47;1950-99;2001-		1977-86.	1977.	1977.
Battle Creek near Encampment	09253400	13.0	1956-63;1985-88.		1978; 1986-88.	1978; 1986-88.	1978.
West Fork Battle Creek:							
Haggarty Creek above Belvidere ditch, near							
Encampment	09253455				1993-		
West Fork Battle Creek at Battle Creek							
Campground, near Savery	09253465				1993-		
Slater Fork (Creek) near Slater, Colo	09255000	161	1910-12;1931-				
East Fork Savery Creek near Encampment	09255400	5.57	1956-58;1985-88.		1986-87.	1986-88.	
Savery Creek at upper station, near Savery	09255500	200	1940-44;1952-71.		1957-58; 1975-78; 1986.	1976-78.	1975-78.
Big Sandstone Creek near Savery	09255900	9.85	1956-58;1985-88.		1986-87.	1986-88.	
Savery Creek near Savery	09256000	330	1941-46;1947-72; 1985-92.		1975-78; 1985-91.	1976-78; 1985-91.	1975-78; 1985-91.
Savery Creek at Savery	09256500	354	1915-16;1918-22.		1957;1975; 1977.	1977.	1975; 1977.
Little Snake River near Dixon	09257000	988	1910-23;1938-98.		1957-58; 1975-78; 1981-88.	1971-82; 1988.	1975-77.
Willow Creek near Baggs	09257500	e5	1911-23.				
Willow Creek near Dixon	09258000	e24	1953-93.				
Dry Cow Creek near Baggs	09258200	49.7		1970-81.	1976-78.	1975-79.	
Little Robber Reservoir	09258500	b8.5	1954-62d.				
Muddy Creek above Baggs	09258900	1,178		1958-71.	1976;1978.	1976;1978.	1976.

Station name		Drainage	Period of record, by calendar year					
	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology	
COLORADO RIVER BASIN—continued								
GREEN RIVER BASINcontinued								
Green Rivercontinued								
Yampa Rivercontinued								
Little Snake Rivercontinued								
Muddy Creekcontinued								
Muddy Creek near Baggs	09259000	e1,257	1915-16;1918;1987-91.		1957-58; 1985.	1988-91.	1985.	
Little Snake River below Baggs	09259050				1980-	1989-	1981-89.	
Fourmile Creek (at Ryan's Ranch) near Baggs	09259500	e4	1911-23.					
Little Snake River near Baggs	09259700	e3,020	1961-68.		1965-80.	1977.	1977.	
Little Snake River near Lily, Colo	09260000	e3,730	1904;1921-					
GREAT SALT LAKE BASIN								
BEAR RIVER BASIN								
Bear River:								
East Fork Bear River near Evanston	10010400	34.6	1973-86.					
Evanston	10010500		1941-79.					
Diversions from Bear River above gaging station, near								
Utah-Wyoming State line	10011000		1944-47j;1953-56j; 1958-k.					
West Fork Bear River at Whitney Dam, near Oakley,								
Utah	10011200	6.79	1963-86.					
West Fork Bear River below Deer Creek, near Evanston	10011400	52.2	1973-86.					
Bear River near Utah-Wyoming State line	10011500	172	1942-					
Mill Creek at Utah-Wyoming State line	10012000	59	1949-62.					
Mill Creek near Evanston	10012500	60.6	1942-48.					
Diversions from Mill Creek	10013000		1944-45j.					
Mill Creek below diversions, near Evanston	10013500		1946-47j.					
Bear River above Sulphur Creek, near Evanston	10014000	282	1946-56.					
Sulphur Creek above diversions, near Evanston	10014500		1945k.					
Willow Creek above diversion, near Evanston	10015000		1945k.					
Diversions from Sulphur Creek and Willow Creek	10015500		1944-45j.					
Sulphur Creek above reservoir, near Evanston	10015700	64.2	1957-97.					
Sulphur Creek below reservoir, near Evanston	10015900	69.2	1958-92; 1996-97.					
Sulphur Creek near Evanston	10016000	80.5	1942-59.					

Station name		Drainage	Period of record, by calendar year					
	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology	
GREAT SALT LAKE BASINcontinued								
BEAR RIVER BASINcontinued								
Bear Rivercontinued								
Sulphur Creekcontinued								
Bear River at Millis, near Evanston	10016500	420	1942-46.					
Bear River at Evanston	10016900	433	1984-		1986;1989.	1988-89.		
Yellow Creek near Evanston	10017000	79.2	1944-45;1949-78.					
Coyote Creek near Evanston	10017500	e28	1942-45.					
Diversions from Yellow Creek	10018000		1944-45j.					
Yellow Creek below diversions, near Evanston	10018500		1946-47j.					
Yellow Creek at mouth, near Evanston	10018900				1983-89.		1983-89.	
Bear River near Evanston	10019000	715	1913-56.					
Chapman Canal at State line, near Evanston	10019500		1942-86.					
Whitney Canyon Creek near Evanston	10019700	8.93		1965-81.				
Diversions from Bear River between State line and								
Woodruff gaging stations	10020000		1944-47j;1953-56j; 1958-k.					
Bear River above reservoir, near Woodruff, Utah	10020100	752	1961-		1968-	1989-	1978-89.	
Woodruff Narrows Reservoir near Woodruff, Utah	10020200	784	1965-96.					
Bear River below reservoir, near Woodruff, Utah	10020300	784	1961-					
Bear River near Woodruff, Utah	10020500	e870	1941-61.					
Bear River near Randolph, Utah	10026500	1,616	1943-92.					
Twin Creek:	1002000	ŕ	17.10 72.					
Rock Creek near Fossil	10026800	49.0	1961-66.					
Twin Creek tributary near Sage	10026850	2.91		1965-70.				
Twin Creek at Sage	10027000	246	1943-62;1976-81.		1958;1961;	1976-81;	1975-80.	
	10027000	210	17.13 02,1770 01.		1967-69; 1975-82; 1990-	1989-	1775 00.	
Twin Creek Canal near Sage	10027500		1944-45j.					
Diversions from Bear River between Randolph and			•					
below Pixley Dam gaging stations	10028000		1944-48j;1953-56j; 1958-k.					
Bear River below Pixley Dam, near Cokeville (near								
Cokeville)	10028500	2,032	1941-43;1952-56;1958-					

Station name		Drainage	Period of record, by calendar year					
	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology	
GREAT SALT LAKE BASINcontinued								
BEAR RIVER BASINcontinued								
Bear Rivercontinued								
Leeds Creek near Cokeville	10029000		1944j.					
Bear River above Sublette Creek, near Cokeville	10029500	e2,110	1948-55.					
Sublette Creek near Cokeville	10030000		1944-45j;1955-56j; 1958-k.					
Smiths Fork near Afton	10030300	1.62		1964-70.				
Smiths Fork near Smoot	10030500	17.3	1943.					
Smiths Fork above Hobble Creek, near Geneva, Idaho.	10031000		1944-46j.					
Smiths Fork near Border	10032000	165	1942-					
Coal (Howland) Creek near Cokeville	10032500		1944-48j;1953-56j.					
Muddy Creek above Mill Creek, near Cokeville	10032700	20.7	1965-69.					
Mill Creek near Cokeville	10032800	8.07	1966-69.					
Grade Creek near Cokeville	10033000		1944-48j;1953-56j; 1958-k.					
Pine Creek above diversions, near Cokeville	10033500		1944-48j;1953-56j; 1958-65k.					
Diversions from Pine Creek	10034000		1944-48j;1953-56j; 1958-k.					
Bruner Creek above Covey Canal, near Cokeville	10034500		1944-48j;1953-56j; 1958-k.					
Smiths Fork at Cokeville	10035000	275	1942-52.		1985-88; 1990-92; 1994-	1989-92; 1993-		
Spring Creek above Covey Canal, near Cokeville	10035500		1944-48j;1953-56j; 1958-k.					
Spring Creek to Collette Creek, near Cokeville	10036000		1944-48j;1953-56j.					
Birch Creek near Cokeville	10036500		1944-45k.					
Hickman Canal near Cokeville	10037000		1944-48j.					
George Bourne Canal near Cokeville	10037500		1944-48i.					
Bear River below Smiths Fork, near Cokeville	10038000	2,447	1954-		1993-	1996-98; 2001-	1993-	

		Drainage		Period of record	, by calendar		
Station name	Station number		Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology
GREAT SALT LAKE BASINcontinued							
BEAR RIVER BASINcontinued							
Bear Rivercontinued							
Chalk Creek:							
Chalk Creek Canal near Cokeville	10038500		1944-45j.				
Diversions from Bear River between Pixley Dam and							
Border gaging stations, and from Smiths Fork and							
its tributaries	10039000		1944-48j;1953-56j; 1958-k.				
Bear River at Border	10039500	2,486	1937-		1961; 1965-95.	1978-84; 1986-93.	1973-89.
Thomas Fork near Geneva, Idaho	10040000	45.3	1939-51.				
Thomas Fork near Wyoming-Idaho State line	10041000	113	1949-92.				
Sheep Creek:							
Sheep Creek tributary near Border	10043300	.12		1961-64.			
Sheep Creek tributary No. 2 near Border	10043350	.34		1965-71.			
SNAKE RIVER BASIN							
Snake River at south boundary of Yellowstone National							
Park	13010000	485	1913-25.				
Snake River above Jackson Lake, at Flagg Ranch	13010065	486	1987-		1987-	1987-	1987-93.
Snake River above Jackson Lake, at Flagg Ranch	13010003	486	1983-87.		1972;		1976.
Shake River above sackson bake, at rings Raheli	13010200	400	1703 07.		1975-76; 1983-88.		1770.
Pilgrim Creek near Moran	13010450		1997.				
Jackson Lake near (at) Moran	13010500	807	1908-79;1984-2000.				
(South Fork) Snake River near (at) Moran	13011000	807	1903-				
Pacific Creek at (near) Moran	13011500	169	1906;1917-18;1944-75; 1978-		1987-93.	1987-93.	
Buffalo Fork: Blackrock Creek:							
Blackrock Creek tributary near Moran	13011800	.80		1964-74.			
Buffalo Fork above Lava Creek, near Moran	13011900	323	1965-		1971; 1973-78.		
Buffalo Fork (River) near Moran (Elk)	13012000	378	1906a;1917-18; 1944-60.				

Station name		Drainage	Period of record, by calendar year					
	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology	
SNAKE RIVER BASINcontinued								
Snake Rivercontinued								
Spread Creek at diversion dam, near Moran	13012490	97.4	1994-96.					
Spread Creek near Moran (Elk)	13012500	101	1917-18;1993-95.		1971-72; 1976;1990.	1990.	1976.	
Cottonwood Creek near Teton	13013000	72.3	1917-18.					
Spring Creek near Teton	13013500		1917-18.					
Snake River at Moose	13013650	1,677	1995-		1995-	1995-		
Cottonwood Creek:								
Spring Creek near Zenith	13014000		1917-18.					
Gros Ventre River at Kelly	13014500	622	1918;1944-58.					
Gros Ventre River at Zenith	13015000	683	1917-18;1987-					
Spring Creek at Zenith	13015500		1917-18.					
Spring Creek at West Gros Ventre Butte	13016000		1918.					
Snake River near Wilson	13016100	2,342	1972-75.					
FISH CREEK BASIN								
Fish Creek:								
Lake Creek below Granite Creek Supplement, near Moose	13016240	22.2	1995-99.					
Granite Creek above Granite Creek Supplement, near Moose	13016305	14.9	1995-					
Granite Creek Supplement above Lake Creek, near Moose	13016310		1995-99.					
Granite Creek Supplement below Lake Creek, near Moose	13016315		1995-99.					
Fish Creek at Wilson	13016450	71.2	1994-					
Fish Creek near Wilson	13016500	87.4	1917-18.					
Mosquito Creek near Wilson	13017000	24.2	1917-18.					
Big Spring Creek near Cheney	13017500		1918.					
FLAT CREEK BASIN	10017000		1,710.					
Flat Creek near Jackson	13018000	40.1	1933-41;1989-93.	1994-96.	1966;1973.			
Cache Creek near Jackson	13018300	10.6	1962-		1965-96.	1968-96.	1969; 1973-96.	
Flat Creek below Cache Creek, near Jackson	13018350	129	1989-96;1999-		1973.			
Flat Creek near Cheney	13018500	142	1917-18;1989-93.	1994-96.	1981-82.		1981-82.	
Snake River below Flat Creek, near Jackson	13018750	2,627	1975-					

		Drainage		Period of record	, by calendar y	calendar year				
Station name	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology			
SNAKE RIVER BASINcontinued										
Snake Rivercontinued										
Horse Creek near Cheney	13019000	37.9	1917-18.							
HOBACK RIVER BASIN										
Hoback River:										
Rim Draw (Fish Creek) near Bondurant	13019210	3.41		1964-74.						
Sour Moose Creek near Bondurant	13019220	2.77		1964-81.						
North Fork Fish Creek near Bondurant	13019280	14.4		1964-69.						
Cliff Creek near Bondurant	13019400	58.6		1964-74.						
Granite Creek near Bondurant	13019430				1983-90.	1983-90.				
Little Granite Creek at mouth, near Bondurant	13019438	21.1	1981-92.		1981-90.	1981-90.	1981-90.			
Hoback River near Jackson (Cheney)	13019500	564	1917-18;1944-58.							
Fall (Coburn) Creek near Jackson (Cheney)	13020000	46.8	1917-18.	1964-74.						
Snake River at Astoria Mineral Hot Springs	13020300				1992.					
Dog Creek near Cheney	13020500	14.1	1917-18.							
Cabin Creek near Jackson (Cheney)	13021000	8.71	1917-18.	1964-74.						
Bailey Creek near Alpine, Idaho (Wyo.)	13021500	15.9	1917-18.							
West Table Creek near Alpine	13021700	1.06		1964-69.						
Wolf Creek near Alpine, Wyo. (Idaho)	13022000	13.1	1917-18.	1964-67.						
Snake River above reservoir, near Alpine	13022500	3,465	1937-39;1953-		1965-86; 1988.	1974-77.	1973-80.			
RED CREEK BASIN										
Red Creek near Alpine	13022550	3.88		1964-73.						
COTTONWOOD CREEK BASIN										
Cottonwood Creek near Alpine	13022570	2.40		1964-72.						
GREYS RIVER BASIN										
Greys River above reservoir, near Alpine (near Alpine,										
Idaho)	13023000	448	1917-18;1937-39;1953-							
Snake River below Greys River, at Alpine, IdahoSALT RIVER BASIN	13023500	3,940	1944-54.							
Salt River:										
Fish Creek near Smoot	13023800	e3.60		1964-74.						
Salt River near Smoot	13023900	47.8	1932-57.		1981-85.					
Cottonwood Creek near Smoot	13024500	26.3	1932-57.							
Swift Creek near Afton	13025000	27.4	1942-80.		1965; 1981-85.					

Station name		Drainage	Period of record, by calendar year					
	Station number	area (square miles)	Daily or monthly discharge or content	Annual peak discharge	Water quality	Sediment	Biology	
SNAKE RIVER BASINcontinued								
Snake Rivercontinued								
SALT RIVER BASINcontinued								
Salt Rivercontinued								
Crow Creek near Fairview	13025500	e115	1946-49;1961-67.		1965; 1983-84.			
Stump Creek near Auburn	13026000	103	1946-49.		1989-92.			
Salt River near Thayne	13026500	570	1932-33;1961-67.					
Strawberry Creek near Bedford	13027000	21.3	1932-43.					
Bear Canyon near Freedom	13027200	e3.3		1961-71.				
Salt River above reservoir, near Etna	13027500	829	1953-		1965-88; 1990-1992; 1994-	1989-93; 1998-	1970; 1973-81; 1989-92.	
Salt River near Alpine, Idaho	13028000	878	1917-18.					
Salt River at Wyoming-Idaho State line	13028500	890	1933-55.					
Snake River near Alpine	13029000	4,841	1916-18;1934.					
Snake River near Irwin, Idaho HENRYS FORK BASIN	13032500	5,225	1934-36;1939-41;1949-					
Falls River:								
Grassy Lake near Moran	13046500	10.4	1939-79.					
Boundary Creek near Bechler Ranger Station Conant Creek: Squirrel Creek:	13046680	86.9	1984-					
North Fork Squirrel Creek near Squirrel, Idaho	13047800	2.40	1961-67.					

b Part of drainage area is noncontributing or does not contribute directly to surface runoff.

c Storm runoff for summer season only.

d Published in U.S. Geological Survey Water-Supply Paper 1475-I, Hydrology of Small Watersheds in Western States.

e Approximate.

f Published in reports of Department of Northern Affairs and National Resources, Canada.

g Published in U.S. Geological Survey Water-Supply Paper 1531, Hydrology of the Upper Cheyenne River Basin.

h Includes several sites on the reservoir.

i Approximately, includes area which is probably noncontributing.

j Published in U. S. Geological Survey Open-File Report of Bear River hydrometric data.

k Published in reports of Bear River Commission.

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey (USGS), in cooperation with State, Tribal, county, municipal, and other Federal agencies, collects data each water year describing the water resources of Wyoming. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled, "Water Resources Data - Wyoming".

Water resources data for water year 2001 for Wyoming in this volume consists of records of stage, discharge, and water quality of streams; and stage and contents of lakes and reservoirs. This report contains discharge records for 151 gaging stations; stage and contents for 12 lakes and reservoirs; and water quality at 33 gaging stations and 32 ungaged stations. Locations of streamflow-gaging stations and water-quality stations are shown in figure 1. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of USGS water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities of the United States or may be purchased from USGS, Earth Science Information Center, Federal Center, Building 810, Box 25425, Denver, Colorado 80225.

For water years 1961 through 1970, streamflow data were released by the USGS in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water have been published in official USGS reports on a State-boundary basis. These official USGS reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report WY-01-1." These water-data reports are for sale, in paper copy or on microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page, by telephone at (307) 778-2931, or be email at state_rep_wy@usgs.gov. Hydrologic data for Wyoming is available on the World Wide Web at:

http://wy.water.usgs.gov/

Figure 1. Location of surface-water streamflow-gaging stations, water-quality stations, and reservoir stations, 2001 water year.

COOPERATION

The USGS and organizations of the State of Wyoming have had cooperative agreements for the systematic collection of streamflow records since 1895, for measurement of ground-water levels since 1940, and for collection of water-quality samples since 1946. Agencies and organizations that assisted in data collection through cooperative agreements with the USGS during water year 2001 were:

Federal Agencies

Bureau of Reclamation, U.S. Department of the Interior

Bureau of Land Management, U.S. Department of the Interior

National Park Service, U.S. Department of the Interior

Corps of Engineers, U.S. Army

Tribal Governments

Tribal Water Engineer, Shoshone and Northern Arapaho Tribes, Joint Business Council, Ivan Posey and Al Addison, Co-chairmen

Wind River Environmental Quality Commission, Shoshone and Northern Arapaho Tribes, Joint Business Council, Ivan Posey and Al Addison, Co-chairmen

State Agencies

Wyoming State Engineer's Office, Patrick T. Tyrrell, State Engineer

Wyoming Department of Environmental Quality, Dennis Hemmer, Director

Wyoming Water Development Commission, Lawrence Besson, Administrator

Local Agencies

Teton Conservation District, Randy Williams, Executive Director

Sheridan Area Water Supply Joint Powers Board, Bruce Yates, Administrator

Big Sandy Conservation District, Ginger Eaton, District Coordinator

Saratoga, Encampment, Rawlins Conservation District, Mark Shirley, District Coordinator

Fremont County Weed and Pest Control District, Lars Baker, Supervisor

Municipalities

City of Cheyenne, Jack Spiker, Mayor

City of Gillette, Frank Latta, Mayor

City of Evanston, William Davis, Mayor

SUMMARY OF HYDROLOGIC CONDITIONS

Precipitation and snowpack were less than normal during water year 2001 throughout most of Wyoming. Streamflow at most streamflow-gaging stations in water year 2001 was less than normal with new minimum annual discharges observed at many stations. Specific conductance measurements in 2001 at five water-quality monitoring sites for four selected Wyoming streams (Shoshone River, Powder River, North Platte River, and Blacks Fork) were within the range of measurements for the 10-year period preceding water year 2001. The maximum specific conductance measurements for water year 2001 at two water-quality monitoring sites in the Green and Bear River basins exceeded all measurements collected in the previous 10-year period.

Precipitation

Drought conditions persisted through a second year in Wyoming. Precipitation was less than normal (average for 1971-2000) during water year 2001 throughout most of the State. Precipitation and departures from normal for the major divisions, as defined by the National Oceanic and Atmospheric Administration, are published monthly in "Climatological Data, Wyoming." The divisional data from water year 2001 were separated into two time periods (October 2000 through March 2001, and April through September 2001) representing periods of snow accumulation and snowmelt/rainfall for water year 2001 and compared to normal precipitation for the same periods (fig. 2). Precipitation for both October 2000 through March 2001 and April through September 2001 was less than normal in Wyoming, except for the October 2000 through April 2001 period for the Belle Fourche and Cheyenne River Basins and the Powder and Tongue River Basins; and April through September 2001 for the Lower Platte River Basin and Belle Fourche and Cheyenne River Basins, which were near normal.

Figure 2. Mean cumulative precipitation for water year 2001 and mean cumulative normal precipitation for 1971-2000 by major divisions, Wyoming.

Most of the precipitation data compiled for figure 2 are from stations in basin and plains areas of the State. Data from these stations might not be indicative of precipitation in the mountains. Most of the precipitation in the mountains is in the form of snow. Melting of the snowpack throughout the late spring and early summer provides most of Wyoming's annual water supply. Precipitation and snowpack is reported by the U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS) in "Wyoming Basin Outlook Reports."

Mountain snowpack as of May 1, 2001, prior to the normal intense snowmelt period, varied from much less than normal to near normal across the State. The Belle Fourche and Cheyenne River basins are at relatively lower elevations compared to other basins and snowmelt was essentially complete by May 1. The range of snowpack, in percent of average snow water equivalent, for stations in the major river divisions, as defined by the NRCS, in Wyoming as of May 1, 2001 is listed in table 1.

	Range of snowpack, in percent of average snow water equivalent
Major River Division	As of May 1, 2001
Snake River	36 to 63
Green and Bear River	44 to 88
Bighorn River	31 to 70
Powder and Tongue Rivers	47 to 69
Belle Fourche and Cheyenne Rivers	0
Lower Platte River	51 to 94
Wind River	27 to 58
Upper Platte River	75 to 86

Table 1.--Summary of snowpack conditions in eight major river divisions in Wyoming for water year 2001

Streamflow

The USGS operates a network of streamflow stations throughout Wyoming in cooperation with numerous Federal, State, and local agencies. The network changes from year to year as objectives are achieved or changed, or funding is changed. Most of these stations are operated year round. Over time, the discharge record for these stations provide valuable data to describe hydrologic conditions and climate changes in the State.

Streamflow at most gaging stations across the State in water year 2001 was well below normal. For 96 selected gaging stations in and around Wyoming, 29 percent of the average annual discharges for water year 2001 were the lowest in the period of record and over 60 percent of the annual average discharges were at least the third lowest for the period of record. Average annual discharge for 06228000 Wind River at Riverton was the lowest in 86 years and 06235500 Little Wind River near Riverton was the lowest in 60 years. Many of these stations are affected by reservoir operations which can significantly affect streamflow characteristics. Streamflow statistics for 26 stations in and around Wyoming with little or no flow modification and 30 or more years of record were also examined. Six out of 26 (23 percent) stations set new record lows for annual mean discharge. Five of the six stations were located in the Bighorn Mountains including 06298000 Tongue River at Dayton with 70 years of record. Seven stations ranked second lowest and another four ranked third lowest for their periods of record.

Seven long-term index gaging stations, with periods of record ranging from 35 to 73 years, have been established for five of the major river basins in Wyoming. Streamflow statistics at these seven gaging stations are shown in figure 3. Average annual discharge at all seven gaging stations on major rivers in 2001 was less than the median average annual discharge for the period of record. The figure illustrates the shortage of snowpack and a relatively short and low snowmelt runoff period. Average annual discharge in 2001 for gaging stations 06285100 Shoshone River near Lovell, 06279500 Bighorn River at Kane, 09217000 Green River near Green River, and 13022500 Snake River above reservoir, near Alpine, was the third lowest for the period of record. Average annual discharge for 06317000 Powder River at Arvada and 06630000 North Platte River above Seminoe Reservoir, near Sinclair ranked fifth and seven lowest for the period of record respectively. Even though 06674500 North Platte River at the Wyoming-Nebraska State line ranked only 23rd lowest for average annual discharge, all monthly average discharges, except July and August, were less than median monthly discharges for the period of record. These two months also reflect drought effects as higher flows in July and August were the result of water being released from upstream reservoirs for use by irrigators and reservoir operators downstream.

EXPLANATION

COMPARISON OF ANNUAL AVERAGE DISCHARGE

▲ STREAMFLOW-GAGING STATION SELECTED TO TYPIFY DRAINAGE BASIN--Station number and name shown above bar graph

Figure 3a. Annual average discharge for water year 2001, and median and maximum annual average discharge for period of record for seven long-term index gaging stations in Wyoming.

Figure 3b. Average monthly and annual discharge for water year 2001, and median and maximum monthly and annual discharge for period of record for seven long-term index gaging stations in Wyoming.

Chemical Quality of Stream Water

The USGS operates a network of water-quality stations throughout Wyoming in cooperation with numerous Federal, State, and local agencies. The network changes from year to year as objectives are achieved or changed, or funding is changed. The locations of water-quality monitoring network stations for water year 2001 are shown in figure 1. The sampling frequency varies from station to station, however most stations are sampled at least four times per year. Some stations have only a few years of water-quality information, while other stations have been in operation for many years and provide a basis for description of long-term conditions that represent a wide range of natural variability. Various water-quality measurements are made, either onsite or by laboratory analyses of samples, depending on the water-quality objectives of the investigation. Onsite stream measurements at stations generally include specific conductance, pH, water temperature, and dissolved oxygen. In addition, bacteria are sometimes analyzed in the field. Laboratory analyses in 2001 may include major ions, dissolved solids, nutrients, trace elements, organic compounds, or sediment.

The concentration of dissolved solids represents the total of all constituents dissolved in the water. Specific conductance typically varies directly with the dissolved-solids concentration; thus, specific conductance was chosen as an indicator of the concentration of dissolved solids in water. Concentrations of dissolved solids generally are inversely related to discharge. A statistical summary of specific conductance measurements from stream-water samples at seven stations for six selected streams in Wyoming describes the general chemical variability of the stream water during 2001 (table 2). The specific conductance varies considerably in Wyoming owing to the diverse geology of the State. The maximum value measured on these streams (2,960 microsiemens per centimeter at 25 degrees Celsius) was from a sample collected at 06317000 Powder River at Arvada; the minimum value measured (169 microsiemens per centimeter at 25 degrees Celsius) was from a sample collected at 06281700 Shoshone River above Demaris Springs.

To compare the current and long-term water-quality conditions, specific conductance measurements are summarized for water year 2001 and the 10-year period of water years 1991-2000. The range of specific conductance measurements is described by the minimum and maximum values. In addition, the central tendency of data collected over the 10-year period is described by the median (50th percentile). All specific conductance measurements in 2001 were within the range of measurements for the 10-year period of water years 1991-2000, except for two samples. The maximum specific conductance measurement (862 microsiemens per centimeter at 25 degrees Celsius) at 09217000 Green River near Green River and the maximum specific conductance measurement (682 microsiemens per centimeter at 25 degrees Celsius) at 10020100 Bear River above reservoir, near Woodruff in water year 2001 were greater than the maximum for the 10-year period of water years 1991-2000.

Table 2.--Statistical summary of specific conductance measurements for discrete water samples at selected locations for the 2001 and 1991-2000 water years.

[Specific conductance, in microsiemens per centimeter at 25 degrees Celsius]

			Specific (ecific Conductance			
		Water Year 2001		Water years 1991-2000			
Station number and name	Number of values	Maximum	Minimum	Number of values	Maximum	Minimum	Mediar
06281700 Shoshone River above Demaris Springs, near Cody, WY	8	266	169	92	450	89	169
06317000 Powder River at Arvada, WY	9	2,960	1,560	47	3,770	744	2,100
06630000 North Platte River above Seminoe Reservoir, near Sinclair, WY	5	424	227	90	634	155	376
06674500 North Platte River at Wyoming- Nebraska State line	4	956	658	77	1,240	545	880
09217000 Green River near Green River, WY	6	862	496	72	827	270	503
09224700 Blacks Fork near Little America, WY	7	2,510	532	98	2,830	475	1,310
0020100 Bear River above reservoir, near Woodruff, UT	4	682	420	40	660	145	430

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the affects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at:

http://water.usgs.gov/hbn/

National Stream Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations were operated in the Mississippi, Columbia, Colorado, and Rio Grande. From 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at:

http://water.usgs.gov/nasqan/

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at:

http://bqs.usgs.gov/acidrain/

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in over 50 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

The water quality in the Yellowstone river basin is presently being studied as part of the USGS NAWQA program. During the 2001 water year, the study conducted the final of three years of intensive data collection. Ground water and surface water are being sampled for an extensive list of natural and anthropogenic chemicals. Aquatic ecology, including stream morphology and aquatic plant and animal communities, are also being measured. All media are being sampled using a nationally consistent set of protocols, methods, and measurements. Most of the routine data (major ions, nutrients,

trace elements, and some pesticides) collected in Montana and Wyoming are included in this report. Other data not included in this report (additional pesticides, volatile organic compounds, stream morphology, populations of aquatic flora and fauna, and data for adjacent states) are available in the District offices.

The Yellowstone River basin study unit extends from central Wyoming north to include most of southeastern Montana and a small part of western North Dakota. The entire Yellowstone River watershed defines the study unit boundaries and includes all of the Wind/Bighorn, Powder, Tongue, and Clarks Fork Yellowstone tributary watersheds. Total area for the study unit is about 70,100 square miles (sq mi) of which 51 percent is in Montana, 48 percent is in Wyoming, and 1 percent is in North Dakota. Total population of the study unit was about 323,000 (1990 census), of which 206,000 were in Montana, 116,000 were in Wyoming, and 1,000 were in North Dakota.

The study unit lies within the Rocky Mountain System and Interior Plains physiographic divisions. Topography of the study unit in the Rocky Mountain System division varies from mountain ranges and high plateaus, including the Wind River Range, Bighorn Mountains, and Absaroka Plateau, to intermontane basins, such as the Wind River and Bighorn Basins. The highest elevations in the study unit are in the Wind River Range, where several peaks exceed 13,000 feet above sea level. The Interior Plains division part of the study unit varies from gently rolling plains to sharply dissected badlands. The lowest point in the study unit, 1,850 feet above sea level, is located at the mouth of the Yellowstone River in North Dakota

Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies.

Additional information about the NAWQA Program is available through the world wide web at:

http://water.usgs.gov/nawqa/nawqa_home.html
or for the Yellowstone Study at:
http://wy.water.usgs.gov/YELL/index.htm

EXPLANATION OF THE RECORDS

The surface-water records published in this report are for water year 2001, which began October 1, 2000, and ended September 30, 2001. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, and water-quality data for surface water. The locations of the stations where the data were collected are shown in figure 1. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each surface-water data station in this report is assigned a unique identification number. The number usually is assigned when a station is first established and is retained for that station indefinitely. The system is used by the USGS to assign identification numbers for surface-water stations is based on geographic location. Generally, the "downstream-order" system is used for surface-water stations, and the "latitude-longitude" system is used in Wyoming for surface-water stations where only miscellaneous measurements are made.

Downstream-Order System

Since October 1, 1950, the order of listing hydrologic-station records in USGS reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the section "Surface-water stations, in downstream order, for which records are published in this volume" in the front of this report. Each indention represents

one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned in downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of all types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 06646000, which appears just to the left of the station name, includes the two-digit Part number "06" plus the six-digit downstream-order number "646000." The Part number designates the major river basin; for example, Part "06" is the Missouri River basin.

Latitude-Longitude System

The identification numbers for miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of north latitude, the next seven digits denote degrees, minutes, and seconds of west longitude, and the last two digits (assigned sequentially) identify the order of sites if more than one within a 1-second grid. This site-identification number, once assigned, is arbitrary and has no locational significance. If the initial determination of latitude and longitude is found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See following figure.)

Figure 4. System for assigning identification numbers to miscellaneous sites using latitude and longitude.

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily reservoir storage and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles. Records of miscellaneous discharge measurements or of measurements from special studies may be considered as partial records, but they are presented separately in this report. Locations of all complete-record stations for which data are given in this report are shown in figure 1.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with electronic data loggers that store and/or transmit stage values by satellite telemetry. Measurements of discharge are made with current meters using methods adopted by the USGS as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in USGS Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by averaging the discharges determined from individual stages (gage heights) applied to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some streamgaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to obtain (from surveys) curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly incorrect as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so incorrect that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in sections "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a format considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table.

These changes represent the results of reformatting the annual water-data report to meet current user needs and data preferences.

The record published for each continuous-record surface-water discharge station (gaging station) consists of four parts: the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record, record accuracy, and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps and methods of determining drainage area become available.

PERIOD OF RECORD.--This indicates the period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that flow at it reasonably can be considered equivalent to flow at the present station.

REVISED RECORDS.--Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to sea level (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily discharge will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph also is used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the USGS.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Data table of daily mean values

The daily table of discharge records for streamgaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Runoff for the month usually is expressed in acre-feet (line headed "AC-FT"). At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS ______, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS ______," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All statistics, except HIGHEST and LOWEST DAILY MEANS and INSTANTANEOUS PEAK FLOW and STAGE, are computed based on the period(s) using complete water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the footnotes. Selected streamflow duration curve statistics and runoff data also are given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table. Other statistics, such as instantaneous low flow, annual runoff in cubic feet per square mile or in inches, may be available on request.

ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN .-- The maximum daily mean discharge for the year or for the designated period.

- LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.
- ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for seven consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)
- INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)
- INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.
- ANNUAL RUNOFF.--The total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:
- Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.
- Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area.
- Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.
- 10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified by flagging individual daily values with the letter symbol "e" and printing a table footnote (e Estimated).

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than $1 \text{ ft}^3/\text{s}$; to the nearest tenth between 1.0 and 10 ft^3/s ; to whole numbers between 10 and 1,000 ft^3/s ; and to 3 significant figures for more than 1,000 ft^3/s . The number of significant figures used is based solely on the magnitude of the discharge value. No rounding rules apply to discharges listed for miscellaneous sites. Discharges listed are those actually computed.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff because of the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation from artificial causes, or to other factors. For such stations, figures for cubic feet per second per square mile and for runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Records of daily diversions of water from streams by canals are collected by and published in Hydrographers Annual Reports of the Wyoming Board of Control. Included are discharge records for streams and storage records for reservoirs not published in USGS reports.

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in the Wyoming District office. Also, daily mean discharges are available in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained at the address given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality in this report represent a variety of data types and measurement or sampling and analysis frequencies. Whenever possible, records of surface-water quality are obtained at or near streamgaging stations because interpretation of surface-water quality and seasonal variation is enhanced by knowledge of corresponding discharge data. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 1.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where water-quality data are collected systematically over a period of years, but frequency of sampling usually is less than quarterly. A <u>miscellaneous sampling site</u> is a location where samples are collected one time or intermittently to provide better areal coverage for defining water-quality conditions over a broad area in a river basin.

A distinction needs to be made between "continuing records", as used in reference to data for continuing-record stations, and "continuous record," which refers to a continuous graph over time or a series of recorded discrete short-time-interval values. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, most water-quality data are obtained on a monthly or less frequent basis.

Onsite Measurements and Sample Collection

When obtaining water-quality data, a major concern is assuring that onsite water-quality measurements and the samples collected for laboratory analysis are representative of the actual quality of the water. Measurements such as water temperature, pH, and dissolved oxygen are made onsite when the samples are collected because of the potential for significant change with time. Prescribed procedures need to be followed in collection and processing of samples. Procedures for onsite measurements and for collecting, treating, and shipping samples are documented in a series of Techniques of Water-Resources Investigations (TWRI) publications titled "National Field Manual for the Collection of Water-Quality Data." All of these references are listed under "TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" which appears at the end of the introductory text. Also, detailed information on collecting, treating, and shipping samples may be obtained from other references and from the Wyoming District office.

One sample can adequately define the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the sampler.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. If an apparent inconsistency exists between a reported pH value and a relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For water-quality stations equipped with electronic monitors and digital recorders, the record consists of a daily maximum, minimum, and mean values for each constituent measured and are based upon hourly recordings beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records of the individual hourly values (unit values) may be obtained from the Wyoming District office.

Water Temperature

Water temperatures are measured at water-quality stations at the time of sampling. In addition, water temperatures are taken at the time of discharge measurements at streamgaging stations. For stations where water temperatures are measured manually once daily, the water temperatures are taken at about the same time each day for consistency in the record. Deep streams commonly have a small diurnal temperature change, whereas shallow streams may have a daily range of several degrees, which closely follows the changes in air temperature. The water temperature in some streams may be affected by industrial discharges of warm water.

For stations where recording instruments are used, the record consisting of either daily mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements and those taken manually once-daily are on file in the Wyoming District office.

Sediment

Suspended-sediment concentrations are determined from samples collected using depth-integrating samplers. Samples usually are obtained from several verticals in the cross section. At daily sediment stations, daily samples may be obtained from a single vertical and a coefficient applied to determine the mean concentration in the cross section. Daily mean suspended-sediment concentrations are computed using sample concentrations and the continuous streamflow record according the methods described in TWRI Book 3, Chap. C3. Daily suspended-sediment discharge then is computed as the product of stream discharge times the daily mean concentration times a unit conversion factor of 0.0027.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration are computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between suspended-sediment concentration and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of particle-size distribution of the suspended sediment and bed material for periodic samples are included for some stations.

Laboratory Analyses

Samples for indicator bacteria are analyzed locally. Samples for suspended-sediment are analyzed at the USGS laboratory in Helena, Montana. Samples for all other constituents are analyzed at the USGS National Water-Quality Laboratory in Lakewood, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1 and C3. Methods used by the National Water-Quality Laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Presentation of Water-Quality Records

Water-quality records collected at a streamgaging station are published immediately following the daily discharge record. Station number and name are the same for both records. Where a daily discharge record is not available or where the location of the water quality station differs significantly from that of the nearby streamgaging station, the water-quality record is published with its own station number and name in the standard downstream-order sequence.

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperating agencies, and extremes for parameters measured on a daily basis. Tables of chemical, physical, biological, and radiochemical data obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, water temperature, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the streamgaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuing record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge"; same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge"; same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature monitor, pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the USGS by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the USGS computerized data system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of USGS water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

Remark Codes

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
E	Estimated value
M	Presence of material verified, but not quantified
>	Actual value is known to be greater
	than the value shown
<	Actual value is known to be less than the value shown
k	Results based on colony count
	outside the acceptable range
	(non- ideal colony count)

Quality-Control Samples

Data generated from quality-control (QC) samples are used to evaluate the quality of the sampling and processing techniques, as well as data from the actual samples themselves. Interpretations of environmental sample data is aided when errors associated with sample measurements are known. The various types of QC samples collected by this district are described in the following section. Procedures have been established for the storage of QC data within the USGS. These procedures allow for identification of various types of QC data so that they can be related to corresponding environmental samples. Information on QC samples is on file in the Wyoming district office.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is free of the constituents of interest. Any detectable concentration of a constituent in the blank solution is believed to be due to contamination introduced at some point during sample collecting, processing, or analysis. There are many types of blank samples, each designed to test a different part of the overall data-collection process. The types of blank samples collected in this district are:

Field blank - a blank solution that is subjected to all aspects of sample collection, field processing, preservation, transportation, and laboratory handling as an environmental sample.

Equipment blank - a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office using recently cleaned equipment).

Sampler blank - a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank - a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank - a blank solution that is mixed and separated through a field splitter in the same manner and through the same apparatus used for splitting an environmental sample.

Preservation blank - a blank solution that is treated with the same preservatives used for an environmental sample.

Replicate Samples

Replicate samples are two or more sets of environmental samples collected in the same manner such that the samples are considered to be essentially identical in composition. Replicate samples are collected and analyzed to establish the amount of variability in the data, which can be contributed by either the collection or the analytical process or both. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

Sequential sample - a type of replicate sample in which the samples are collected one after the other, typically over a short time (pumped samples).

Split sample - a type of replicate sample in which a single composite sample is split into subsamples.

Concurrent sample - two sets of samples, collected independently, but at the same time and place.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

ACCESS TO WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). These data may be accessed at

http://water.usgs.gov

Some water-quality and ground-water data are also available through the WWW. In addition, data can be provided in various machine-readable formats. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District offices (See address on the back of the title page.)

DEFINITION OF TERMS

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Terms such as algae, water level, precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.

Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 to September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type and the last two digits represent the weight percent of the hydrogen substituted chlorine.

Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass")

Bacteria are microscopic unicellular organisims, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peaks per year will be published.

Base flow is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.

Bedload is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 ft) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler may also contain a component of the suspended load.

Bedload discharge (tons per day) is rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload" and "Sediment")

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")

Benthic organisms are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

Biomass pigment ratio is an indicator of the total proportion of periphyton which are autotrophic (plants). This is also called the Autotrophic Index.

Blue-green algae (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Bottom material (See "Bed material")

Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L).

Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μm³) is determined by obtaining critical cell measurements on cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere $4/3 \pi r^3$ cone $1/3 \pi r^3 h$ cylinder $\pi r^3 h$.

pi is the ratio of the circumference to the diameter of a circle; pi = 3.14159...

From cell volume, total algal biomass expressed as biovolume ($\mu m^3/mL$) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes over all species.

Cfs-day (See "Cubic foot per second-day")

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warm-blooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

Coliphages are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of waters and of the survival and transport of viruses in the environment.

Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuous-record station is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.

Control designates a feature in the channel downstream from a gaging station that physically influences the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-feet" sometimes is used synonymously with "cubic feet per second" but is now obsolete.

Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily-mean discharges reported in the daily-value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.

Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")

Daily mean suspended-sediment concentration is the time-weighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Mean concentration of suspended sediment," "Sediment," and "Suspended-sediment concentration")

Daily-record station is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis.

Data Collection Platform (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.

Data logger is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems.

Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Diel is of or pertaining to a 24-hour period of time; a regular daily cycle.

Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediments or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents such as suspended sediment, bedload, and dissolved or suspended chemical constituents, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).

Dissolved refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.

Dissolved oxygen (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved-solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.

Diversity index (H) (Shannon Index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the Earth's surface that contains a drainage system with a common outlet for its surface run-off. (See "Drainage area")

Dry mass refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")

Dry weight refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")

Enterococcus bacteria are commonly found in the feces of humans and other warm-blooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis*, *Streptococcus feacium*, *Streptococcus avium*, and their variants. (See also "Bacteria")

EPT Index is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive, the index usually decreases with pollution.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warm-blooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium. Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) value of a concentration is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<).

Euglenoids (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semi-volatile and extractable by ethyl acetate from air-dried streambed sediments. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediments.

Fecal coliform bacteria are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fecal streptococcal bacteria are present in the intestine of warm-blooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fire algae (Pyrrhophyta) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")

Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly larger than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any National geodetic datum. However, if the elevation of the gage datum relative to the National datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the National datum by adding the elevation of the gage datum to the gage reading.

Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.

Gage values are values that are recorded, transmitted and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.

Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is computed.

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA web site:* http://www.co-ops.nos.noaa.gov/tideglos.html

Hilsenhoff's Biotic Index (HBI) is an indicator of organic pollution which uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum \frac{(n)(a)}{N}$$

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

Hydrologic benchmark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a benchmark station may be used to separate effects of natural from human-induced changes in other basins that have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped benchmark basin.

Hydrologic index stations referred to in this report are four continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff")

Instantaneous discharge is the discharge at a particular instant of time. (See also "Discharge")

Laboratory Reporting Level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a non-detection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory collects quality-control data from selected analytical methods on a continuing basis to determine

LT-MDLs and to establish LRLs. These values are reevaluated annually based on the most current quality-control data and may, therefore, change. [Note: In several previous NWQL documents (Connor and others, 1998; NWQL Technical Memorandum 98.07, 1998), the LRL was called the non-detection value or NDV—a term that is no longer used.)

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation

$$I = I_o e^{-\lambda L},$$

where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} .$$

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-Term Method Detection Level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site:

http://www.co-ops.nos.noaa.gov/tideglos.html

Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that are usually arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")

Mean high or low tide is the average of all high or low tides, respectively, over a specific period.

Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")

Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.

Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Method Detection Limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per kilogram (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.

- **Micrograms per liter** (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.
- **Microsiemens per centimeter** (US/CM, μS/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.
- **Milligrams per liter** (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.
- **Minimum Reporting Level** (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method (Timme, 1995).
- **Miscellaneous site,** miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin.
- **Most probable number** (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.
- **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.
- Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.
- National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")
- **Natural substrate** refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate")
- **Nekton** are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility.
- **Nephelometric turbidity unit** (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of Formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.
- **North American Vertical Datum of 1988 (NAVD 1988)** is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the U.S. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and U.S. first-order terrestrial leveling networks.
- **Open or screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.
- **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediments. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).
- **Organic mass** or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")
- **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

Parameter Code is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.

Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.

Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes Law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, Sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024 - 0.004	Sedimentation
Silt	0.004 - 0.062	Sedimentation
Sand	0.062 - 2.0	Sedimentation/sieve
Gravel	2.0 - 64.0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation to the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

Percent composition or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.

Percent shading is determined by using a clinometer to estimate left and right bank shading. The values are added together and divided by 180 to determine percent shading relative to a horizontal surface.

Periodic-record station is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year, but at a frequency insufficient to develop a daily record.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7 are termed "acidic," and solutions with a pH greater than 7 are termed "basic." Solutions with a pH of 7 are neutral. The presence and concentration of many dissolved chemical constituents found in water are, in part, influenced by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms are also influenced, in part, by the hydrogen-ion activity of water.

Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and are commonly known as algae. (See also "Plankton")

Picocurie (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7×10^{10} radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL of sample).

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated naphthalenes (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

Primary productivity (carbon method) is expressed as milligrams of carbon per area per unit time [mg $C/(m^2/time)$] for periphyton and macrophytes or per volume [mg $C/(m^3/time)$] for phytoplankton. Carbon method defines the amount of carbon dioxide consumed as measured by

radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. Oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Radioisotopes are isotopic forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or non-exceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day 10-year low flow (7Q₁₀) is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the non-exceedances of the 7Q₁₀ occur less than 10 years after the previous non-exceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous non-exceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the 7Q₁₀.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Return period (See "Recurrence interval")

River mileage is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council, and typically used to denote location along a river.

Runoff is the quantity of water that is discharged ("runs off") from a drainage basin in a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")

Sea level, as used in this report, refers to one of the two commonly used national vertical datums, (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums. See conversion of units page (inside back cover) for identification of the datum used in this report.

Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation.

Seven-day 10-year low flow (7Q10) is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-run average. The recurrence interval of the 7Q10 is 10 years; the chance that the annual 7-day minimum flow will be less than the 7Q10 is 10 percent in any given year. (See also "Recurrence interval" and "Annual 7-day minimum")

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

Specific electrical conductance (**conductivity**) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stable isotope ratio (per MIL/MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific waters, to evaluate mixing of different waters, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

Stage-discharge relation is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Substrate Embeddedness Class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as percent covered by fine sediment:

0 < no gravel or larger substrate

1 > 75%

2 51-75% 4 5-25% 3 26-50% 5 <5%

Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.

Surficial bed material is the upper surface (0.1 to 0.2 ft) of the bed material such as that material which is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is operationally defined as the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

Suspended sediment is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")

Suspended-sediment discharge (tons/day) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")

Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.

Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxa richness is the total number of distinct species or groups and usually decreases with pollution. (See also "Percent Shading")

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom: Animal
Phylum: Arthropoda
Class: Insecta

Order: Ephemeroptera Family: Ephemeridae Genus: *Hexagenia*

Species: Hexagenia limbata

Temperature preferences:

Cold – preferred water temperature for the species is less than 20 °C or spawning temperature preference less than 16 °C and native distribution is considered to be predominantly north of 45° N. latitude.

Warm – preferred water temperatures for the species is greater than 20 °C or spawning temperature preference greater than 16 °C and native distribution is considered to be predominantly south of 45° N. latitude.

Cool – intermediate between cold and warm water temperature preferences.

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

Tons per acre-foot (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total length (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total organism count is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume.")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

Total sediment discharge is the mass of suspended-

sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Sediment," "Suspended sediment," "Suspended-Sediment Concentration," "Bed-load," and "Bedload discharge")

Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-Sediment Load," and "Total load")

Trophic group:

Filter feeder – diet composed of suspended plant and/or animal material.

Herbivore – diet composed predominantly of plant material.

Invertivore – diet composed predominantly of invertebrates.

Omnivore – diet composed of at least 25-percent plant and 25-percent animal material.

Piscivore – diet composed predominantly of fish.

Turbidity is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and differ-

ent instruments are unlikely to yield equivalent values. Consequently, the method of measurement and type of instrument used to derive turbidity records should be included in the "REMARKS" column of the Annual Data Report.

Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample.

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens (U.S. Environmental Protection Agency, 1996).

Water table is the level in the saturated zone at which the pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which is found the water table.

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2001, is called the "2001 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY

The U.S.G.S. publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S.G.S., Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be made in the form of a check or money order payable to the "U.S. Geological Survey." Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations."

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

- 1-D1. Water temperature—influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p.
- 1-D2. *Guidelines for collection and field analysis of ground-water samples for selected unstable constituents*, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2-D1. *Application of surface geophysics to ground-water investigations*, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p.
- 2-D2. *Application of seismic-refraction techniques to hydrologic studies*, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p.

Section E. Subsurface Geophysical Methods

- 2-E1. *Application of borehole geophysics to water-resources investigations*, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p.
- 2-E2. *Borehole geophysics applied to ground-water investigations*, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p.

Section F. Drilling and Sampling Methods

2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3-A1. *General field and office procedures for indirect discharge measurements*, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p.
- 3-A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p.
- 3-A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p.
- 3-A4. *Measurement of peak discharge at width contractions by indirect methods*, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p.
- 3-A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS–TWRI book 3. chap. A5. 1967. 29 p.

- 3-A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p.
- 3-A7. *Stage measurement at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p.
- 3-A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p.
- 3-A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p.
- 3-Alo. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. Alo. 1984. 59 p.
- 3-A11. *Measurement of discharge by the moving-boat method*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p.
- 3-A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p.
- 3-A13. *Computation of continuous records of streamflow*, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p.
- 3-A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p.
- 3-A15. *Computation of water-surface profiles in open channels*, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p.
- 3-A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p.
- 3-A18. *Determination of stream reaeration coefficients by use of tracers*, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p.
- 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 p.
- 3-A20. *Simulation of soluble waste transport and buildup in surface waters using tracers*, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p.
- 3-A21 *Stream-gaging cableways*, by C. Russell Wagner: USGS–TWRI book 3, chap. A21. 1995. 56 p.

Section B. Ground-Water Techniques

- 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p.
- 3-B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p.
- 3-B3. *Type curves for selected problems of flow to wells in confined aquifers*, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p.
- 3-B4. *Regression modeling of ground-water flow,* by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p.
- 3-B4. Supplement 1. Regression modeling of ground-water flow --Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS-TWRI book 3, chap. B4. 1993. 8 p.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p.
- 3-B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p.

- 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p.
- 3-B8. *System and boundary conceptualization in ground-water flow simulation*, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p.

Section C. Sedimentation and Erosion Techniques

- 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 p.
- 3-C2. *Field methods for measurement of fluvial sediment*, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI book 3, chap. C3. 1972. 66 p.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

- 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI book 4, chap. A1. 1968. 39 p.
- 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p.

Section B. Surface Water

- 4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 p.
- 4-B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p.
- 4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS-TWRI book 4, chap. B3. 1973. 15 p.

Section D. Interrelated Phases of the Hydrologic Cycle

4-D1. *Computation of rate and volume of stream depletion by wells*, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5-A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p.
- 5-A2. *Determination of minor elements in water by emission spectroscopy*, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p.
- 5-A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p.
- 5-A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p.
- 5-A5. *Methods for determination of radioactive substances in water and fluvial sediments*, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p.
- 5-A6. *Quality assurance practices for the chemical and biological analyses of water and fluvial sediments*, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p.

Section C. Sediment Analysis

5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI book 5, chap. C1. 1969. 58 p.

Book 6. Modeling TechniquesÄ

Section A. Ground Water

- 6-A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p.
- 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS-TWRI book 6, chap. A2. 1991. 68 p.

- 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p.
- 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS—TWRI book 6, chap. A4. 1992. 108 p.
- 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5, 1993. 243 p.
- 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A5,1996. 125 p.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p.
- 7-C2. *Computer model of two-dimensional solute transport and dispersion in ground water*, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p.
- 7-C3. *A model for simulation of flow in singular and interconnected channels*, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8-A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p.
- 8-A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p.

Section B. Instruments for Measurement of Discharge

8-B2. *Calibration and maintenance of vertical-axis type current meters*, by G.F. Smoot and C.E. Novak: USGS—TWRI book 8, chap. B2. 1968. 15 p.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9-A1. *National Field Manual for the Collection of Water-Quality Data: Preparations for Water Sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.
- 9-A2. National Field Manual for the Collection of Water-Quality Data: Selection of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p.
- 9-A3. National Field Manual for the Collection of Water-Quality Data: Cleaning of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A3. 1998. 75 p.
- 9-A4. *National Field Manual for the Collection of Water-Quality Data: Collection of Water Samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p.
- 9-A5. *National Field Manual for the Collection of Water-Quality Data: Processing of Water Samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p.
- 9-A6. *National Field Manual for the Collection of Water-Quality Data: Field Measurements*, edited by F.D. Wilde and D.B. Radtke: USGS-TWRI book 9, chap. A6. 1998. Variously paginated.
- 9-A7. *National Field Manual for the Collection of Water-Quality Data: Biological Indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
- 9-A8. *National Field Manual for the Collection of Water-Quality Data: Bottom-material samples*, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p.
- 9-A9. *National Field Manual for the Collection of Water-Quality Data: Safety in Field Activities*, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p.

MISSOURI RIVER BASIN MADISON RIVER BASIN 06037500 MADISON RIVER NEAR WEST YELLOWSTONE, MT

LOCATION.--Lat $44^\circ39^\circ25^\circ$, long $111^\circ04^\circ03^\circ$, in $NE^1/_4$ $NW^1/_4$ $SW^1/_4$ sec.36, T.13 S., R.5 E., Gallatin County, Hydrologic Unit 10020007, Yellowstone National Park, on left bank 0.7 mi downstream of Montana-Wyoming stateline, 1.5 mi east of West Yellowstone, 16.4 mi downstream from Gibbon River, and at river mile 132.7.

DRAINAGE AREA. -- 420 mi².

PERIOD OF RECORD.--June 1913 to December 1917, July 1918 to October 1921, June 1922 to September 1973, August 1983 to September 1986, October 1988 to current year. Monthly discharge only for some periods, published in WSP 1309.

GAGE.--Water-stage recorder. Elevation of gage is 6,650 ft above sea level, from topographic map. Prior to Oct. 20, 1918, nonrecording gage, and Oct. 20, 1918 to June 29, 1930, nonrecording gage or water-stage recorder at sites 2.5 mi upstream at different datums. U. S. Geological Survey satellite telemeter at station. Supplementary nonrecording gage at site 0.3 mi downstream at different datum used at time during 1927-30.

REMARKS.--Records good. No regulation or diversions upstream from station. Station operated and record provided by the Montana District.

		DISCHARGE	, CUBIC	C FEET PE		WATER YE Y MEAN VA	AR OCTOBER	2000 TC	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	478	467	431	429	408	410	428	719	483	398	374	369
2	525	442	426	420	410	408	436	626	475	393	369	362
3	468	433	432	423	410	413	435	582	474	392	372	359
4	455	434	429	424	412	407	432	589	496	391	379	358
5	448	444	429	422	421	408	425	630	497	396	375	364
6	442	440	426	419	423	408	423	646	496	395	369	374
7	440	426	430	413	419	413	423	614	477	397	369	372
8	440	425	431	412	393	415	435	629	460	403	369	373
9	440	438	432	419	418	416	420	726	449	433	369	369
10	443	432	436	426	421	422	417	716	439	481	369	365
11	473	426	430	423	418	417	413	685	431	433	371	363
12	496	427	425	424	411	410	416	678	465	420	369	361
13	496	424	431	423	415	406	422	699	511	405	373	369
14	479	422	439	423	408	412	430	708	533	404	388	376
15	476	430	438	421	412	408	416	860	585	409	388	376
16	471	426	423	411	415	407	424	1490	502	414	381	370
17	466	423	445	411	415	406	429	1100	464	403	379	380
18	465	423	437	419	416	404	470	848	455	398	374	369
19	465	423	433	418	416	407	533	743	444	393	369	369
20	459	418	436	422	418	444	521	686	435	390	367	366
20	133	110	150	122	110		321	000	133	370	307	300
21	465	421	425	412	422	460	503	627	429	387	368	363
22	465	422	446	418	423	454	479	590	423	382	368	363
23	452	419	438	418	423	451	461	570	417	381	368	363
24	449	420	439	412	423	454	455	555	413	381	366	362
25	452	424	437	419	417	463	490	542	409	379	363	361
26	452	429	429	416	412	463	545	553	408	376	363	363
27	448	434	431	409	408	446	602	541	410	375	362	358
28	453	433	428	407	402	437	640	573	405	374	363	360
	454	425			402		715	602	402	374	363	361
29			420	408		435						
30	455	443	429	409		437	663	529	399	372	361	360
31	480		430	405		421		496		371	365	
TOTAL	14350		3391	12935	11609	13162	14301	21152	13686	12296	11483	10978
MEAN	463	430	432	417	415	425	477	682	456	397	370	366
MAX	525	467	446	429	423	463	715	1490	585	481	388	380
MIN	440	418	420	405	393	404	413	496	399	370	361	358
AC-FT	28460		6560	25660	23030	26110	28370	41950	27150	24390	22780	21770
STATIST	rics of M	ONTHLY MEAN	DATA FO	OR WATER	YEARS 191	3 - 2001,	BY WATER	YEAR (WY	·) *			
	425	405	41.5	405	400	406	405	054	010	F 0.1	40.4	400
MEAN	435	425	417	405	400	406	497	854	818	501	434	428
MAX	710	697	641	586	572	539	671	1725	1479	917	759	704
(WY)	1914		1997	1997	1914	1917	1925	1997	1997	1913	1913	1913
MIN	297	297	304	304	303	313	369	388	341	282	273	282
(WY)	1935	1932	1932	1932	1932	1943	1941	1934	1931	1931	1934	1934

42 MADISON RIVER BASIN

06037500 MADISON RIVER NEAR WEST YELLOWSTONE, MT--Continued

SUMMARY STATISTICS	FOR 2000 CALEND.	AR YEAR	FOR 2001 WA	ATER YEAR	WATER YEARS	3 1913 - 2001*
ANNUAL TOTAL	194972		162236			
ANNUAL MEAN	533		444		500	
HIGHEST ANNUAL MEAN					789	1997
LOWEST ANNUAL MEAN					337	1934
HIGHEST DAILY MEAN	1350	May 26	1490	May 16	2750	May 18 1996
LOWEST DAILY MEAN	409	Aug 23	358	Sep 4	245	Jan 1 1942
ANNUAL SEVEN-DAY MINIMUM	414	Aug 20	361	Sep 24	267_	Aug 6 1931
MAXIMUM PEAK FLOW			1600	May 16	2820 ^a h	May 18 1996
MAXIMUM PEAK STAGE			2.96	5 May 16	10.00	Jan 8 1937
ANNUAL RUNOFF (AC-FT)	386700		321800		362500	
10 PERCENT EXCEEDS	781		533		750	
50 PERCENT EXCEEDS	471		423		434	
90 PERCENT EXCEEDS	424		369		339	

^{*} For period of operation. a Gage height, 3.78 ft. b About, backwater from ice.

06043500 GALLATIN RIVER NEAR GALLATIN GATEWAY, MT

LOCATION.--Lat $45^{\circ}29^{\circ}51^{\circ}$, long $111^{\circ}16^{\circ}11^{\circ}$ in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.7, T.4 S., R.4 E., Gallatin County, Hydrologic Unit 10020008, on left bank 0.3 mi downstream from Spanish Creek, 7.3 mi south of Gallatin Gateway and at river mile 47.7.

DRAINAGE AREA. -- 825 mi².

PERIOD OF RECORD.--August 1889 to September 1894, June 1930 to September 1969, annual maximum, water years 1970-71, October 1971 to September 1981, October 1984 to current year. Monthly discharge only for some periods, published in WSP 1309. Published as West Gallatin River near Bozeman 1889-94.

REVISED RECORDS.--WSP 1389: 1892(M), 1893-94. WSP 1559: Drainage area. WDR MT-85-1 (M).

GAGE.--Water-stage recorder. Datum of gage is 5,167.67 ft above sea level. Prior to Oct. 20, 1932, nonrecording gages at several different sites and datums within 0.8 mi of present site.

REMARKS.--Records good. Diversions for irrigation of about 1,400 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Station operated and record provided by the Montana District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP Q1Q ---TOTAL MEAN MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1889 - 2001, BY WATER YEAR (WY)* MEAN MAX (WY) MIN (WY)

06043500 GALLATIN RIVER NEAR GALLATIN GATEWAY, MT--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WA	TER YEAR	WATER YEARS	3 1889 - 2001*
ANNUAL TOTAL	261845		211117			
ANNUAL MEAN	715		578		816	
HIGHEST ANNUAL MEAN					1184	1976
LOWEST ANNUAL MEAN					408	1934
HIGHEST DAILY MEAN	3690	May 28	3480	May 15	8970	Jun 17 1974
LOWEST DAILY MEAN	253	Dec 12	253	Dec 12	174	Nov 21 1931
ANNUAL SEVEN-DAY MINIMUM	282	Dec 16	269	Feb 25	182	Jan 18 1931
MAXIMUM PEAK FLOW			3740	May 15	9270 ^a	Jun 27 1971
MAXIMUM PEAK STAGE			4.26	May 15	7.38	Jun 17 1974
ANNUAL RUNOFF (AC-FT)	519400		418800		591400	
10 PERCENT EXCEEDS	1730		1470		2040	
50 PERCENT EXCEEDS	414		338		430	
90 PERCENT EXCEEDS	302		280		270	

^{*} For period of operation. a From rating curve extended above 5,500 $\rm ft^3/s\emph{;}$ gage height, 6.49 ft.

06043500 GALLATIN RIVER NEAR GALLATIN GATEWAY, MT--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May to September 2001.

PERIOD OF DAILY RECORD.--EMPERATURE: (Seasonal records) May to September 2001.

INSTRUMENTATION. -- Temperature probe installed May 3, 2001.

REMARKS.--Unpublished records of instantaneous specific conductance and temperature data are available in files of the Montana District office.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: During period of seasonal operation, maximum, 18.5°C, July 26, and August 4-6, 8, 2001; minimum, 3.0°C, April 13, 2001.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: During period of operation, maximum, 18.5°C, July 26 and August 4-6, 8; minimum, 3.0°C, April 13.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	F	FEBRUARY			MARCH			APRIL			MAY	
1												
2												
3												
4										10.0	4.0	7.0
5										9.0	5.5	7.5
6										8.5	3.5	6.5
7										9.5	3.5	7.0
8										9.5	6.0	8.0
9										8.5	6.0	7.5
10										8.5	5.0	6.5
11										10.0	4.5	7.5
12										11.0	5.5	8.5
13										11.0	6.0	8.5
14										9.5	5.5	7.5
15										8.0	5.0	6.5
16										8.0	5.0	6.0
17										9.0	4.0	6.5
18										8.5	6.5	7.5
19										9.0	5.0	7.0
20										8.5	5.0	6.5
21										9.0	3.0	6.0
22										11.5	5.5	8.5
23										12.0	7.0	9.5
24										12.0	7.0	9.5
25										10.5	7.5	9.0
26										11.0	7.5	9.5
27										9.5	7.0	8.5
28										9.5	7.0	8.5
29										11.0	7.0	9.0
30										10.0	6.0	8.0
31										12.0	6.5	9.5
MONTH										12.0	3.0	7.0

06043500 GALLATIN RIVER NEAR GALLATIN GATEWAY, MT--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	lR.
1 2 3 4 5	13.5 12.5 10.0 8.5 9.5	7.5 10.0 6.0 5.0 5.0	10.5 11.0 8.0 6.5 7.5	18.0 18.0 18.0 16.0 14.5	11.5 12.5 12.0 12.5 11.5	15.0 15.0 15.0 13.5 13.0	16.0 17.0 16.0 18.5 18.5	10.5 11.5 12.0 13.0 13.0	13.5 14.5 14.5 15.5 16.0	16.0 16.0 15.5 14.5 15.5	12.0 11.5 11.5 12.0 12.5	14.0 14.0 13.5 13.5 13.5
6 7 8 9 10	11.5 13.0 13.5 15.0 14.0	7.0 7.5 8.5 9.5 9.5	9.0 10.0 11.0 12.0 11.5	17.0 17.5 17.0 15.5 15.0	12.5 12.5 12.5 13.0 12.5	14.5 15.0 15.0 14.5 14.0	18.5 17.0 18.5 17.0 17.5	13.0 13.5 14.0 13.0 12.5	15.5 15.5 16.0 15.0	14.0 10.0 11.0 11.5 12.5	10.0 7.5 6.5 7.0 8.0	11.5 8.5 8.5 9.5 10.5
11 12 13 14 15	11.5 10.0 7.0 9.5 11.0	9.0 7.0 3.0 4.0 6.0	10.5 9.0 4.0 6.5 8.5	16.5 17.0 16.5 16.0	12.0 12.0 11.5 11.5	14.0 14.5 14.0 14.0	16.5 17.0 15.5 16.0	12.5 12.0 13.0 12.5 12.0	15.0 14.5 14.0 14.5 14.0	13.0 11.0 14.0 13.0 13.0	9.0 9.5 10.5 11.5 9.0	11.0 10.5 12.0 12.0 11.0
16 17 18 19 20	12.0 12.0 10.5 12.0 13.0	6.0 8.0 7.0 7.0	9.0 10.0 9.0 9.5 10.0	15.5 14.5 14.0 15.5 17.0	10.5 11.5 10.5 10.5 12.0	13.5 13.0 12.5 13.0 14.5	16.5 16.5 16.0 16.0	11.5 11.5 12.5 11.5 11.5	14.0 14.0 14.5 14.0 13.5	12.5 11.5 11.5 11.0 10.5	9.0 8.0 8.0 9.0 7.5	10.5 10.0 9.5 10.0 9.0
21 22 23 24 25	14.5 15.5 13.0 15.5 14.0	8.0 9.5 10.0 9.5 10.0	11.5 12.5 11.5 12.0 12.0	17.5 16.5 17.0 17.0	12.0 12.5 12.0 11.0 12.5	14.5 14.5 14.5 14.5	15.5 15.5 15.5 15.5 16.0	11.5 11.5 12.0 11.5 11.5	13.5 13.5 14.0 13.5 14.0	10.5 11.5 12.0 12.0	7.5 8.5 8.5 8.5 9.0	9.5 10.0 10.0 10.5 10.5
26 27 28 29 30 31	12.0 16.0 16.5 17.0 16.5	9.5 10.0 11.5 11.0 11.5	11.0 12.5 14.0 14.0	18.5 18.0 17.5 15.5 15.5	13.0 13.0 12.5 11.5 12.0	15.5 15.5 15.0 14.0 13.5 13.5	16.5 14.5 15.5 16.0 16.0	12.0 11.5 11.0 12.0 11.5 12.5	14.5 13.0 13.5 14.0 14.0	13.0 12.5 11.5 13.0 11.5	10.0 9.0 9.5 10.0 8.5	11.5 10.5 10.5 11.0 10.0
MONTH	17.0	3.0	10.5	18.5	10.5	14.0	18.5	10.5	14.5	16.0	6.5	11.0
YEAR	18.5	3.0	11.5									

06186500 YELLOWSTONE RIVER AT YELLOWSTONE LAKE OUTLET, YELLOWSTONE NATIONAL PARK

 $\label{location.--Lat 44°34'03", long 110°22'48", Yellowstone National Park, Hydrologic Unit 10070001, on left bank 450 ft downstream from Fishing Bridge, 0.3mi downstream from outlet of Yellowstone Lake, and at river mile 616.4.$

DRAINAGE AREA. -- 1,006 mi².

PERIOD OF RECORD.--December 1922 to September 1982, October 1983 to September 1986, October 1988 to current year. Prior to October 1926, gage heights only. Monthly discharge only for winter periods in water years 1927-30, 1932-33, 1935-38, 1940, 1942-46 published in WSP 1309; figures of daily discharge for these months published in WSP 646, 666, 686, 701, 731, 746, 786, 806, 826, 856, 896, 956, 976, 1006, 1036, and 1056, have been found to be unreliable and should not be used.

REVISED RECORDS. -- WSP 1309: See PERIOD OF RECORD. WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 7,729.58 ft above sea level. Prior to Oct. 2, 1928, nonrecording gage at site 450 ft upstream at datum 1.07 ft higher.

REMARKS.--Records good. No artificial regulation. U. S. Geological Survey satellite telemeter at station. Station operated and record provided by the Montana District.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	621 621 614 601 590	501 497 489 483 474	e320 e320 e310 e310 e300	e250 e250 e250 e250 e250	e250 e250 e250 e250 e250	e280 e280 e280 e290 e290	406 409 409 409 411	534 558 573 592 614	2300 2350 2400 2450 2450	2400 2340 2310 2270 2250	1370 1350 1320 1300 1280	743 725 711 689 679
6 7 8 9 10	582 573 568 560 553	469 463 461 451 442	e300 e300 e290 e290 e280	e250 e250 e250 e250 e250	e250 e250 e250 e250 e250	e290 e300 e300 e300 e310	418 417 425 427 423	643 666 696 736 776	2450 2430 2410 2410 2420	2220 2190 2150 2130 2130	1250 1230 1210 1180 1170	681 652 638 642 623
11 12 13 14 15	561 575 574 568 563	e430 e420 e410 e410	e280 e270 e270 e260 e260	e250 e250 e250 e250 e250	e250 e250 e250 e250 e250	e310 e320 e320 e330 e330	423 424 427 427 427	811 860 924 976 882	2430 2440 2510 2530 2510	2120 2110 2080 2070 2020	1140 1120 1100 1090 1070	611 595 595 604 600
16 17 18 19 20	557 550 550 545 542	e400 e390 e390 e380 e380	e260 e260 e250 e250 e250	e250 e250 e250 e250 e250	e260 e260 e260 e270 e270	e330 e340 e340 e350 e350	427 427 421 422 426	1330 1440 1520 1590 1630	2510 2510 2500 2500 2490	1990 1960 1930 1890 1830	1060 1040 1020 991 964	591 587 589 578 570
21 22 23 24 25	535 523 518 523 526	e370 e370 e360 e360 e350	e250 e250 e250 e250 e250	e250 e250 e250 e250 e250	e270 e280 e280 e280 e280	e360 e370 e380 e390 397	443 444 446 443 443	1680 1710 1730 1780 1840	2490 2480 2480 2480 2500	1790 1760 1710 1670 1640	941 912 892 875 857	559 549 543 540 532
26 27 28 29 30 31	521 517 512 508 507 508	e350 e340 e340 e330 e330	e250 e250 e250 e250 e250 e250	e250 e250 e250 e250 e250 e250	e280 e280 e280 	403 406 403 403 406 403	443 447 453 476 500	1920 2000 2090 2180 2220 2260	2490 2480 2450 2440 2410	1600 1560 1530 1500 1440 1420	828 809 796 784 767 750	527 519 515 505 503
TOTAL MEAN MAX MIN AC-FT	17166 554 621 507 34050	12240 408 501 330 24280	8380 270 320 250 16620	7750 250 250 250 250 15370	7300 261 280 250 14480	10561 341 406 280 20950	12943 431 500 406 25670	39761 1283 2260 534 78870	73700 2457 2530 2300 146200	60010 1936 2400 1420 119000	32466 1047 1370 750 64400	17995 600 743 503 35690
STATIS	TICS OF I	MONTHLY M	MEAN DATA	FOR WATER	YEARS 19	27 - 2001,	, BY WATER	YEAR (W	Y)*			
MEAN MAX (WY) MIN (WY)	806 1259 1973 327 1989	609 984 1951 276 1989	477 775 1951 246 1932	400 699 1998 168 1989	389 637 1998 122 1989	447 717 1962 130 1935	544 801 1952 175 1937	1164 2214 1997 605 1953	3695 8574 1997 1707 1934	4055 7160 1982 1272 1934	2222 4031 1982 812 1934	1215 1954 1982 538 1934

06186500 YELLOWSTONE RIVER AT YELLOWSTONE LAKE OUTLET, YELLOWSTONE NATIONAL PARK--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WA	TER YEAR	WATER YEAR	S 1927 - 2001*
ANNUAL TOTAL	419879		300272			
ANNUAL MEAN	1147		823		1340	
HIGHEST ANNUAL MEAN					2253	1997
LOWEST ANNUAL MEAN					682	1934
HIGHEST DAILY MEAN	4250	Jun 13	2530	Jun 14	9930	Jun 19 1997
LOWEST DAILY MEAN	250	Dec 18	250	Dec 18	100	Feb 18 1993
ANNUAL SEVEN-DAY MINIMUM	250	Dec 18	250	Dec 18	113	Feb 11 1989
MAXIMUM PEAK FLOW			2610	Jun 17	9950	Jun 18 1997
MAXIMUM PEAK STAGE			4.96	Jun 17	8.90	Jun 18 1997
ANNUAL RUNOFF (AC-FT)	832800		595600		971100	
10 PERCENT EXCEEDS	3250		2230		3490	
50 PERCENT EXCEEDS	530		505		680	
90 PERCENT EXCEEDS	350		250		339	

During periods of operation (October 1926 to September 1982, October 1983 to September 1986, October 1988 to current year). Estimated.

06187950 SODA BUTTE CREEK NEAR LAMAR RANGER STATION, YELLOWSTONE NATIONAL PARK

LOCATION.--Lat 44°52'06", long 110°09'53", Yellowstone National Park, Hydrologic Unit 10070001, on left bank, 4 mi southeast of Lamar Ranger Station, and at river mile 1.5.

DRAINAGE AREA.--99.0 mi².

PERIOD OF RECORD.--October 1988 to current year.

a--Gage height, 5.61 ft. b--May have been less during period of ice effect. e--Estimated.

GAGE.--Water-stage recorder. Elevation of gage is 6,630 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several observations of water temperature and specific conductance were made during the year. U. S. Geological Survey satellite telemeter at station.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	89 82 61 55 50	40 38 32 34 37	e27 e27 e27 e27 e27	e27 e26 27 28 e27	21 21 22 22 23	e20 e20 e20 e19 19	26 27 25 26 26	125 90 82 89 119	489 497 454 370 313	211 199 187 177 165	69 64 63 62 61	40 39 38 38
6 7 8 9 10	45 44 45 45	34 30 e31 e32 e30	e27 27 28 29 e28	e27 e26 e25 e26 26	23 e21 e19 e21 e22	e19 e18 e17 18 20	27 28 28 25 26	125 120 162 206 197	292 269 278 317 343	164 152 145 139 170	57 56 55 54 53	42 43 42 40 38
11 12 13 14 15	48 49 49 49	e31 e32 e31 e30 29	e25 e26 26 26 e26	e26 26 27 27 e26	e22 e22 e21 e20 e21	18 17 17 17 16	25 26 25 26 e26	212 306 441 563 693	332 373 332 307 336	157 146 130 e160 e180	54 53 53 52 51	37 36 37 36 36
16 17 18 19 20	47 48 48 46 44	e29 29 28 e28 e28	e25 26 e26 e26 e25	e25 e24 e25 25 e24	22 22 e22 23 23	e15 e16 18 17 19	28 31 38 42 37	606 518 477 464 465	364 380 392 348 333	e150 e120 91 95 95	57 55 50 48 46	35 35 35 36 35
21 22 23 24 25	44 43 42 42 45	e28 28 e27 e26 e26	e25 e27 27 28 e27	e24 e24 e24 e24 e25	23 22 e22 22 23	19 19 20 22 23	35 35 34 35 48	358 352 420 507 558	334 359 362 352 325	93 91 88 86 83	46 46 44 43 42	34 34 33 33 33
26 27 28 29 30 31	43 42 42 41 41	26 28 e27 e27 28	e27 28 e28 e28 28 28	e23 e21 e20 e21 e21 e21	e22 e20 e19 	24 24 26 27 26 24	88 126 148 173 134	632 594 609 729 554 484	291 275 260 241 225	80 77 75 72 69 77	41 42 41 41 40	33 32 32 32 31
TOTAL MEAN MAX MIN AC-FT	1503 48.5 89 41 2980	904 30.1 40 26 1790	832 26.8 29 25 1650	768 24.8 28 20 1520	606 21.6 23 19 1200 YEARS 1989	614 19.8 27 15 1220	1424 47.5 173 25 2820	11857 382 729 82 23520	10143 338 497 225 20120	3924 127 211 69 7780	1580 51.0 69 40 3130	1083 36.1 43 31 2150
MEAN MAX (WY) MIN (WY)	45.1 68.8 1998 27.8 1989	32.4 40.3 1997 21.4 1995	25.8 31.2 1996 16.0 1989	25.9 33.3 1997 16.7 1989	24.1 32.0 2000 16.9 1995	24.1 32.0 1997 19.8 2001	64.2 127 1990 32.3 1993	412 580 1993 217 1995	694 1251 1996 338 2001	296 447 1998 106 1994	97.4 162 1997 51.0 2001	58.2 92.0 1997 36.1 2001
SUMMARY	STATISTI	CS	FOR	2000 CALE	NDAR YEAR	F	OR 2001 W	ATER YEAR		WATER YEARS	1989	- 2001
LOWEST A HIGHEST LOWEST I ANNUAL S MAXIMUM MAXIMUM INSTANTA ANNUAL I 10 PERCE	MEAN ANNUAL M ANNUAL ME DAILY ME DAILY ME	EAN EAN AN MINIMUM OW AGE OW FLOW AC-FT) EDS		50841 139 908 20 22 100800 461 44	Jun 6 Mar 12 Mar 10		35065 96.1 729 15 17 968 6.5 69550 332 35	May 29 Mar 16 Mar 11 May 29		150 204 96.1 2070 12 13 a2450 6.66 b11 108800 489	Feb Feb Jun Jun	1996 2001 9 1996 4 1989 2 1989 2 1989 7 2000 1 1989

06188000 LAMAR RIVER NEAR TOWER FALLS RANGER STATION, YELLOWSTONE NATIONAL PARK

LOCATION.--Lat 44°55'40", long 110°23'35", Yellowstone National Park, Hydrologic Unit 10070001, on left bank 0.5 mi north of the Cooke City highway, 1.6 mi northeast of Tower Falls Ranger Station, 2.7 mi downstream from Slough Creek, and at river mile 0.5.

DRAINAGE AREA. -- 660 mi².

PERIOD OF RECORD.--September 1922, April 1923 to September 1969, May 1985 to September 1986 (seasonal records only), October 1988 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,000 ft above sea level, from topographic map. Prior to Sept. 16, 1925, nonrecording gage and Sept. 16, 1925 to July 29, 1927, water-stage recorder at same site at datum 1.00 ft higher. July 29, 1927 to Sept. 30, 1969, water-stage recorder at same site and datum. May 1985 to September 1986, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. No regulation or diversion upstream of station. Station operated and record provided by the Montana District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e120 e160 e120 e90 e90 e100 e95 e120 e90 e100 e130 e115 e95 e110 e90 e115 e95 e95 e120 e90 e130 e115 e90 e130 e115 e85 e80 e120 e120 e85 e70 e120 e125 e120 e120 e90 e80 e120 e115 e105 e100 e85 e130 e110 e90 e9n 12 e95 e140 e110 e100 e95 e90 e150 e110 e100 e95 e85 e160 e110 e110 e140 e80 e95 e115 e105 e90 e85 e130 e115 e95 e85 e95 e120 e115 e105 e75 e100 e150 e115 e100 e85 e105 e180 e100 e220 e115 e85 e110 e250 e115 e85 e95 e105 e120 e90 e85 e110 e230 e100 e85 e210 e125 e105 e125 e105 e85 e100 e200 e125 e105 e85 e105 e200 e125 e100 e90 e105 e200 e100 e100 e190 e130 e85 e130 e100 e80 e190 e95 e120 e95 e75 e90 e120 e90 e80 e125 e100 e85 e100 e85 ---TOTAL MEAN 87.9 93.2 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1923 - 2001, BY WATER YEAR (WY)* MEAN MAX (WY) 75.5 71.8 70.0 67.9 MIN 88.1 (WY)

06188000 LAMAR RIVER NEAR TOWER FALLS RANGER STATION, YELLOWSTONE NATIONAL PARK--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WA	ATER YEAR	WATER YEA	RS 1923 - 2001*
ANNUAL TOTAL	335520		218811			
ANNUAL MEAN	917		599		867	
HIGHEST ANNUAL MEAN					1531	1997
LOWEST ANNUAL MEAN					525	1934
HIGHEST DAILY MEAN	8210	May 29	6850	May 15	15600	Jun 10 1996
LOWEST DAILY MEAN	80	Jan 29	70	Feb 8	45	Mar 23 1964
ANNUAL SEVEN-DAY MINIMUM	87	Jan 25	82	Jan 26	57	Mar 5 1964
MAXIMUM PEAK FLOW			7690	May 15	19500	Jun 10 1996
MAXIMUM PEAK STAGE			7.39	May 15	12.15	Jun 10 1996
ANNUAL RUNOFF (AC-FT)	665500		434000		628300	
10 PERCENT EXCEEDS	3330		1800		2980	
50 PERCENT EXCEEDS	173		157		189	
90 PERCENT EXCEEDS	95		90		90	

For period of operation. Estimated.

06191000 GARDNER RIVER NEAR MAMMOTH, YELLOWSTONE NATIONAL PARK

LOCATION.--Lat 44°59'33", long 110°41'26", Yellowstone National Park, Hydrologic Unit 10070001, on left bank at Wyoming-Montana state line, 400 ft upstream from highway bridge, 0.5 mi downstream from Hot River (formerly Boiling River), 1.5 mi north of Mammoth, and at river mile 2.9.

DRAINAGE AREA. -- 202 mi².

PERIOD OF RECORD.--October 1938 to September 1972, April 1984 to current year. Prior to October 1959, published as Gardiner River near Mammoth.

REVISED RECORDS .-- WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 5,623.97 ft above sea level (levels by National Park Service).

REMARKS.--Records good. No regulation or diversion upstream of station. Station operated and record provided by the Montana District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY NOV DEC JAN FEB MAY AUG SEP 13 138 256 106 133 107 107 97 125 543 227 ___ TOTAL 97.2 93.7 MEAN 96.9 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 - 2001, BY WATER YEAR (WY)* 175 ME AN 97.6 93.5 94.1 MAX (WY) MTN 95.9 85.5 79.3 77.6 75.0 75.4 84.1 93.4 (WY)

06191000 GARDNER RIVER NEAR MAMMOTH, YELLOWSTONE NATIONAL PARK--Continued

SUMMARY STATISTICS	FOR 2000 CALEND	AR YEAR	FOR 2001 WATE	ER YEAR	WATER YEARS	1939 - 2001*
ANNUAL TOTAL	70021		53056			
ANNUAL MEAN	191		145		217	
HIGHEST ANNUAL MEAN					324	1997
LOWEST ANNUAL MEAN					138	1988
HIGHEST DAILY MEAN	828	May 29	804	May 16	1830	May 29 1956
LOWEST DAILY MEAN	90	Dec 29	77	Jan 17	53	Dec 15 1988
ANNUAL SEVEN-DAY MINIMUM	100	Dec 10	90	Sep 24	61_	Feb 1 1989
MAXIMUM PEAK FLOW			838	May 16	2080 ^a	Jun 4 1956
MAXIMUM PEAK STAGE			3.61	May 16	5.03	Jun 2 1997
ANNUAL RUNOFF (AC-FT)	138900		105200		157500	
10 PERCENT EXCEEDS	422		256		520	
50 PERCENT EXCEEDS	122		107		122	
90 PERCENT EXCEEDS	106		94		88	

^{*} For period of operation. a Gage height, 4.46 ft.

06191500 YELLOWSTONE RIVER AT CORWIN SPRINGS, MT (National Water-Quality Assessment Program)

LOCATION.--Lat $45^{\circ}06^{\circ}43^{\circ}$, long $110^{\circ}47^{\circ}37^{\circ}$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec.30, T.8 S., R.8 E., Park County, Hydrologic Unit 10070002, on left bank 20 ft downstream from county road bridge at Corwin Springs, 1.3 mi upstream from Mol Heron Creek, 7 mi northwest of Gardiner, and at river mile 549.7.

DRAINAGE AREA. -- 2,623 mi².

PERIOD OF RECORD.--August 1889 to November 1893 (published as "at Horr"), September 1910 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.--WSP 1309: 1912. WSP 1509: 1889-94, 1911, 1913, 1916-18, 1920-21, 1925, 1927. WSP 1559: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 5,079.09 ft above sea level. Aug. 12, 1889, to Nov. 4, 1893, nonrecording gages at site 2 mi upstream at different datums. Sept. 2, 1910, to Apr. 19, 1935, nonrecording gages on bridge at present datum.

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are fair. Natural storage in Yellowstone Lake. Diversions for irrigation of about 960 acres of which 40 acres lies downstream from station. U.S. Geological Survey satellite telemeter at station. Station operated and record provided by the Montana District. Water-quality data are published in the special studies section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCHA	RGE, CUB.	IC FEET P.	ER SECOND, DAII	Y MEAN VA		:R 2000 T) SEPTEMBI	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1280	1100	879	722	650	737	904	3840	6750	3730	1980	1220
2	1690	1060	807	702	640	755	928	2990	6900	3620	1910	1200
3	1390	987	810	708	635	774	917	2570	6600	3470	1860	1180
4	1280	988	827	709	634	770	912	2550	6080	3360	1860	1160
5	1220	1050	829	711	646	787	915	3250	5500	3290	1840	1150
6	1180	1010	794	704	643	790	915	3720	5220	3270	1800	1190
7	1140	901	818	672	648	794	930	3460	4980	3200	1750	1220
8	1120	894	831	e620	e570	800	953	4060	4880	3120	1730	1190
9	1120	978	843	e650	e600	804	920	5800	5050	3120	1700	1160
10	1110	899	e800	738	697	827	911	5480	5160	3420	1700	1140
11	1140	853	e600	699	656	824	889	5400	5100	3350	1670	1100
12	1200	940	e500	700	645	817	903	6580	5240	3210	1660	1070
13	1220	889	e550	702	642	814	911	8820	5400	3010	1620	1070
14	1210	862	e650	702	617	839	913	10300	5180	2920	1630	1080
15	1190	924	e650	692	631	791	874	12400	5510	3090	1600	1090
16	1190	884	e550	670	635	777	896	12400	6040	3060	1580	1070
17	1180	887	e600	e620	630	807	921	9730	6290	2860	1570	1060
18	1190	853	683	681	633	834	1100	8660	6250	2750	1520	1050
19	1210	886	676	706	664	837	1420	7780	5740	2680	1480	1040
20	1190	831	e650	702	705	857	1440	8220	5350	2590	1450	1030
21	1170	833	e650	658	741	906	1310	6310	5140	2500	1430	1010
22	1160	848	740	675	758	909	1230	6010	5060	2440	1410	993
23	1100	828	729	665	755	935	1200	6730	5000	2400	1390	975
24	1100	819	729	656	779	967	1200	7700	4860	2330	1360	958
25	1140	821	728	675	778	994	1380	8210	4730	2280	1340	948
26 27 28 29 30 31	1160 1150 1140 1120 1130 1150	853 869 824 742 848	704 712 718 678 711 711	674 636 613 637 661 658	773 758 728 	1010 983 934 942 939 898	1980 2820 3500 4560 3930	8650 8290 8280 8720 7690 6880	4480 4300 4160 4010 3860	2230 2170 2110 2070 2030 1990	1320 1280 1270 1260 1240 1220	936 928 917 917 910
TOTAL	36970	26961	22157	21018	18891	26452	42582	211480	158820	87670	48430	31962
MEAN	1193	899	715	678	675	853	1419	6822	5294	2828	1562	1065
MAX	1690	1100	879	738	779	1010	4560	12400	6900	3730	1980	1220
MIN	1100	742	500	613	570	737	874	2550	3860	1990	1220	910
AC-FT	73330	53480	43950	41690	37470	52470	84460	419500	315000	173900	96060	63400
STATIST	rics of M	ONTHLY ME	AN DATA I	FOR WATER	YEARS 188	39 - 2001,	BY WATER	YEAR (W	Y)*			
MEAN	1528	1193	967	853	840	922	1548	6092	11480	6824	3194	1955
MAX	2429	2058	1424	1361	1340	1376	3542	13590	22540	13260	5688	3207
(WY)	1973	1928	1984	1997	1997	1997	1990	1928	1997	1982	1982	1968
MIN	781	702	551	448	411	412	576	2575	4245	2025	1319	938
(WY)	1989	1989	1937	1937	1937	1937	1937	1975	1934	1919	1919	1988

06191500 YELLOWSTONE RIVER AT CORWIN SPRINGS, MT--Continued (National Water-Quality Assessment Program)

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WA	TER YEAR	WATER YEARS	3 1889 - 2001*
ANNUAL TOTAL	1039604		733393			
ANNUAL MEAN	2840		2009		3125	
HIGHEST ANNUAL MEAN					5158	1997
LOWEST ANNUAL MEAN					1903	1934
HIGHEST DAILY MEAN	15700	May 29	12400	May 15	32000	Jun 14 1918
LOWEST DAILY MEAN	500	Dec 12	500	Dec 12	380	Feb 5 1989
ANNUAL SEVEN-DAY MINIMUM	586	Dec 11	586	Dec 11	393	Feb 4 1937
MAXIMUM PEAK FLOW			13100	May 16	32200 ^a	Jun 10 1996
MAXIMUM PEAK STAGE			6.92	May 16	11.50	Jun 14 1918
ANNUAL RUNOFF (AC-FT)	2062000		1455000		2264000	
10 PERCENT EXCEEDS	8450		5230		8490	
50 PERCENT EXCEEDS	1190		1070		1400	
90 PERCENT EXCEEDS	832		663		760	

For period of operation. Gage height, 10.92 ft. Estimated.

06205450 CLARKS FORK YELLOWSTONE RIVER NEAR MONTANA-WYOMING STATE LINE, NEAR COOKE CITY, MT

LOCATION.--Lat 44°57'28", long 109°48'21", Park County, WY, Hydrologic Unit 10070006, Shoshone National Forest, at bridge on U.S. Highway 212, 300 ft upstream from Pilot Creek, 0.9 mi downstream from Rock Creek, 1.8 mi northwest of Crazy Creek Campground, and 7.5 mi southeast of Cooke City, MT.

PERIOD OF RECORD.--August 1975 to October 1977, November 1990 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
DEC 20	0930	12	590	11.4	101	8.7	110	-12.0	.00	62	20.1	2.76	.38
MAR 01	0845	7.0	588	8.4	75	7.9	126	.00	.00	65	21.0	3.03	.44
MAY 16	1330	976	587	10.7	102	7.6	38	12.0	2.5	18	5.58	1.05	.35
JUL 31	0825	45				7.7	80	9.5	12.0	39	12.2	2.09	.34
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
DEC 20 MAR	.1	1.6	55	. 4	<.2	5.4	5.2	.09	2.25	69	<.041	.106	E.004
01	.1	1.6	63	. 4	<.2	5.8	5.7	.10	1.44	76	<.041	.108	<.006
MAY 16	.1	.8	18	. 4	<.2	4.0	2.6	.04	68.0	26	<.040	.064	<.006
JUL 31	.1	1.4	37	.2	<.2	3.8	4.8	.06	5.75	47	<.040	E.037	<.006
DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
DEC 20 MAR	<.018	4	.08	.2	18.7	<.06	<13	<.04	<.8	.03	.6	<10	<.08
01 MAY	<.018	4	<.05	E.1	18.9	<.06	<13	.05	<.8	.04	.5	M	E.05
16	<.020	29	E.03	. 2	8.2	<.06	<13	.49	<.8	.04	3.5	30	.11
31	<.020	9	<.05	.2	16.4	<.06	E6	<.04	<.8	.02	1.1	М	<.08
	DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	
	DEC 20 MAR	<3.9	1.0	<.23	.2	.10	<.3	<1.0	49.9	<8.0	2	.13	
	01 MAY	<3.9	1.1	<.23	E.2	<.06	<.3	<1.0	53.0	<8.0	5	.14	
	16 JUL	<4.0	3.0	<.01	E.1	.43	E.2	<1.0	22.0	<8.0	7	.07	
	31	<4.0	1.3	<.01	E.2	<.06	<.3	<1.0	42.4	<8.0	2	.09	

 $[\]tt E$ -- <code>Estimated value. M</code> -- <code>Presence verified, not quantified. </code>

06207500 CLARKS FORK YELLOWSTONE RIVER NEAR BELFRY, MT

LOCATION.--Lat $45^{\circ}00^{\circ}37^{\circ}$, long $109^{\circ}03^{\circ}53^{\circ}$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ sec.32, T.9 S., R.22 E., Carbon County, Hydrologic Unit 10070006, on left bank 0.2 mi upstream from county road bridge and Big Sand Coulee, 0.8 mi north of Wyoming-Montana State line, 9.5 mi southwest of Belfry, and at river mile 71.2.

DRAINAGE AREA.--1,154 mi².

PERIOD OF RECORD.--July 1921 to current year. Monthly discharge only for some periods, published in WSP 1309. Published as Clarks Fork at Chance prior to October 1956 and as Clarks Fork Yellowstone River at Chance October 1956 to September 1968.

REVISED RECORDS. -- WSP 1309: 1922 (M). WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 3,986.24 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Nov. 15, 1934, nonrecording gage, and Nov. 15, 1934, to July 26, 1951, water-stage recorder at bridge 0.4 mi downstream of different datum. July 27, 1951 to Sept. 30, 1953, water-stage recorder at present site at datum 0.98 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 11,100 acres upstream from station. U. S. Geological Survey satellite telemeter at station. Station operated and record provided by the Montana District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY DEC OCT NOV JAN FEB MAY AUG SEP 217 e250 e200 13 187 253 279 193 2990 57 177 ---TOTAL MEAN 93.5 60.4 MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1921 - 2001, BY WATER YEAR (WY) MEAN MAX (WY) MTN 45.5 96.3 66.5 50.1 (WY)

06207500 CLARKS FORK YELLOWSTONE RIVER NEAR BELFRY, MT--Continued

SUMMARY STATISTICS	FOR 2000 CALEND	DAR YEAR	FOR 2001 WATE	R YEAR	WATER YEARS	3 1921 - 2001
ANNUAL TOTAL	290780		210408			
ANNUAL MEAN	794		576		936	
HIGHEST ANNUAL MEAN					1485	1997
LOWEST ANNUAL MEAN					547	1977
HIGHEST DAILY MEAN	5970	May 29	4630	May 16	12300	Jun 9 1981
LOWEST DAILY MEAN	67	Sep 17	53 ^a	Aug 30	33	Apr 26 1961
ANNUAL SEVEN-DAY MINIMUM	75	Sep 16	55	Aug 29	37	Oct 8 1988
MAXIMUM PEAK FLOW			4960	May 16	14800	Jun 9 1981
MAXIMUM PEAK STAGE			5.71	May 16	9.97	Jun 9 1981
ANNUAL RUNOFF (AC-FT)	576800		417300		678000	
10 PERCENT EXCEEDS	2560		1920		2870	
50 PERCENT EXCEEDS	264		210		300	
90 PERCENT EXCEEDS	149		66		170	

a Also occurred on Aug. 31. e Estimated.

06218500 WIND RIVER NEAR DUBOIS, WY

LOCATION.--Lat $43^{\circ}34^{\circ}43^{\circ}$, long $109^{\circ}45^{\circ}33^{\circ}$, in $NW^{1}/_{4}$ NE $^{1}/_{4}$ sec. 25. T.42N., R.108 W., Fremont County, Hydrologic Unit 10080001, on left bank 2.5 mi upstream from Warm Springs Creek and 6.7 mi northwest of Dubois.

DRAINAGE AREA.--232 mi².

PERIOD OF RECORD.--October 1945 to September 1992, May to September 2001.

REVISED RECORDS.--WSP 1709: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 7,188.71 ft above National Geodetic Vertical Datum of 1929 (levels by Bureau of Reclamation).

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 2,300 acres.

		DISCHAR	GE, CUBI	C FEET PE	R SECOND, DAILY	WATER YE Y MEAN VA		R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								e185	261	90	44	44
2								e140	288	86	49	42
3								111	229	80	52	39
4								104	190	73	55	38
5								120	157	69	55	41
6								150	136	66	55	56
7								132	113	e74	51	62
8								166			50	60
9								297	121 153	e82 e78	50 55	57
10								329	186	e94	65	52
11								347	188	e88	64	47
12								402	170	e86	58	47
13								488	144	e84	56	48
14								628	126	e88	59	55
15								780	126	e90	62	58
16								1080	116	e90	64	55
17								660	88	e80	63	52
18								490	89	72	58	52
19								375	84	71	55	51
20								389	81	68	53	47
20								309	01	00	33	47
21								244	94	61	51	46
22								207	112	57	52	46
23								244	149	52	50	46
24								315	142	48	50	45
25								363	161	47	47	44
26								391	141	47	44	44
27								416	126	47	44	44
28								391	122	46	44	42
29								306	111	45	43	41
30								288	97	42	43	42
31								260		43	42	
TOTAL								10798	4301	2144	1633	1443
MEAN								348	143	69.2	52.7	48.1
MAX								1080	288	94	65	62
MIN								104	81	42	42	38
AC-FT								21420	8530	4250	3240	2860
STATIST	TICS OF	MONTHLY MEA	N DATA F	OR WATER	YEARS 1946	5 - 2001,	BY WATER	YEAR (WY)			
MEAN	88.4	71.5	62.0	56.8	55.7	61.6	105	364	650	313	137	98.7
MAX	158	103	88.3	88.4	77.6	105	192	628	1181	796	290	171
(WY)	1987	1951	1951	1965	1972	1972	1946	1951	1972	1975	1951	1986
MIN	55.5	40.1	39.0	36.2	38.6	43.2	56.4	160	143	66.0	52.7	48.1
(WY)	1989	1961	1988	1989	1961	1950	1961	1953	2001	1977	2001	2001
(AA T)	1209	T 2 O T	1900	1202	1201	1930	1901	1933	Z001	1211	2001	Z001

06218500 WIND RIVER NEAR DUBOIS, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR	WATER YEARS 1946 - 2001
ANNUAL MEAN		174
HIGHEST ANNUAL MEAN		280 1951
LOWEST ANNUAL MEAN		90.0 1977
HIGHEST DAILY MEAN	1080 May 16	1870 Jun 8 1972
LOWEST DAILY MEAN	38 Sep 4	26 Feb 5 1982
ANNUAL SEVEN-DAY MINIMUM		28_ Feb 3 1982
MAXIMUM PEAK FLOW	1550 May 16	1940 ^a Jun 8 1972
MAXIMUM PEAK STAGE	5.14 May 16	5.66 Jun 2 1956
ANNUAL RUNOFF (AC-FT)		125900

a Gage height, 5.48 ft. e Estimated.

06220800 WIND RIVER ABOVE RED CREEK, NEAR DUBOIS, WY

LOCATION.--Lat $43^{\circ}26^{\circ}30^{\circ}$, long $109^{\circ}27^{\circ}29^{\circ}$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ $NW^{1}/_{4}$ sec.3, T.5 N., R.6 W., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, 400 ft downstream from East Fork Wind River and 12.1 mi southeast of Dubois.

DRAINAGE AREA.--1,073 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1990 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,400 ft above sea level, from topographic map.

REMARKS.--Records good. Diversions for irrigation of about 15,000 acres upstream from station. Data collection platform with satellite telemetry at station.

		DISC	HARGE, CUI	BIC FEET P	ER SECOND, DAIL	WATER YE Y MEAN VA		R 2000 TO) SEPTEMBI	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	307	263	171	183	e160	e150	205	679	1050	620	249	227
2	347	226	174	177	163	e155	208	526	1230	601	251	220
3	344	193	181	181	160	e160	191	419	951	551	249	207
4	312	199	183	183	161	167	191	353	737	535	251	203
5	302	e210	183	186	163	175	188	427	590	529	259	202
6	295	e200	178	187	157	174	192	606	505	530	271	218
7	284	e185	181	170	e155	175	193	496	498	548	284	235
8	270	173	e180	176	158	181	186	563	606	532	298	229
9	268	e185	187	172	147	186	164	949	767	547	306	219
10	274	e175	e190	186	e155	195	173	975	917	581	327	202
11	290	e160	e180	176	e160	192	184	961	883	563	315	192
12	294	e150	e170	179	161	179	188	1180	783	519	308	185
13	286	e154	e170	178	166	182	174	1590	637	495	297	186
14	290	163	e180	168	e160	181	178	1830	560	480	296	202
15	289	172	e190	e165	e160	e160	167	1960	545	487	304	209
16	279	162	e180	e160	164	e160	181	2420	538	505	300	195
17	276	156	188	e155	168	e170	198	1500	500	449	285	195
18	278	158	e190	169	166	185	308	1290	532	416	267	203
19	278	167	e195	168	166	194	422	1080	469	396	254	199
20	273	169	188	169	164	212	343	1250	479	380	247	191
21	269	171	e180	163	162	222	260	759	523	360	246	189
22	277	174	e185	172	164	216	219	656	617	340	246	187
23	270	171	e185	168	167	232	219	763	729	335	246	177
24	271	170	e185	164	170	259	221	1120	732	328	241	176
25	296	165	184	163	154	255	292	1250	881	313	235	172
26 27 28 29 30 31	285 275 269 265 262 268	166 173 168 158 172	178 188 189 178 180 180	161 e160 158 e150 e155 e155	e155 e155 e150 	242 223 204 207 205 182	496 714 701 769 704	1370 1450 1400 1100 1090 992	768 795 757 717 651	309 309 297 276 257 249	224 205 206 212 210 214	173 174 178 183 192
TOTAL	8843	5308	5651	5257	4491	5980	8829	33004	20947	13637	8103	5920
MEAN	285	177	182	170	160	193	294	1065	698	440	261	197
MAX	347	263	195	187	170	259	769	2420	1230	620	327	235
MIN	262	150	170	150	147	150	164	353	469	249	205	172
AC-FT	17540	10530	11210	10430	8910	11860	17510	65460	41550	27050	16070	11740
STATIST	TICS OF	MONTHLY N	MEAN DATA	FOR WATER	YEARS 199	1 - 2001,	, BY WATER	YEAR (WY	7)			
MEAN	316	241	196	186	182	206	324	1355	2558	1379	593	392
MAX	421	303	242	222	218	246	429	2121	4559	2473	1020	663
(WY)	1998	1999	1998	1998	1999	1999	1994	1997	1997	1995	1997	1997
MIN	244	171	146	122	144	178	213	621	698	386	261	197
(WY)	1993	1993	1993	1993	1993	1995	1995	1995	2001	1994	2001	2001

06220800 WIND RIVER ABOVE RED CREEK, NEAR DUBOIS, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1991 - 2001
ANNUAL TOTAL	183930		125970			
ANNUAL MEAN	503		345		662	
HIGHEST ANNUAL MEAN					982	1997
LOWEST ANNUAL MEAN					345	2001
HIGHEST DAILY MEAN	3020	May 29	2420	May 16	8770	Jun 9 1997
LOWEST DAILY MEAN	150	Nov 12	147	Feb 9	90	Jan 13 1993
ANNUAL SEVEN-DAY MINIMUM	159	Nov 12	154	Feb 25	96	Jan 9 1993
MAXIMUM PEAK FLOW			3170	May 16	11300	Jun 9 1997
MAXIMUM PEAK STAGE			6.20	May 16	9.97	Jun 9 1997
ANNUAL RUNOFF (AC-FT)	364800		249900	=	479400	
10 PERCENT EXCEEDS	1180		730		1720	
50 PERCENT EXCEEDS	268		209		280	
90 PERCENT EXCEEDS	180		162		170	

e Estimated.

06220800 WIND RIVER ABOVE RED CREEK, NEAR DUBOIS, WY

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1986-92, July to September 2001.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)
05	1000	614	602	9.6		8.4		13.0	14.5	48.8	11.4	3.4	45.1
JUL 16	1415	506	602	7.4	100	8.4	253	28.0	18.0				
AUG 08	1100	319	610	8.0	106	8.7	290	30.0	18.0	33.6	10.1	2.4	8.2
SEP 25	1430	166	603	9.8	121	8.5	412	24.0	14.0				
DATE	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
JUN 05	180	6.6	.5	10.5	94.2	347	.42	.010	.001	.012	.047	E8k	E14k
JUL 16							.22	.013	.002	.017	.064	50	87
AUG 08	124	3.5	.3	10.4	24.7	186	.19	.005	<.001	<.007	.010	28	28
SEP 25							.16	.022	.001	<.007	.011	E1k	<1
DATE	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUN 05	TOTAL (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)	WATER UNFLTRD TOTAL (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	TOTAL RECOV- ERABLE (UG/L AS CU)	TOTAL (MG/L AS CN)	TOTAL RECOV- ERABLE (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	NIUM, TOTAL (UG/L AS SE)	TOTAL RECOV- ERABLE (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)
JUN 05 JUL 16	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUN 05 JUL 16 AUG 08	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUN 05 JUL 16 AUG	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40	TOTAL RECOV- ERABLE (UG/L) (01092) <31
JUN 05 JUL 16 AUG 08 SEP	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 53.9 43.5 ACETO- CHLOR, WATER FLTRD REC (UG/L)	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 ALA- CHLOR, WATER, DISS, REC, (UG/L)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 ALPHA BHC DIS- SOLVED (UG/L)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0 ATRA- ZINE, WATER, DISS, REC (UG/L)	TOTAL (MG/L AS CN) (00720) <.01 BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 70 40 BUTYL- ATE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 43 6 CARBO- FURAN WATER FILTRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .14 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L)	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 E17 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L)
JUN 05 JUL 16 AUG 08 SEP 25 DATE JUN 05 JUL	TOTAL (UG/L AS AS) (01002) 2 E2 2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L)	TOTAL RECCV-ERABLE (UG/L AS BA) (01007) 53.9 43.5 ACETO-CHLOR, WATER FLTRD REC (UG/L) (49260) <.004	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 ALPHA BHC DIS- SOLVED (UG/L)	TOTAL RECOV-ERABLE (UG/L AS CU) (01042) <20.0 <20.0 ATRA-ZINE, WATER, DISS, REC (UG/L) (39632) .008	TOTAL (MG/L AS CN) (00720) <.01 BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 70 40 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) <.002	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 43 6 CARBO- FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .14 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L)	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 E17 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L)
JUN 05 JUL 16 AUG 08 SEP 25 DATE JUN 05 JUL 16 AUG	TOTAL (UG/L AS AS) (01002) 2 E2 2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 53.9 43.5 ACETO- CHLOR, WATER FLIRD REC (UG/L) (49260) <.004	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005	TOTAL RECOV- REABLE (UG/L AS CU) (01042) <20.0 <20.0 ATRA- ZINE, WATER, DISS, REC (UG/L) (39632) .008	TOTAL (MG/L AS CN) (00720) (00	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 70 40 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) <.002	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 43 6 CARBO- FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.020	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .14 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 <3.0 ZINE, WATER, DISS, REC (UG/L) (04041)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 E17 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
JUN 05 JUL 16 AUG 08 SEP 25 DATE JUN 05 JUL 16	TOTAL (UG/L) (UG/L) (AS AS) (01002) 2 E2 2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002	TOTAL RECCV-ERABLE (UG/L AS BA) (01007) 53.9 43.5 ACETO-CHLOR, WATER FLTRD REC (UG/L) (49260) <.004	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005	TOTAL RECOV-ERABLE (UG/L AS CU) (01042) <20.0 <20.0 ATRA-ZINE, WATER, DISS, REC (UG/L) (39632) .008	TOTAL (MG/L AS CN) (00720) <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 70 40 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) <.002	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 CAR- BARYL WATER FLIRD 0.7 U GF, REC (UG/L) (82680) E.010	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 43 6 CARBO- FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .14 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	TOTAL RECOV- REABLE (UG/L AS ZN) (01092) <31 E17 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.005

06220800 WIND RIVER ABOVE RED CREEK, NEAR DUBOIS, WY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260)
JUN 05 JUL	E.004	<.005	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	.03
16													
AUG 08 SEP	<.005	<.005	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	.03
25													
DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)
JUN 05 JUL	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	E.013	<.004	<.010
16													
AUG 08 SEP	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	<.015	<.004	<.010
25													
	DATE	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO-BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	
	JUN 05 JUL	<.011	<.023	<.011	E.015	<.034	<.017	<.005	<.002	<.009	17	28	
	16										38	52	
	AUG 08 SEP	<.011	<.023	<.011	<.016	<.034	<.017	<.005	<.002	<.009	3	2.6	
	25										12	5.4	

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

06221400 DINWOODY CREEK ABOVE LAKES, NEAR BURRIS, WY

LOCATION.--Lat 43°20'44", long 109°24'34", in SE¹/₄ SE¹/₄ sec.1, T.4 N., R.6 W., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, on left bank 0.5 mi upstream from Upper Dinwoody Lake, 7.0 mi west of Burris, and 17 mi southeast of Dubois.

DRAINAGE AREA. -- 88.2 mi².

PERIOD OF RECORD. -- October 1957 to September 1978, October 1988 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,500 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. No diversion upstream from station. U.S. Geological Survey data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUL AUG SEP 20 6.8 5.3 3.0 3.1 6.3 92 247 394 e266 213 1 54 7.2 7.0 50 5.0 3.0 3.1 270 228 14 6.3 69 415 e268 3 46 13 5.0 3.0 3.2 6.0 42 283 433 324 241 6.2 396 211 4 40 15 7.3 5.1 3.0 3.1 42 237 435 5 39 20 5.2 3.2 6.7 49 178 6 7.1 6.9 57 474 33 16 5.3 3.2 3.1 152 398 249 33 16 7.1 5.2 3.1 3.3 6.7 52 151 483 397 156 8 32 19 53 e3 0 4 0 6 6 59 191 456 367 112 7.0 5.9 31 4.8 94 16 e2.9 4.0 92 254 434 376 10 32 7.0 5.0 e2.7 3.6 6.0 119 298 456 85 11 37 e11 e6.8 4.9 e2.6 3.5 6.0 122 311 447 323 85 12 28 e11 e6.6 4.8 e2.6 3.8 6.4 153 292 425 290 94 13 4.4 212 246 110 34 e14 e6.4 4.8 e2.6 6.4 389 312 14 32 e17 6.3 2.7 4.6 6.6 273 178 358 276 133 15 31 e15 6.3 4.7 2.7 4.8 6.6 286 139 377 264 91 4.5 7.0 16 28 e13 6.4 2.7 5.0 300 119 375 274 82 29 30 5.9 5.7 4.5 2.7 5.1 4.9 7.6 125 133 275 274 78 76 17 e12 260 326 18 223 10 281 4.1 70 31 7.3 5.6 2.9 5.5 12 196 122 240 20 26 7.3 5.6 4 1 2.8 6.6 13 212 130 254 236 69 21 8.0 4.0 12 278 70 29 5.4 2.8 6.6 155 158 262 27 23 7.5 7.1 5.8 5.9 4.0 2.9 6.8 22 11 131 201 278 219 75 23 12 246 252 80 144 269 28 6.8 5.8 3.0 8.0 278 25 27 6.6 5.8 3.7 3.0 8.2 14 225 409 286 219 96 26 24 6.4 5.8 3.6 19 257 421 283 239 93 27 24 24 6.4 6.5 5.7 5.7 3.4 3.2 3.1 3.1 7.1 7.0 29 256 435 237 245 101 263 28 51 268 435 231 108 98 6.6 29 23 5.6 3.3 77 246 426 e279 232 6.7 30 23 5 5 3 4 ___ 6 3 80 243 400 e271 215 85 23 3.4 31 6.0 e269 199 TOTAL. 971 348 9 195 0 136 4 81 0 159 3 460 5 5265 7516 10888 8924 3589 31.3 11.6 6.29 2.89 5.14 251 120 MEAN 4.40 15.4 170 351 288 54 23 MAX 20 7.3 5.3 3.2 8.2 80 300 435 483 425 249 MIN 6.3 5.4 3.2 2.6 3.1 5.9 42 119 237 199 69 271 316 10440 21600 17700 7120 AC-FT 1930 161 14910 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1958 - 2001, BY WATER YEAR (WY) MEAN 42.3 72.5 20.2 12.4 8.57 7.54 8.48 19.9 165 453 478 319 137 250 40.6 22.8 19.2 12.5 13.6 299 739 794 406 MAX 60.3 (WY) 1968 1974 1974 1962 1962 1972 1962 1958 1971 1975 1971 1973 9.74 1977 MTN 22 8 3.79 1.53 2.12 2.31 8.48 71.1 251 280 245 59 2 1977 1977 1977 1977 1970 2001 1992 1989 1959 (WY) 1989 1964

06221400 DINWOODY CREEK ABOVE LAKES, NEAR BURRIS, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1958 - 2001
ANNUAL TOTAL	43690.0	38534.1	
ANNUAL MEAN	119	106	140
HIGHEST ANNUAL MEAN			179 1971
LOWEST ANNUAL MEAN			95.2 1992
HIGHEST DAILY MEAN	492 May 24	483 Jul 7	1250 Jun 15 1995
LOWEST DAILY MEAN	5.0 Jan 9	2.6 Feb 11	1.0 Jan 9 1977
ANNUAL SEVEN-DAY MINIMUM	5.1 Jan 7	2.7 Feb 10	1.3 Jan 4 1977
MAXIMUM PEAK FLOW		545 Jul 7	1510 Jul 13 1995
MAXIMUM PEAK STAGE		3.66 Jul 7	4.50 Jul 13 1995
ANNUAL RUNOFF (AC-FT)	86660	76430	101500
10 PERCENT EXCEEDS	359	299	436
50 PERCENT EXCEEDS	28	24	28
90 PERCENT EXCEEDS	6.4	3.3	7.0

e Estimated.

06222100 UPPER WIND RIVER A CANAL AT HEADWORKS, NEAR BURRIS, WY

LOCATION.--Lat $43^{\circ}24^{\circ}59^{\circ}$, long $109^{\circ}19^{\circ}40^{\circ}$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec.14, T.5 N., R.5 W., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, on left bank 30 ft downstream from headworks, 2 mi southeast of Wilderness, and 4 mi northwest of Burris.

PERIOD OF RECORD.--May 1997 to September 1999, April to September 2001 (no winter records).

GAGE.--Water-stage recorder. Elevation of gage is 6,150 ft above sea level, from topographic map. Miscellaneous measurements (July 1988 to September 1996) published at equivalent site previously identified as 432609109205001 at different datum.

 ${\tt REMARKS.--Records\ good.\ Flow\ completely\ regulated\ by\ headworks.}$

(WY)

MIN

2001

59.7

1998

2001

54.5

1999

1997

45.5

2001

1997

53.3

1999

1998

42.6

1997

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 70 52 2 ___ ___ ___ ---___ ___ ___ 49 86 52 69 39 3 ---------------------87 69 39 46 51 ---51 ___ ___ 5 ___ ___ ___ 47 85 51 75 39 ---55 77 ---___ ___ ---___ ___ 76 58 84 53 40 8 ------77 ---------------70 85 53 39 ---------------84 10 e3.0 81 86 52 77 51 ---------------11 --e5.0 83 86 52 76 68 74 12 e5.0 81 83 52 68 13 e5.0 69 64 67 67 35 ---------------14 e5.0 77 69 21 69 21 15 e5.0 80 72 58 68 16 17 71 73 21 21 e5.0 79 57 66 ------------------7.4 79 57 65 9.9 73 18 88 21 56 65 7.2 5.8 20 20 19 ___ ---___ ___ ___ ___ 91 78 55 66 20 ------___ 90 83 65 65 21 ___ ---___ ___ ___ ---5.5 5.4 89 83 20 69 65 22 ___ ___ ---------27 87 83 65 68 23 80 50 64 24 ___ ---___ ___ ___ ___ 5.4 77 84 45 41 63 5.4 25 76 85 53 41 63 77 26 ___ ___ ___ ___ ___ ___ 9.7 65 54 40 63 27 11 78 54 70 40 64 28 ------29 77 54 40 29 ___ ___ ___ ___ ___ ___ 35 81 53 74 40 66 30 52 72 84 39 34 66 31 ------------86 70 39 TOTAL 2273 2301 1409 1714 1864 ------------------76.7 87 57.1 69 MEAN ---73.3 45.5 60.1 ___ 91 75 77 MAX ---------------40 20 39 MIN AC-FT ---___ 4510 4560 2790 3700 3400 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 -2001, BY WATER YEAR (WY)* 63.9 76.7 MEAN 66.5 57.6 54.0 55.1 MAX ---------------------65.4 60.1 62.2

06222100 UPPER WIND RIVER A CANAL AT HEADWORKS, NEAR BURRIS, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1997 - 2001*
HIGHEST DAILY MEAN	91 May 19	105 Jun 3 1998
LOWEST DAILY MEAN	3.0 Apr 10	3.0 Apr 10 2001
MAXIMUM PEAK FLOW	96 May 19	250 May 1 1998
MAXIMUM PEAK STAGE	2.15 May 19	2.52 May 1 1998

- * For period of operation. e Estimated.

06222500 DRY CREEK NEAR BURRIS, WY

LOCATION.--Lat $43^{\circ}20^{\circ}11^{\circ}$, long $109^{\circ}17^{\circ}55^{\circ}$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ Sec. 12, T.4 N., R.5 W., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, on left bank 0.9 mi upstream from Dry Creek Canal headgate and 2.4 mi southwest of Burris.

DRAINAGE AREA.--57 mi².

PERIOD OF RECORD.--June 1921 to September 1940, October 1988 to current year (no winter records since 1995). Published as "near Lenore" 1921 to 1924.

GAGE.--Water-stage recorder. Elevation of gage is 6,430 ft above sea level, from topographic map. Prior to Nov. 5, 1934, at site 50 ft downstream at datum 4.07 ft higher. Nov. 5, 1934 to September 1940, at site 5 ft downstream at datum 3.00 ft higher.

REMARKS.-- Records fair. Adjudicated diversion upstream for irrigation of 267 acres. U.S. Geological Survey data collection platform with satellite telemetry at station. Result of discharge measurement, in cubic feet per second, made during the period when the station was not in operation, is given below:

Oct. 2 . . . 9.60

		DISCHARG	E, CUBIC	FEET PER		WATER YE Y MEAN VA	AR OCTOBER LUES	2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							1.3	24	73	68	19	19
2							1.3	19	78	65	18	18
3							1.3	14	83	61	18	17
4							1.4	13	74	60	19	17
5							1.4	11	61	59	19	17
6							1.4	14	51	58	20	20
7							1.4	12	43	63	21	22
8							1.4	15	44	62	21	22
9							1.4	26	50	64	22	20
10							1.4	37	60	73	23	18
11							1.5	41	59	72	23	17
12							1.5	48	56	67	23	16
13							1.5	75	56	64	22	15
14							1.5	109	51	59	21	16
15							1.5	122	46	68	22	16
16							1.6	184	40	71	22	16
17							1.6	129	38	64	21	16
18							1.6	99	39	56	20	16
19							1.6	86	38	47	19	17
20							1.7	83	36	43	18	16
21							1.9	69	38	40	19	15
22							1.8	58	44	36	19	14
23							1.8	54	54	31	19	13
24							1.8	61	63	25	22	13
25							2.0	70	73	24	22	12
26							2.4	83	76	24	21	12
27							3.4	99	79	23	20	12
28							11	95	81	22	20	12
29							15	84	77	21	19	12
30						1 2	18	77	72	20	19	12
31						1.3		73		19	19	
TOTAL						1.3	88.4	1984	1733	1529	630	478
MEAN						1.30	2.95	64.0	57.8	49.3	20.3	15.9
MAX						1.3	18	184	83	73	23	22
MIN						1.3	1.3	11	36	19	18	12
AC-FT						2.6	175	3940	3440	3030	1250	948
STATIST	CS OF MO	NTHLY MEAN	N DATA FO	R WATER Y	EARS 192	1 - 2001,	BY WATER Y	ZEAR (WY) *			
MEAN	17.3	10.3	5.97	4.10	2.71	2.91	8.93	86.8	201	123	57.7	31.2
MAX	50.0	25.4	15.0	10.0	7.00	10.0	25.7	162	525	328	164	64.6
(WY)	1924	1928	1926	1926	1923	1923	1926	1924	1921	1995	1930	1927
MIN	5.16	1.76	.55	.30	.20	.000	.88	29.5	51.4	33.8	18.8	12.2
(WY)	1934	1934	1934	1934	1934	1934	1940	1935	1934	1940	1940	1934

06222500 DRY CREEK NEAR BURRIS, WY--Continued

SUMMARY STATISTICS ANNUAL MEAN	FOR 2001 WATER YEAR*	WATER YEARS 1921 - 2001* 44.6
HIGHEST ANNUAL MEAN		73.0 1995
LOWEST ANNUAL MEAN		20.1 1940
HIGHEST DAILY MEAN	184 May 16	1240 Jun 7 1921
LOWEST DAILY MEAN	1.3 Mar 31	.00 Mar 1 to
		Apr 11 1934
MAXIMUM PEAK FLOW	234 May 16	1400 ^a b Jun 12 1921
MAXIMUM PEAK STAGE	4.38 May 16	5.95 Jun 17 1999
ANNUAL RUNOFF (AC-FT)		32290

For period of operation. Gage height, 3.9 ft, from floodmarks, site and datum then in use, from rating curve extended above $580 \text{ ft}^3/\text{s}$. From floodmarks. Estimated.

06222510 DRY CREEK CANAL AT HEADGATE, NEAR BURRIS, WY

LOCATION.--Lat $43^{\circ}20^{\circ}38^{\circ}$, long $109^{\circ}17^{\circ}25^{\circ}$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.12, T.4 S., R.5 W., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, on left bank 200 ft downstream from headgate and 1.7 miles southwest of Burris.

PERIOD OF RECORD.--April 1989 to September 1999, April to September 2001 (no winter records).

GAGE.--Water-stage recorder. Elevation of the gage is 6,360 ft above sea level, from topographic map. Prior to April 1, 1990, at datum 1.00 ft higher.

REMARKS.--Records good. Flow is diverted from Dry Creek and Dinwoody Canal for irrigation.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

					Dilli	. PILLIN VII.	попр					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								33	213	236	200	193
2								39	223	238	198	192
3								35	231	234	197	193
4								33	220	233	200	194
5								29	203	232	206	194
5								29	203	232	206	193
6								52	191	233	210	196
7								64	176	240	211	197
8								73	173	235	212	192
9								80	178	231	213	177
10								88	196	253	213	159
								0.4	01.4	0.40	01.0	1.40
11								94	214	248	212	140
12								107	215	234	207	126
13								131	221	240	203	120
14								154	215	225	207	125
15								192	207	235	207	126
16								176	194	242	206	120
17								216	179	244	206	111
18								196	170	232	205	103
19							3.8	191	165	206	203	97
20							4.3	205	157	200	200	90
21							5.1	189	155	197	198	82
22							4.5	179	163	196	197	78
23							4.4	170	188	196	199	76
24							4.4	182	210	202	201	76
25							5.2	196	230	200	199	78
26							6.7	223	233	201	197	77
27							9.2	236	244	202	197	76
28							19	227	249	199	197	77
29							22	228	243	199	197	78
30							22	216	239	199	196	78
31								210	239	198	195	
31								211		190	193	
TOTAL								4445	6095	6860	6289	3820
MEAN								143	203	221	203	127
MAX								236	249	253	213	197
MIN								29	155	196	195	76
AC-FT								8820	12090	13610	12470	7580
STATIST	rics of Mo	NTHLY MEA	N DATA FO	R WATER Y	EARS 1988	3 - 2001,	BY WATER	YEAR (WY) *			
MEAN	1.44						3.01	101	187	202	191	131
MAX	2.29						6.24	154	247	228	217	188
(WY)	1993						1989	1994	1994	1996	1994	1990
MIN	.60						.000	53.8	116	155	169	90.2
(WY)	1994						1991	1991	1995	1989	1998	1992
									2223	2,00		

06222510 DRY CREEK CANAL AT HEADGATE, NEAR BURRIS, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1988 - 2001*
HIGHEST DAILY MEAN LOWEST DAILY MEAN	253 Jul 10 3.8 Apr 19	285 Jun 23 1994 .00 Many days,
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE	260 Jul 10 3.06 Jul 10	most years 301 Jun 23 1994 3.88 Jun 23 1994

* For period of operation.

06222600 WIND RIVER ABOVE CROW CREEK, NEAR LENORE, WY

LOCATION.--Lat $43^{\circ}21^{\circ}12^{\circ}$, long $109^{\circ}11^{\circ}19^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.1, T.4 N., R.4 W., Fremont County, Hydrologic Unit 10080001, at county bridge on Lenore Bridge Road about 2.5 mi north of Crowheart, 2.5 mi northwest of the old Lenore townsite, and 2.8 mi above Crow Creek.

PERIOD OF RECORD. -- July to September 2001.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

WATER-QUALITI DATA, WATER TEAR OCTOBER 2000 TO SEPTEMBER 2001													
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)
JUL	1420	260	615	0.4	112	0.4	274	25.0	10.0				
25 AUG	1430	360	615	8.4	113	8.4	274	35.0	19.0				
15 SEP	1345	313	620	8.0	104	8.8	287	26.0	18.0	33.6	10.2	2.2	8.8
25	1120	139		9.7		8.2	415	24.0	12.0				
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)		NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	ARSENIC TOTAL (UG/L AS AS) (01002)
JUL 25						.19	.005	<.001	<.007	.013	E8k	E10k	
AUG 15	3.3	. 2	10.3	29.2	169	.20	.005	<.001	<.007	.015	<1	E2k	E1
SEP 25	3.3	. 2	10.5	27.2									D.I.
25						.17	.008	.001	<.007	.014	E6k	E8k	
DATE	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)
JUL 25													
25 AUG 15	45.8	<13.0	<1	<20.0	<.01	110	<1	9	.03	<3.0	<.40	<31	<.002
SEP	43.0	\13.U	~ I	\20.0	<.01	110	\1	9	.03	<3.0	V.40	\31	V.002
25													
DATE	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)
JUL													
25 AUG													
15 SEP	<.004	<.002	<.005	<.007	<.010	<.002	<.041	<.020	<.005	<.018	<.003	<.006	<.005
25													
DATE	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)
JUL 25													
25 AUG													
15 SEP	<.005	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	.03	<.013
25													

06222600 WIND RIVER ABOVE CROW CREEK, NEAR LENORE, WY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOL (UG/L) (34653	(UG	ULA A- WAT ON, FII S- 0.7 VED GF,	TER LTRD W 7 U REC G /L) (PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER METHE CIS WAT F 0.7 GF, F (UG/I (8268	RIN PHOP WAT FLT FLT U 0.7 REC GF, (UG,	RATE FER FRD 7 U REC /L) 564)	PRO- METON WATER DISS, REC (UG/L) (04037	, FLT 0.7 GF, (UG/	DE TER TRD U REC	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)
JUL 25 AUG					-								-	-		
15 SEP	<.006	<.002	<.007	<.003	<.0	07 <.0	002	<.010	<.00	06 <.0	011	<.015	<.0	004	<.010	<.011
25					-								-			
	DATE	PAF W# FI 0. GF,	TRD WA 7 U DI REC RI G/L) (UC	:- I ZINE, ATER, ESS, EC G	TEBU- HIURON WATER FLTRD 0.7 U FF, REC UG/L) 82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER BUFC WATE FLTE 0.7 GF, F (UG/I (8267	DS BEI ER WA RD FI U 0. REC GF	HIO- NCARB ATER LTRD .7 U , REC G/L) 2681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TR FLU ALI WAT 0.7 GF, (UG/	R- N S FLT I U S REC I	SEDI- MENT, SUS- PENDED (MG/L) 80154)	MEI D: CHAI SI PEI (T/I	IS-	
	JUL 25 AUG							-			-	-	6	5	.8	
	15 SEP	<.	023 <	011	<.016	<.034	<.01	L7 <	.005	<.002	<.0	09	7	5	.9	
	25							-			-	-	33	12		

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

06223500 WILLOW CREEK NEAR CROWHEART, WY

LOCATION.--Lat $43^{\circ}17^{\circ}00^{\circ}$, long $109^{\circ}11^{\circ}08^{\circ}$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec.36, T.4 N., R.4 W., Fremont County, Hydrologic Unit 10080002, Wind River Indian Reservation, on left bank 1000 ft upstream from Willow Creek Canal diversion and 2.0 mi south of Crowbeart

DRAINAGE AREA. -- 55.4 mi².

PERIOD OF RECORD.--June to October 1909 (published as "J. K. Ranch Post Office"), June 1921 to September 1922 (published as "near Lenore"), May and June 1923, May 1925 to September 1940, October 1988 to current year (no winter record since 1995).

REVISED RECORDS. -- WSP 1309: 1939 (M).

GAGE.--Water-stage recorder. Elevation of gage is 6,080 ft above sea level, from topographic map. May 17 to October 31, 1909, nonrecording gage 1.9 mi downstream at different datum, May 16, 1921 to Aug. 24, 1923, nonrecording gage 200 ft upstream at different datum, and May 1925 to September 1940, water-stage recorder 600 ft downstream at different datum.

REMARKS.--Records fair. Diversions for irrigation of 60.1 acres upstream from station. Results of discharge measurements, in cubic feet per second, made during the period station was not in operation, are given below:

Oct. 2 . . 7.09 Mar. 30 . . . 4.53

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAR APR MAY JUN JUL AUG SEP JAN 1 4 6 6 6 14 6.9 5 0 4 5 2 ---------6.7 4.6 6.9 14 4.9 4.4 ---------------4.7 6.9 14 6.6 4.8 4.4 ---4 4.7 6.9 10 6.5 4.8 4.4 5 4.8 9.8 6.7 6.5 4.7 4.5 9.2 5.0 6 4.8 6.8 6.4 4.6 4.8 6.8 8.9 4.6 4.8 ------6.9 6.5 8 ___ ___ ___ ---4.9 8.8 4.5 5.0 ___ ---------4.7 9.4 4.9 4.6 10 4.8 7.1 9.9 7.0 4.9 4.5 4.9 7.4 9.1 6.7 4.5 11 4.8 7.7 12 5.1 9.4 6.6 4.7 4.5 13 ___ ___ ___ ___ ___ ---5.0 21 9.2 8.7 6.4 4.7 4.6 4.9 ---14 66 6.4 5.0 15 71 8.2 6.8 4.8 5.0 16 5.1 113 8.1 6.4 4.8 4.6 ------37 8.1 4.6 4.6 5.2 5.3 8.1 18 ___ ___ ___ ___ ___ ___ 27 6.1 4 5 4.5 $\frac{1}{4}.4$ 19 18 6.1 4.4 20 ---5.5 24 8.1 5.9 4.4 4.7 21 5.6 14 8.0 5.7 22 ------------------5.6 11 7.8 4.5 4.5 ___ ___ 7.6 7.5 5.7 23 ___ ___ ___ ___ 5.6 12 4 4 24 5.6 22 5.5 4.3 25 ---------------5.6 25 7.5 5.4 4.3 4.5 29 7.5 4.5 26 2.7 ------------------5.9 35 7.6 5.2 4.3 4.6 28 ------------------6.2 23 7.3 5.1 4.3 4.6 4.7 ------___ ___ ---___ 6.4 15 7.0 5.0 29 30 ------6.5 15 7.0 4.9 4.7 ------------31 ------14 4.9 4.5 TOTAL ------157.3 675.7 268.1 188.2 142.2 138.1 8.94 ---------___ ------MEAN 5.24 21.8 6.07 4.59 4.60 ------MAX ------------6.5 113 7.0 5.0 5.0 ------------7 0 4.4 274 MTN 4.6 6 6 4.9 4.3 AC-FT 1340 373 312 532 282 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2001, BY WATER YEAR (WY)* 9.03 17.6 MEAN 7.53 6.15 5.25 4.76 4.96 6.48 30.5 81.8 30.5 12.6 9.13 MAX 13.3 10.0 8.00 7.00 8.00 9.40 79.6 242 112 45.4 21.9 1931 1927 1927 1999 (WY) 1927 1922 1922 1999 1999 1995 1930 1930 MIN 5.15 2 50 2.00 2.00 2.00 2.50 3.97 6.85 8.94 5.68 3.50 4.60 (WY) 1989 1940 1940 1940 1940 1940 1940 1935 2001 1940 1940 2001

06223500 WILLOW CREEK NEAR CROWHEART, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1922 - 2001*
ANNUAL MEAN		16.5
HIGHEST ANNUAL MEAN		31.0 1995
LOWEST ANNUAL MEAN		4.60 1940
HIGHEST DAILY MEAN	113 May 16	468 Jun 12 1991
LOWEST DAILY MEAN	4.3 Aug 24-29	2.0 Dec 1 1939
ANNUAL SEVEN-DAY MINIMUM		2,0 Dec 1 1939
MAXIMUM PEAK FLOW	178 May 16	2.0 Dec 1 1939 1100 ^a , May 31 1939
MAXIMUM PEAK STAGE	3.40 May 16	5.40 ^D May 31 1939
ANNUAL RUNOFF (AC-FT)		11930

06224000 BULL LAKE CREEK ABOVE BULL LAKE, WY

LOCATION.--Lat $43^{\circ}10^{\circ}37^{\circ}$, long $109^{\circ}12^{\circ}08^{\circ}$, in $NE^{1}/_{4}$ SW $^{1}/_{4}$ sec.2, T.2 N., R.4 W., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, on right bank 1.2 mi upstream from high-water line of Bull Lake and 9.0 mi south of Crowheart.

DRAINAGE AREA.--187 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1941 to December 1953, October 1966 to current year. Monthly discharge only for some periods, published in WSP 1309. Prior to October 1950, published as "above Bull Lake Reservoir."

GAGE.--Water-stage recorder. Elevation of gage is 5,874 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. No diversions upstream from station. U.S. Geological Survey data collection platform with satellite telemetry at station.

		DISCHAF	RGE, CUBIC	FEET PEF		WATER YE Y MEAN VA	AR OCTOBEI LUES	R 2000 TC	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	94 90 83 79 75	59 52 46 52 50	e19 e19 e19 e20 e20	e22 e22 e21 e21 e20	13 12 12 12 12	e15 e13 e13 e13 e13	14 15 15 16 17	158 144 131 122 122	728 774 836 729 570	588 564 550 541 523	270 265 274 290 328	187 183 190 192 189
6 7 8 9 10	72 70 67 66 66	45 40 36 44 31	e21 e21 e21 e22 e23	19 17 17 18 17	12 12 e11 e11 e10	e13 e13 e13 e12 e12	18 18 18 17 17	134 126 134 175 238	439 374 382 443 575	e500 e510 e520 e500 534	340 336 333 334 339	196 200 180 153 132
11 12 13 14 15	68 70 71 70 71	20 22 25 27 34	e22 e22 e21 e17 e16	17 16 17 16 15	13 13 13 13 12	e12 e13 12 12 12	19 20 19 18 18	280 346 489 751 930	648 665 658 542 430	537 515 477 436 431	317 293 283 277 271	117 108 104 103 113
16 17 18 19 20	70 69 70 68 66	33 29 29 29 28	e17 e20 e22 e22 e23	17 16 17 16 16	13 12 13 13	12 12 13 13 15	19 19 22 27 27	1620 1410 942 746 698	349 314 313 311 314	484 478 422 369 332	263 263 260 257 239	113 107 109 104 99
21 22 23 24 25	65 66 67 67	28 27 26 25 24	e22 e20 e21 e22 e23	16 16 16 15 14	13 13 13 14 14	15 15 15 15 15	28 30 30 29 28	586 471 440 538 678	336 385 466 561 667	323 325 318 309 306	229 221 215 217 216	91 84 81 80 80
26 27 28 29 30 31	64 63 61 60 59 60	24 23 21 e19 e19	e22 e23 e23 e24 e24 e23	14 14 14 12 13	14 e14 e14 	15 15 15 15 15	29 e40 e110 e135 124	800 908 945 848 769 726	726 717 724 693 640	305 289 268 269 266 268	209 211 212 206 200 190	83 85 87 90 93
TOTAL MEAN MAX MIN AC-FT	2154 69.5 94 59 4270	967 32.2 59 19 1920	654 21.1 24 16 1300	514 16.6 22 12 1020	354 12.6 14 10 702	420 13.5 15 12 833	956 31.9 135 14 1900	17405 561 1620 122 34520	16309 544 836 311 32350	13057 421 588 266 25900	8158 263 340 190 16180	3733 124 200 80 7400
STATIST	ICS OF MO	ONTHLY MEA	AN DATA FO	OR WATER Y	ZEARS 1942	2 - 2001,	BY WATER	YEAR (WY	')			
MEAN MAX (WY) MIN (WY)	99.0 222 1983 32.9 1989	55.1 109 1951 29.5 1977	37.2 62.2 1951 14.6 1977	28.7 57.1 1997 7.29 1977	25.0 41.4 1943 6.88 1977	26.7 57.4 1986 6.69 1977	66.3 199 1943 24.9 1970	472 777 1969 170 1975	1151 2104 1986 544 2001	910 1581 1975 337 1994	429 655 1982 145 1985	206 533 1973 109 1988

06224000 BULL LAKE CREEK ABOVE BULL LAKE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENI	DAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1942 - 2001
ANNUAL TOTAL	83789		64681			
ANNUAL MEAN	229		177		293	
HIGHEST ANNUAL MEAN					415	1986
LOWEST ANNUAL MEAN					174	1977
HIGHEST DAILY MEAN	1300	May 25	1620	May 16	3560	Jun 9 1981
LOWEST DAILY MEAN	11	Jan 3	10	Feb 10	6.2	Jan 9 1977
ANNUAL SEVEN-DAY MINIMUM	15	Jan 3	11	Feb 4	6.5	Mar 10 1977
MAXIMUM PEAK FLOW			1880	May 16	4470	Jun 9 1981
MAXIMUM PEAK STAGE			5.44	May 16	7.98	Jun 9 1981
ANNUAL RUNOFF (AC-FT)	166200		128300		212500	
10 PERCENT EXCEEDS	680		539		907	
50 PERCENT EXCEEDS	67		63		76	
90 PERCENT EXCEEDS	20		13		22	

e Estimated.

06224000 BULL LAKE CREEK ABOVE BULL LAKE, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1974 to current year.

Mile	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)
1130	24	1055	285				7.5	24	21.5	16.0				
Section Sect		1130	214	563	7.3	100	7.4	32	26.0	15.5	3.18	1.03	.3	1.5
Marting Mart		1210	88		9.9		7.8	43	24.5	11.0				
March Marc		ANC UNFLTRD TIT 4.5 LAB	CHLO- RIDE, DIS-	RIDE, DIS-	SILICA, DIS- SOLVED	DIS-	SOLIDS, RESIDUE AT 180 DEG. C	NITRO- GEN,AM- MONIA + ORGANIC	NITRO- GEN, NO2+NO3 DIS-	NITRO- GEN, NITRITE DIS-	PHORUS ORTHO, DIS-	PHORUS	MTEC MF	FORM, FECAL, 0.7
AUS 12		AS CACO3)	(MG/L AS CL)	(MG/L AS F)	AS SIO2)	(MG/L AS SO4)	SOLVED (MG/L)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS P)	(MG/L AS P)	(COL/ 100 ML)	(COLS./ 100 ML)
23.	24							.09	.059	.001	<.007	.004	E16k	25
Part	23	12	.7	<.2	1.5	3.2	30	E.04	.062	<.001	<.007	E.004	E16k	E21k
Name								E.07	.030	.001	<.007	.006	22	E17k
24 2.	DATE	TOTAL (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)	WATER UNFLTRD TOTAL (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	TOTAL RECOV- ERABLE (UG/L AS CU)	TOTAL (MG/L AS CN)	TOTAL RECOV- ERABLE (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	NIUM, TOTAL (UG/L AS SE)	TOTAL RECOV- ERABLE (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)
Note														
SEP 21	AUG	-2	4 0	<13 N	-1	<20 0	< 01	90	~ 1	ъз	< N1	<3 U	< 40	~31
REN	SEP													
24		2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L)	CHLOR, WATER FLTRD REC (UG/L)	CHLOR, WATER, DISS, REC, (UG/L)	BHC DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L)	ATE, WATER, DISS, REC (UG/L)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	PYRIFOS DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	ATRA- ZINE, WATER, DISS, REC (UG/L)
AUG 23														
SEP 21 2	AUG	< 002	< 004	< 002	< 005	< 007	< 010	< 002	< 041	< 020	< 005	< 018	< 003	< 006
DISUL- FOTON EPTC FLUR- PROP URON WATER MALEN ALIN WATER ALIN WATER LINDAME FLURD WATER LINDAME FLURD WATER LINDAME FLURD WAT FLIT ACTIVE SOLVED SOLVED GF, REC GF, RE	SEP													
DI-														
24 AUG 23 <.005 <.005 <.021 <.002 <.009 <.005 <.003 <.004 <.035 <.027 <.050 <.006 <.02 SEP	DATE	AZINON, DIS- SOLVED (UG/L)	ELDRIN DIS- SOLVED (UG/L)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)	PROP WATER FLTRD 0.7 U GF, REC (UG/L)	WATER DISS REC (UG/L)	DIS- SOLVED (UG/L)	URON WATER FLTRD 0.7 U GF, REC (UG/L)	THION, DIS- SOLVED (UG/L)	AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L)	PARA- THION WAT FLT 0.7 U GF, REC (UG/L)	LENE BLUE ACTIVE SUB- STANCE (MG/L)
AUG 23 <.005 <.005 <.021 <.002 <.009 <.005 <.003 <.004 <.035 <.027 <.050 <.006 <.02 SEP														
SEP	AUG		<.005	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	<.02
21														

06224000 BULL LAKE CREEK ABOVE BULL LAKE, WY--Continued

DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)
JUL 24 AUG													
23 SEP	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	<.015	<.004	<.010
21													
	DATE	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	
	JUL 24 AUG										2	1.5	
	23 SEP	<.011	<.023	<.011	<.016	<.034	<.017	<.005	<.002	<.009	2	1.2	
	21										1	.24	

 $[\]mbox{\bf E}$ -- Estimated value. $\mbox{\bf k}$ -- Counts outside acceptable range (non-ideal colony count).

06224500 BULL LAKE NEAR LENORE, WY

LOCATION.--Lat $43^{\circ}12^{\circ}35^{\circ}$, long $109^{\circ}02^{\circ}30^{\circ}$, in $E^{1}/_{2}$ NW $^{1}/_{4}$ sec.30, T.3 N., R.2 W., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, at dam on Bull Lake Creek, 2.8 mi upstream from mouth of Bull Lake Creek, and 9.8 mi south of

DRAINAGE AREA.--210 mi², of which 12 mi² probably is noncontributing.

PERIOD OF RECORD.--April 1938 to current year. Monthend contents only for some periods, published in WSP 1309. Published as Bull Lake Reservoir near Lenore 1938-50.

GAGE .-- Water-stage recorder. Datum of gage is sea level (Bureau of Reclamation datum).

REMARKS.--Reservoir is formed by rockfill dam completed by Bureau of Reclamation July 22, 1938. Capacity, 152,500 acre-ft below elevation 5,805.00 ft, top of spillway gates. Dead storage, 722 acre-ft. Figures given herein represent total contents. Water is used for irrigation near Riverton. Bureau of Reclamation data collection platform with satellite telemetry at station.

COOPERATION .-- Records provided by Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 154,200 acre-ft, Aug. 10, 1965, elevation, 5,805.70 ft; minimum daily contents (since appreciable storage was attained), 5,540 acre-ft, Mar. 15, 1950, elevation, 5,742.56 ft.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 82,100 acre-ft, June 4, July 7-14, maximum daily elevation, 5,780.30 ft, June 4; minimum daily contents, 22,300 acre-ft, Sept. 2, minimum daily elevation, 5,752.26 ft, Sept. 2-3.

Capacity table (elevation, in feet, and contents, in acre-feet)

18,391 36,722 57,600 5,780 81,400 5,790 108,000 5,750 5,760 5,770

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	59400 59400 59500 59700 59700	62400 62400 62500 62600 62600	63000 63000 63000 63000	63200 63300 63300 63300 63300	63300 63300 63300 63300	63200 63200 63200 63200 63200	62900 62900 62900 62900 62900	62500 62500 62400 62100 61700	81000 81300 81800 82100 81700	71800 71900 72000 71800 71600	51100 49300 47600 45900 44400	22500 22300 22400 22500 22800
6 7 8 9 10	59900 60000 60100 60200 60300	62600 62600 62700 62800 62800	63100 63000 63100 63100	63300 63300 63300 63300	63300 63300 63300 63300	63200 63200 63200 63200 63200	62800 62800 62800 62800 62700	61400 61300 61000 60800 60900	80600 79500 78400 77500 77300	71200 70900 70600 70300 70200	43100 42000 40900 39800 38800	23100 23500 23700 24000 24200
11 12 13 14 15	60400 60500 60600 60600 60800	62800 62800 62800 62800 62800	63100 63100 63100 63100	63300 63300 63300 63300	63300 63300 63300 63300 63200	63200 63200 63200 63200 63200	62700 62700 62600 62600 62600	61300 61600 62400 63700 65400	77400 77600 77600 77200 76500	70300 70400 70600 70600 70600	37800 36900 35900 35000 34100	24400 24600 24700 24900 25000
16 17 18 19 20	60800 60900 61000 61200 61300	62900 62900 62900 62900 62900	63100 63100 63100 63100 63100	63300 63300 63300 63300	63200 63200 63200 63200 63200	63200 63200 63100 63100 63100	62500 62400 62400 62300 62300	68400 71200 73000 74200 75100	75700 74500 73400 72400 71300	70700 70800 70500 69800 68900	33200 32300 31400 30500 29600	25200 25400 25500 25700 25800
21 22 23 24 25	61400 61500 61600 61700 61800	62900 62900 62900 63000 63000	63100 63100 63100 63100 63100	63300 63300 63300 63300 63300	63200 63200 63200 63200 63200	63100 63100 63100 63100 63100	62300 62300 62300 62200 62100	75500 74900 74000 73700 74200	70300 69500 69000 68700 68700	68000 66900 65700 64300 62800	28700 27700 26900 26200 25500	25900 26000 26100 26200 26300
26 27 28 29 30 31	61900 62000 62100 62100 62200 62400	63000 63000 63000 63000 	63200 63200 63200 63200 63200 63200	63300 63300 63300 63300 63300	63200 63200 63200 	63100 63100 63000 63000 63000 62900	62000 62000 62100 62200 62400	75000 76300 77800 79000 80000 80600	69000 69500 70200 70900 71400	61200 59700 58100 56500 54800 52900	24900 24400 23800 23400 23100 22800	26500 26600 26700 26800 26900
MAX MIN (#) (*)	62400 59400 5772.10 3,000	63000 62400 5772.39 600	63200 63000 5772.48 200	63300 63200 5772.51 100	63300 63200 5772.48 -100	63200 62900 5772.35 -300	62900 62000 5772.12 -500	80600 60800 5779.69 +18,200	82100 68700 5775.96 -9,200	72000 52900 5767.89 -18,500	51100 22800 5752.51 -30,100	26900 22300 5754.78 -4,100

WTR YR 2001 MAX 82,100 MIN 22,300 (*) -40,700

^(#) Elevation, in feet, at end of month.
(*) Change in contents, in acre-feet.

06224500 BULL LAKE NEAR LENORE, WY--Continued

83

06225000 BULL LAKE CREEK NEAR LENORE, WY

LOCATION.--Lat $43^{\circ}14'33"$, long $109^{\circ}01'20"$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec.17, T.3 N., R.2 W., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, on left bank 700 ft upstream from mouth, 2.8 mi downstream from Bull Lake, and 8.5 mi southeast of Lenore

DRAINAGE AREA. --213 mi², of which 12 mi² probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1918 to current year.

(WY)

REVISED RECORDS.--WSP 1309: 1921 (M, date only), 1925(M), 1926(M), 1930(M). WSP 1709: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 5,654 ft above sea level, from topographic map. May 18, 1918, to Mar. 25, 1922, at site 10 ft upstream at datum 0.86 ft higher; Mar. 26, 1922, to Oct. 3, 1934, at present site at datum 2.00 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow completely regulated by Bull Lake 2.8 mi upstream since April 1938 (See station 06224500). Diversions upstream from station for irrigation of about 730 acres downstream. Bureau of Reclamation data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY DEC SEP OCT NOV JAN FEB APR MAY JUL AUG e26 e19 e27 e22 e28 e28 27 27 e22 e20 e22 e20 e23 e28 e21 e23 e28 e22 13 e23 e23 e22 e22 28 72 20 e28 e29 e24 e30 e24 e30 e21 e22 e24 e30 e23 22 857 726 20 e24 e31 e21 e23 e25 e31 e22 e31 e22 e25 e25 e30 e20 e25 e29 e20 705 21 e27 e26 e20 e26 e20 e24 e20 e20 e26 e23 e20 e23 e20 ---TOTAL MEAN 24.0 21.2 21.5 23.9 40.3 46.3 MAX 21 23 20 19 27 MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1918 - 2001, BY WATER YEAR (WY) MEAN 782 69.9 70.4 87.0 73.6 60.3 95.0 MAX (WY) MTN 4.16 8.34 13.8 11.0 12.0 .000 3.59 6.01 10.6 85.6 46.3

06225000 BULL LAKE CREEK NEAR LENORE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALE	IDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEARS	3 1918 - 2001
ANNUAL TOTAL	94440		80792			
ANNUAL MEAN	258		221		275	
HIGHEST ANNUAL MEAN					427	1969
LOWEST ANNUAL MEAN					100	1941
HIGHEST DAILY MEAN	1160	Jul 25	1230	Jul 31	3900	Jun 16 1918
LOWEST DAILY MEAN	13	May 24	13	Mar 21	.00 ^a	Feb 28 to
		-				Apr 7 1937
ANNUAL SEVEN-DAY MINIMUM	16	Oct 19	16	Oct 19	₁₄ 00	Feb 28 1937
MAXIMUM PEAK FLOW			1280	Jul 30	6200 ^D	Aug 8 1951
MAXIMUM PEAK STAGE			3.61	Jul 30	7.09	Aug 8 1951
ANNUAL RUNOFF (AC-FT)	187300		160300		199300	
10 PERCENT EXCEEDS	910		785		808	
50 PERCENT EXCEEDS	30		27		106	
90 PERCENT EXCEEDS	22		20		20	

Result of regulation. From rating curve extended above 2,000 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. Result of automatic spillway gates releasing at Bull Lake Dam. Estimated.

06225000 BULL LAKE CREEK NEAR LENORE, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1990, July to September 2001.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)
JUL 30	1120	1020	618	7.4	102	7.6	72	30.0	20.5				
AUG 16	1135	735	625	7.8	101	8.2	94	26.0	18.0	8.51	2.59	.6	3.6
SEP 21	1350	19		9.4			131	30.5	17.5				
DATE	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
JUL 30							.09	.006	<.001	<.007	.006	<1	E1k
AUG 16 SEP	24	.9	<.2	2.3	17.3	44	E.08	.006	<.001	<.007	.007	<1	<1
21							.15	.011	.001	<.007	.010	<1	E20k
DATE	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUL 30													
AUG 16	<2	9.5	<13.0	<1	<20.0	<.01	70	<1	5	.02	<3.0	<.40	<31
SEP 21													
21													
DATE	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L)	ACETO- CHLOR, WATER FLTRD REC (UG/L)	ALA- CHLOR, WATER, DISS, REC,	ALPHA BHC DIS- SOLVED	ATRA- ZINE, WATER, DISS, REC	BEN- FLUR- ALIN WAT FLD 0.7 U	BUTYL- ATE, WATER, DISS,	CAR- BARYL WATER FLTRD 0.7 U	CARBO- FURAN WATER FLTRD 0.7 U	CHLOR- PYRIFOS DIS- SOLVED	CYANA- ZINE, WATER, DISS, REC	DCPA WATER FLTRD 0.7 U GF, REC	DEETHYL ATRA- ZINE, WATER, DISS, REC
JUL	(82660)	(49260)	(UG/L) (46342)	(UG/L) (34253)	(UG/L) (39632)	GF, REC (UG/L) (82673)	REC (UG/L) (04028)	GF, REC (UG/L) (82680)	GF, REC (UG/L) (82674)	(UG/L) (38933)	(UG/L) (04041)	(UG/L) (82682)	(UG/L) (04040)
30	(82660)				(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
AUG 16	(82660) <.002				(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
AUG		(49260)	(46342)	(34253)	(UG/L) (39632)	(UG/L) (82673)	(UG/L) (04028)	(UG/L) (82680)	(UG/L) (82674)	(UG/L) (38933)	(UG/L) (04041)	(UG/L) (82682)	(UG/L) (04040)
AUG 16 SEP		(49260)	(46342)	(34253)	(UG/L) (39632)	(UG/L) (82673)	(UG/L) (04028)	(UG/L) (82680)	(UG/L) (82674)	(UG/L) (38933)	(UG/L) (04041)	(UG/L) (82682)	(UG/L) (04040) <.006
AUG 16 SEP 21 DATE	DI- AZINON, DIS- SOLVED (UG/L) (39572)	(49260) <.004 BI- ELDRIN DIS- SOLVED (UG/L)	(46342) <.002 DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L)	(34253) <.005 EPTC WATER FLTRD 0.7 U GF, REC (UG/L)	(UG/L) (39632) <.007 ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)	(UG/L) (82673) <.010 ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L)	(UG/L) (04028) <.002 FONOFOS WATER DISS REC (UG/L)	(UG/L) (82680) <.041 LINDANE DIS- SOLVED (UG/L)	(UG/L) (82674) <.020 LIN- URON WATER FLITRD 0.7 U GF, REC (UG/L)	(UG/L) (38933) <.005 MALA- THION, DIS- SOLVED (UG/L)	(UG/L) (04041) <.018 METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L)	(UG/L) (82682) <.003 METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L)	(UG/L) (04040) <.006 METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260)
AUG 16 SEP 21 DATE JUL 30 AUG	 <.002 DI- AZINON, DIS- SOLVED (UG/L) (39572)	(49260) <.004 ELDRIN DIS- SOLVED (UG/L) (39381)	(46342) <.002 DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	(34253) <.005 EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	(UG/L) (39632) <.007 ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	(UG/L) (82673) <.010 ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	(UG/L) (04028) <.002 FONOFOS WATER DISS REC (UG/L) (04095)	(UG/L) (82680) <.041 LINDANE DIS- SOLVED (UG/L) (39341)	(UG/L) (82674) <.020 LIN- URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666)	(UG/L) (38933) <.005 THION, DIS- SOLVED (UG/L) (39532)	(UG/L) (04041) <.018 METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	(UG/L) (82682) <.003 METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	(UG/L) (04040) <.006 METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260)
AUG 16 SEP 21 DATE JUL 30	DI- AZINON, DIS- SOLVED (UG/L) (39572)	(49260) <.004 BI- ELDRIN DIS- SOLVED (UG/L)	(46342) <.002 DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L)	(34253) <.005 EPTC WATER FLTRD 0.7 U GF, REC (UG/L)	(UG/L) (39632) <.007 ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)	(UG/L) (82673) <.010 ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L)	(UG/L) (04028) <.002 FONOFOS WATER DISS REC (UG/L)	(UG/L) (82680) <.041 LINDANE DIS- SOLVED (UG/L)	(UG/L) (82674) <.020 LIN- URON WATER FLITRD 0.7 U GF, REC (UG/L)	(UG/L) (38933) <.005 MALA- THION, DIS- SOLVED (UG/L)	(UG/L) (04041) <.018 METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L)	(UG/L) (82682) <.003 METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L)	(UG/L) (04040) <.006 METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260)

06225000 BULL LAKE CREEK NEAR LENORE, WY--Continued

DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)
JUL 30 AUG													
16 SEP	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	<.015	<.004	<.010
21													
	DATE	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	
	JUL 30 AUG										4	11	
	16 SEP	<.011	<.023	<.011	<.016	<.034	<.017	<.005	<.002	<.009	2	4.0	
	21										2	.10	

 $[\]mbox{\bf E}$ -- Estimated value. $\mbox{\bf k}$ -- Counts outside acceptable range (non-ideal colony count).

06225500 WIND RIVER NEAR CROWHEART, WY

LOCATION.--Lat $43^{\circ}14^{\circ}33^{\circ}$, long $109^{\circ}00^{\circ}35^{\circ}$, in $NW^{1}/_{4}$ NW $^{1}/_{4}$ sec.16, T.3 N., R.2 W., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, on right bank 0.9 mi downstream from Bull Lake Creek and 9.0 mi southeast of Crowheart.

DRAINAGE AREA. -- 1,891 mi².

PERIOD OF RECORD.--October 1945 to current year.

REVISED RECORDS.--WSP 1116: 1946-47. WSP 1709: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 5,635 ft above sea level, from topographic map.

REMARKS.--Records good except those for Nov. 14 to Mar. 21, which are poor. Some regulation by Bull Lake on Bull Lake Creek (See station 06224500). Diversions for irrigation of about 25,000 acres upstream from station. Bureau of Reclamation data collection platform with satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of June 29, 1927, reached a discharge of 13,000 ${\rm ft}^3/{\rm s}$; discharge measurement made by Bureau of Reclamation at site 1.0 mi downstream.

		DISCHA	RGE, CUB	IC FEET P		, WATER YE LY MEAN VA	EAR OCTOBE	R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	520	411	e300	e225	e230	e170	250	763	1550	1300	1520	698
2	513	393	e300	e190	e240	e175	270	827	1820	1310	1500	682
3	521	343	e310	e180	247	e200	270	708	1650	1320	1450	540
4	472	316	e320	e170	250	e190	258	703	1520	1390	1460	401
5	440	347	e330	e175	273	e220	252	738	1560	1440	1470	389
6	436	361	e325	e175	236	e230	251	857	1540	1470	1440	411
7	420	324	e310	e170	220	e240	254	754	1470	1530	1340	426
8	412	305	e290	e170	208	e270	255	780	1510	1580	1330	432
9	395	319	e280	e170	e190	e300	237	1070	1550	1600	1330	409
10	390	340	e260	e190	e220	314	225	1110	1530	1630	1340	377
11	398	327	e260	e180	e215	310	224	1030	1440	1540	1300	317
12	419	305	e260	e180	e210	284	241	1280	1440	1430	1250	301
13	412	298	e275	e180	e200	275	242	1460	1450	1350	1200	293
14	425	e310	e280	e195	e200	271	225	1710	1460	1290	1170	302
15	432	e325	e300	e190	e210	253	223	1890	1380	1280	1180	355
16	430	e320	e315	e190	e200	240	230	2520	1360	1330	1170	336
17	416	e310	e310	e180	e205	242	270	2170	1420	1250	1150	341
18	418	e300	e330	e180	e200	251	291	1600	1430	1280	1120	359
19	489	e305	e300	e180	e200	266	418	1400	1400	1350	1090	356
20	496	e310	e294	e190	e200	283	445	1450	1340	1380	1070	350
21	479	e315	e270	e190	e190	289	381	1350	1360	1340	1080	342
22	496	e320	e260	e200	e190	291	319	1450	1360	1390	1100	328
23	488	e320	e250	e190	e190	298	284	1630	1380	1400	1040	324
24	466	e310	e240	e190	e185	316	320	1750	1410	1480	972	320
25	477	e310	e230	e190	e170	329	345	1710	1470	1540	948	311
26 27 28 29 30 31	479 461 449 426 414 421	e310 e320 e310 e300 e310	e230 e225 e225 e225 e220 e220	e190 e210 e210 e220 e210 e210	e160 e155 e160 	322 303 280 277 273 268	497 743 803 853 814	1760 1760 1770 1530 1450 1430	1530 1520 1450 1370 1310	1510 1480 1420 1390 1460 1540	902 872 847 775 729 710	317 329 339 352 367
TOTAL	13910	9694	8544	5870	5754	8230	10690	42410	43980	44000	35855	11404
MEAN	449	323	276	189	206	265	356	1368	1466	1419	1157	380
MAX	521	411	330	225	273	329	853	2520	1820	1630	1520	698
MIN	390	298	220	170	155	170	223	703	1310	1250	710	293
AC-FT	27590	19230	16950	11640	11410	16320	21200	84120	87230	87270	71120	22620
STATIS MEAN MAX (WY) MIN (WY)	687	480	386	367	354	363	556	1778	3753	2903	1665	1149
	1415	932	625	560	538	616	1284	2938	7259	5694	2483	1774
	1952	1969	1972	1954	1951	1972	1952	1956	1971	1967	1951	1997
	371	298	215	179	202	226	309	729	1466	1362	853	380
	1989	1978	1982	1982	1989	1977	1993	1977	2001	1992	1977	2001

89

06225500 WIND RIVER NEAR CROWHEART, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YE	ARS 1946 - 2001
ANNUAL TOTAL	341532		240341			
ANNUAL MEAN	933		658		1207	
HIGHEST ANNUAL MEAN					1657	1999
LOWEST ANNUAL MEAN					658	2001
HIGHEST DAILY MEAN	3430	May 30	2520	May 16	11400	Jun 18,19 1999
LOWEST DAILY MEAN	220	Dec 30	155	Feb 27	130	Feb 5 1982
ANNUAL SEVEN-DAY MINIMUM	225	Dec 25	168	Feb 24	143	Dec 30 1981
MAXIMUM PEAK FLOW			3570	May 16	14300 ^a	Jun 13 1991
MAXIMUM PEAK STAGE			8.17	May 16	11.23	Jun 19 1999
ANNUAL RUNOFF (AC-FT)	677400		476700		874100	
10 PERCENT EXCEEDS	1900		1470		2800	
50 PERCENT EXCEEDS	454		345		580	
90 PERCENT EXCEEDS	292		198		300	

a Gage height, 11.04 ft, from floodmarks. e Estimated.

06226000 WYOMING CANAL NEAR LENORE, WY

LOCATION.--Lat $43^{\circ}13^{\circ}45^{\circ}$, long $108^{\circ}53^{\circ}40^{\circ}$, in $\mathrm{SE}^{1}/_{4}$ $\mathrm{SE}^{1}/_{4}$ sec.17, T.3 N., R.1 W., Fremont County, Hydrologic Unit 10080001, on right bank 3.3 mi downstream from diversion dam on Wind River and 15 mi southeast of Lenore.

PERIOD OF RECORD.--May 1941 to September 1945 (irrigation season only), May 1949 to September 1982, April 1988 to current year. No winter record 1977-1978, and 1988 to current year. Monthly discharge only from some periods, published in WSP 1309.

GAGE.--Water-stage recorder. Datum of gage is 5,560.85 ft above sea level. May 1, 1941 to Sept. 30, 1945, nonrecording gage at site 3.2 mi upstream at different datum. May 3, 1949 to Oct. 2, 1952, and Apr. 12 to May 15, 1971, water-stage recorder at site 3.0 mi upstream at different datum.

REMARKS.--Records good. Flow used for irrigation on Riverton project. U.S. Geological Survey data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES

					DAILY	MEAN VA	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
_												
1	467							536	855	853	1090	345
2	460						47	539	1240	867	1070	333
3	477						159	447	1090	865	1020	187
4	460						161	425	962	942	1020	
5	443						164	440	1000	1010	1020	
6	442						173	530	1030	1050	1000	
7	431						180	469	942	1100	896	
8	423						194	420	957	1170	881	
9	409						180	616	1020	1190	871	
10	405						168	693	1020	1220	895	
11	417						166	552	917	1170	859	
12	443						187	676	879	1010	808	
13	437						195	937	910	937	773	
14	447						177	1160	1020	860	752	
15	457						163	1380	927	838	753	
13	437						103	1300	721	030	755	
16	456						149	1650	897	869	757	
17	438						208	1780	962	778	746	
18	444						224	1230	979	716	720	
19	500						347	919	953	724	699	
20	515						400	823	870	751	687	
21	502						340	725	896	718	690	
22	515						274	864	917	733	716	
23							274			733 762		
	515 490						235 269	1020	923		667 585	
24								1100	971	885		
25	235						288	1050	1010	1140	566	
26							377	1090	1090	1110	526	
27							555	983	1100	1080	496	
28							633	797	1040	1020	476	
29							683	874	934	992	425	
30							649	895	865	1030	379	
31								826		1130	363	
TOTAL								26446	29176	29520	23206	
MEAN								853	973	952	749	
MAX								1780	1240	1220	1090	
MIN								420	855	716	363	
AC-FT								52460	57870	58550	46030	
AC-F1								32400	37870	36330	40030	
STATIST	TICS OF M	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 1941	- 2001,	BY WATER	YEAR (WY	() *			
MEAN	195	184	199	199	201	224	298	719	1123	1259	989	699
MAX	430	436	383	345	357	422	440	1201	1668	1736	1402	1168
(WY)	1994	1972	1958	1958	1954	1972	1980	2000	1990	1976	1995	1997
MIN	.000	.000	.000	.000	.000	.000	91.2	339	321	587	423	277
(WY)	1951	1951	1971	1971	1971	1971	1971	1942	1944	1941	1941	1994
(AA T)	エンンエ	エクンエ	エフィエ	エフィエ	エフィエ	エフィエ	1211	エクマム	エクマセ	エクセエ	エクマエ	エフラサ

06226000 WYOMING CANAL NEAR LENORE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR*	FOR 2001 WAT	TER YEAR*	WATER YEA	RS 1941 - 2001*
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	 		 		540 ^a 669 ^a 461 ^a	1972 1975
HIGHEST DAILY MEAN	1860	May 25	1910	May 16		Jun 11,12 1990, May 25 2000
LOWEST DAILY MEAN	13	Mar 28	.00	Many days	.00	Many days, most years
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE			1910 13.28	May 16 May 16	2060 13.79	Jun 5 1990 Jun 5 1990

For period of operation. Water years 1977, 1978, and 1988 to current year not included.

06226100 WIND RIVER BELOW WYOMING CANAL DIVERSION, NR LENORE, WY

LOCATION.--Lat $43^{\circ}13^{\circ}19^{\circ}$, long $108^{\circ}57^{\circ}00^{\circ}$, in $\mathrm{SE}^{1}/_{4}$ $\mathrm{SW}^{1}/_{4}$ $\mathrm{NE}^{1}/_{4}$ sec. 24, T.3 N., R.2 W., Fremont County, Hydrologic Unit 10080005, about 0.5 mi downstream from diversion, 9 mi west of Morton, and 10 mi southeast of Willow Creek.

PERIOD OF RECORD.--July to September 2001.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA)
		(00061)	(00025)	(00300)	(00301)	(00400)	(00095)	(00020)	(00010)	(00916)	(00927)	(00937)	(00929)
JUL 26	1315	400	625	8.0	108	7.4	157	26.0	20.0				
AUG 16	1030	371	625	7.8	101	8.3	202	27.0	18.0	30.0	9.32	2.6	9.3
SEP 19		356	625	9.6	115	8.6	424		14.5		9.32	2.0	9.3
19	1310	330	025	9.0	113	0.0	424	24.0	14.5				
DATE	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
JUL 26							.15	.010	<.001	<.007	.012	E11k	E15k
AUG 16	88	2.0	. 2	6.5	25.3	115	.91	.005	<.001	<.007	.177	E15k	160
SEP 19							.23	.007	.002	<.007	.028	E7k	41
DATE	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUL 26													
AUG 16	E1	89.6	<13.0	10	<20.0	<.01	4270	5	120	.01	<3.0	<.40	32
SEP				10			4270		120	.01			
19													
DATE	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL WATER FLIRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
JUL 26													
AUG 16	<.002	<.004	<.002	<.005	<.007	<.010	<.002	<.041	<.020	<.005	<.018	<.003	<.006
SEP 19													
	DI- AZINON, DIS-	DI- ELDRIN DIS-	DISUL- FOTON WATER FLTRD 0.7 U	EPTC WATER FLTRD 0.7 U	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC	ETHO- PROP WATER FLTRD 0.7 U GF, REC	FONOFOS WATER DISS REC	LINDANE DIS- SOLVED	LIN- URON WATER FLTRD 0.7 U GF, REC	MALA- THION, DIS- SOLVED	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC	METHYL PARA- THION WAT FLT 0.7 U GF, REC	METHY- LENE BLUE ACTIVE SUB- STANCE
DATE	SOLVED (UG/L) (39572)	SOLVED (UG/L) (39381)	GF, REC (UG/L) (82677)	GF, REC (UG/L) (82668)	(UG/L) (82663)	(UG/L) (82672)	(UG/L) (04095)	(UG/L) (39341)	(UG/L) (82666)	(UG/L) (39532)	(UG/L) (82686)	(UG/L) (82667)	(MG/L) (38260)
JUL	SOLVED (UG/L) (39572)	SOLVED (UG/L)	(UG/L) (82677)	(UG/L) (82668)	(UG/L)	(UG/L)	(UG/L) (04095)	(UG/L)	(UG/L) (82666)	(UG/L)	(UG/L)	(UG/L)	(MG/L) (38260)
	SOLVED (UG/L)	SOLVED (UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(MG/L)

06226100 WIND RIVER BELOW WYOMING CANAL DIVERSION, NR LENORE, WY--Continued

DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)
JUL 26 AUG													
16 SEP	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	<.015	<.004	<.010
19													
	DATE	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	
	JUL 26 AUG										11	12	
	16	<.011	<.023	<.011	<.016	<.034	<.017	<.005	<.002	<.009	374	375	
	SEP 19										90	87	

 $[\]mbox{\bf E}$ -- Estimated value. $\mbox{\bf k}$ -- Counts outside acceptable range (non-ideal colony couny).

1994

06227596 JOHNSTOWN DITCH AT HEADWORKS, NEAR KINNEAR, WY

LOCATION.--Lat $43^{\circ}09^{\circ}02^{\circ}$, long $108^{\circ}43^{\circ}41^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec.14, T.2 N., R.1 E., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, on left bank, 450 ft downstream from headgate, 1.6 mi upstream from bridge on State Highway 132 and 2.5 mi west of Kinnear.

PERIOD OF RECORD.--May 1991 to September 1999, May to September 2001 (no winter records).

GAGE.--Water-stage recorder. Elevation of gage is 5,310 ft above sea level, from topographic map.

REMARKS.--Records good. Flow is diverted from the Wind River for irrigation. Data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 30 32 2 ___ ___ ___ ---___ ___ ___ ___ 31 32 34 29 3 ------------------34 31 ------31 32 33 32 ___ ___ 5 ___ ___ ___ ___ ___ 32 32 33 32 ---___ ---31 32 ___ ___ ___ ---___ ___ 34 32 32 32 8 33 ---------35 32 ---------------32 ---------------------36 32 10 35 33 32 32 ---------11 ---------36 33 31 29 ------27 12 34 32 32 34 31 27 13 32 ---------------------14 33 32 31 27 ---29 15 33 32 31 16 17 13 33 32 31 29 ---------------------20 33 32 30 28 18 17 33 32 30 30 32 32 19 ___ ---___ ___ ___ ___ ___ 17 33 30 30 ---------20 17 33 30 30 21 ___ ___ ___ ___ ------___ 18 32 32 32 33 29 29 ___ ___ ---------29 22 29 18 23 29 18 32 28 33 33 24 ___ ___ ___ ___ ___ ___ ___ 21 32 28 28 29 32 25 28 28 26 ___ ___ ___ ___ ___ ___ ___ 29 32 33 28 28 27 29 32 33 28 28 28 ---30 31 28 29 29 ___ ___ ___ ___ ___ ___ ___ 29 32 33 29 29 30 29 32 29 33 30 31 ------------___ 28 33 29 TOTAL 981 1004 950 886 ---------------MEAN ---------32.7 32.4 30.6 29.5 ---___ ___ 36 34 28 33 27 MAX 33 ------------30 32 MIN AC-FT ------1950 1990 1880 1760 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1991 2001, BY WATER YEAR (WY)* MEAN 1.25 22.6 20.1 15.2 25.7 25.3 MAX 1.73 ------------------26.1 33.6 32.6 33.5 29.5 (WY) 1993 ------------------1994 1999 1999 1999 2001 .76 ---------6.98 11.5 12.7 10.9 MIN 19.5

1999

1995

1992

1997

1993

06227596 JOHNSTOWN DITCH AT HEADWORKS, NEAR KINNEAR, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1991 - 2001*
HIGHEST DAILY MEAN LOWEST DAILY MEAN	36 Jun 9 .00 Many days	48 Jun 25 1991 .00 Many days, most years
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE	39 Sep 3 1.78 Sep 3	56 Jul 23 1996 2.25 Jul 23 1996

06227600 WIND RIVER NEAR KINNEAR, WY

LOCATION.--Lat $43^{\circ}08'38''$, long $108^{\circ}42'26''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.13, T.2 N., R.1 E., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, on left bank, downstream side of bridge on Wyoming State Secondary Highway 132, and 1.6 mi southwest of Kinnear.

DRAINAGE AREA. -- 2,194 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1974 to September 1979 (no winter records), April 1991 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 5,280 ft above sea level, from topographic map. April 1974 to September 1979 and Mar. 28, 1991 to June 8, 1997, at site 300 ft upstream on right bank at same datum. June 9, 1997 to Apr. 21, 1998, at present site on right bank at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation by Bull Lake beginning in 1938 (see station 06224500) and Pilot-Butte Reservoir beginning in 1926, combined capacity, 182,000 acre-ft. Diversions upstream from station for irrigation of about 102,100 acres lying both upstream and downstream from station. The Wyoming Canal of the Riverton Project is the major diversion. This diversion began in 1926 and part of it can be returned to the river upstream from station through Pilot Wasteway. Additional wastewater returns to river downstream from station through Fivemile and Muddy creeks. U.S. Geological Survey data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	123	456	e280	e220	e230	e240	249	187	434	333	341	299
2	126	438	e280	e220	e240	e250	236	238	430	340	343	299
3	127	393	e280	e220	e250	e260	133	247	432	343	345	349
4	114	365	e280	e220	e250	e270	118	234	434	338	346	353
5	97	369	e280	e220	e250	e270	111	243	425	337	346	334
6	89	405	e270	e230	e250	e280	106	249	412	338	345	347
7	85	366	e260	e220	230	e280	100	253	413	341	342	358
8	84	343	e250	e220	210	e290	96	274	418	337	345	370
9	83	356	e230	e220	e200	e300	87	302	421	338	349	349
10	80	366	e210	e220	e200	e310	86	314	417	361	345	331
11	79	335	e195	e220	e210	e310	86	312	415	357	344	287
12	77	289	e190	e220	e220	e310	85	435	354	350	347	264
13	72	e230	e189	e220	e230	e300	82	483	361	345	345	258
14	72	e240	e195	e220	e230	e280	80	593	358	346	343	260
15	73	e240	e200	e220	e230	e270	79	650	347	357	345	301
16 17 18 19 20	69 69 69 67	e230 e230 e230 e240 e240	e210 e230 e240 e240 e240	e210 e200 e200 e200 e210	e230 e230 e230 e230 e240	e290 e310 e340 e360 e380	94 94 91 85 84	825 707 346 373 393	348 352 355 353 353	352 346 348 347 342	335 327 323 323 319	298 292 315 314 314
21	65	e250	e240	e200	e250	e340	85	410	352	339	308	310
22	71	e250	e230	e200	e250	305	86	441	348	352	300	294
23	65	e250	e220	e200	e250	293	e130	442	337	351	293	288
24	65	e250	e230	e200	e250	297	e185	456	331	354	297	282
25	209	e260	e240	e210	e250	314	e220	445	331	355	297	276
26 27 28 29 30 31	508 490 494 468 460 464	e270 e270 e280 e280 e280	e230 e230 e230 e220 e220 e220	e200 e200 e200 e200 e200 e210	e250 e240 e230 	314 301 282 268 269 263	210 159 148 147 149	454 473 468 454 437 437	331 323 324 329 338	357 358 358 343 337 334	296 296 298 292 293 297	280 282 294 302 313
TOTAL	5081	9001	7259	6550	6560	9146	3701	12575	11176	10734	10065	9213
MEAN	164	300	234	211	234	295	123	406	373	346	325	307
MAX	508	456	280	230	250	380	249	825	434	361	349	370
MIN	65	230	189	200	200	240	79	187	323	333	292	258
AC-FT	10080	17850	14400	12990	13010	18140	7340	24940	22170	21290	19960	18270
STATIST	rics of 1	MONTHLY I	MEAN DATA	FOR WATER	YEARS 19	74 - 2001	, BY WATER	R YEAR (W	Y)*			
MEAN	378	442	319	294	301	329	266	1018	2769	1764	579	397
MAX	850	625	380	360	378	418	758	2356	6611	4802	1230	564
(WY)	1998	1998	1996	1996	1998	1996	1974	1999	1999	1995	1976	1976
MIN	164	300	234	193	224	194	72.9	346	373	346	325	216
(WY)	2001	2001	2001	1993	1993	1992	1978	1995	2001	2001	2001	1977

06227600 WIND RIVER NEAR KINNEAR, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALE	NDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEARS	S 1974 - 2001*
ANNUAL TOTAL	141225		101061			
ANNUAL MEAN	386		277		725	
HIGHEST ANNUAL MEAN					1272	1999
LOWEST ANNUAL MEAN					277	2001
HIGHEST DAILY MEAN	2100	May 30	825	May 16	11100	Jun 20 1999
LOWEST DAILY MEAN	65	Oct 21	65	Oct 21	28	Apr 24 1978
ANNUAL SEVEN-DAY MINIMUM	67	Oct 18	67	Oct 18	35_	Apr 19 1978
MAXIMUM PEAK FLOW			2620	May 15	13900 ^a h	Jun 13 1991
MAXIMUM PEAK STAGE			5.41	May 15	8.79 ^D	Jun 10 1997
ANNUAL RUNOFF (AC-FT)	280100		200500		525200	
10 PERCENT EXCEEDS	478		407		1980	
50 PERCENT EXCEEDS	320		280		388	
90 PERCENT EXCEEDS	153		104		200	

For period of operation. Gage height, 8.03 ft, from floodmarks. From floodmarks, discharge, 11,600 ft³/s. Estimated. a b e

06227600 WIND RIVER NEAR KINNEAR, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1985-92, July to September 2001.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)
FEB 14	1145	230	628	12.0	100	8.6	435	-6.0	.00	53.1	15.5	2.7	16.0
JUN 05													
JUL	1315	427	630	9.4	113	8.4	217	22.0	15.0	22.9	6.44	1.8	9.4
16 AUG	1805	348	625	6.6	96	8.3	261	32.0	24.0				
20 SEP	1000	317	630	8.4	103	8.4	263	24.5	16.0	25.9	8.00	<.1	12.4
12	1230	397	630	5.4	69	8.0	219	21.0	18.0				
DATE	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
FEB 14	179	5.0	.3	16.4	53.4	273	.10	.053	.001	E.006	.029	E6k	E9k
JUN 05	76	4.3	.2	8.6	28.4	126	.20	.006	<.001	.007	.033	E10k	E3k
JUL 16							.33	.008	.001	<.007	.084	54	93
AUG													
20 SEP	87	4.2	. 2	6.9	41.3	163	.20	<.005	<.001	<.007	.028	34	36
12							.25	.006	.001	<.007	.020	E6k	E12k
DATE	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
DATE FEB 14	TOTAL (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)	WATER UNFLTRD TOTAL (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	TOTAL RECOV- ERABLE (UG/L AS CU)	TOTAL (MG/L AS CN)	TOTAL RECOV- ERABLE (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	NIUM, TOTAL (UG/L AS SE)	TOTAL RECOV- ERABLE (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)
DATE FEB 14 JUN 05	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
DATE FEB 14 JUN 05 JUL 16	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
DATE FEB 14 JUN 05 JUL 16 AUG 20	TOTAL (UG/L AS AS) (01002) E1	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.4 34.3	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0	TOTAL (MG/L AS CN) (00720) <.01 <.01	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 160 110	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
DATE FEB 14 JUN 05 JUL 16 AUG	TOTAL (UG/L AS AS) (01002) E1 <2	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.4 34.3	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) M	TOTAL RECOV-ERABLE (UG/L AS CU) (01042) <20.0 <20.0	TOTAL (MG/L AS CN) (00720) <.01 <.01	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 160 110	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 .02	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31
DATE FEB 14 JUN 05 JUL 16 AUG 20 SEP	TOTAL (UG/L AS AS) (01002) E1 <2	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.4 34.3	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) M	TOTAL RECOV-ERABLE (UG/L AS CU) (01042) <20.0 <20.0	TOTAL (MG/L AS CN) (00720) <.01 <.01	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 160 110	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 .02	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31
DATE FEB 14 JUN 05 JUL 16 AUG 20 SEP 12 DATE	TOTAL (UG/L) (UG/L) AS AS) (01002) E1 <2 <2 ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.4 34.3 37.3 ACETO- CHLOR, WATER FLIRD REC (UG/L) (49260)	WATER UNFLITED TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <13.0 (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) M <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253)	TOTAL RECOV (01042) <20.0 <20.0 <20.0 <20.0 XTRA- ZINE, WATER, DISS, REC (UG/L) (39632)	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 160 110 340 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 13 13 18 UGRBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 .02 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 ZINE, WATER, DISS, REC (UG/L) (04040)
DATE FEB 14 JUN 05 JUL 16 AUG 20 SEP 12 DATE	TOTAL (UG/L AS AS) (01002) E1 <2 <2 ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.4 34.3 37.3 ACETO- CHLOR, WATER FITRD REC (UG/L) (49260)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <13.0 (13.0) -	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) M <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0 <20.0 ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 160 110 340 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 13 13 18 CARBO- FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674)	TOTAL RECOV- ERRABLE (UG/L AS HG) (71900) <.14 .02 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	TOTAL RECOV- REABLE (UG/L AS AG) (01077) <.43 <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 SILVE AND
DATE FEB 14 JUN 05 JUL 16 AUG 20 SEP 12 DATE FEB 14 JUN 05 JUL JUN 05 JUL	TOTAL (UG/L) (UG/L) AS AS) (01002) E1 <2 <2 ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.4 34.3 37.3 ACETO- CHLOR, WATER FLIRD REC (UG/L) (49260)	WATER UNFLITED TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <13.0 (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) M <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253)	TOTAL RECOV (01042) <20.0 <20.0 <20.0 <20.0 XTRA- ZINE, WATER, DISS, REC (UG/L) (39632)	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 160 110 340 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 13 13 18 UGRBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 .02 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 ZINE, WATER, DISS, REC (UG/L) (04040)
DATE FEB 14 JUN 05 JUL 16 AUG 20 SEP 12 DATE FEB 14 JUN 05	TOTAL (UG/L AS AS) (01002) E1 <2 <2 ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.4 34.3 37.3 ACETO- CHLOR, WATER FITRD REC (UG/L) (49260)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <13.0 (13.0) -	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) M <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0 <20.0 ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 160 110 340 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 13 13 18 CARBO- FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674)	TOTAL RECOV- ERRABLE (UG/L AS HG) (71900) <.14 .02 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	TOTAL RECOV- REABLE (UG/L AS AG) (01077) <.43 <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 SILVE AND
DATE FEB 14 JUN 05 JUL 16 AUG 20 SEP 12 DATE FEB 14 JUN 05 JUL 16	TOTAL (UG/L AS AS) (01002) E1 <2 <2 2,6-DI-ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.4 34.3 37.3 ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260) <.004	WATER UNFLITRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <13.0 <13.0 <143.0 <144.0 <144.0 ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) M <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005	TOTAL RECOV-ERABLE (UG/L AS CU) (01042) <20.0 <20.0 <20.0 <20.0 (20.0	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010	TOTAL RECOV-ERABLE (UG/L AS FE) (01045) 160 110 340 BUTYL-ATE, WATER, DISS, REC (UG/L) (04028) <.002	TOTAL RECOV-ERABLE (UG/L AS PB) (01051) <1 <1 <1 <1 <1 CAR-BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 13 13 18 CARBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 .02 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 <3.0 <yana- ZINE, WATER, DISS, REC (UG/L) (04041) <.018</yana- 	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.006

06227600 WIND RIVER NEAR KINNEAR, WY--Continued

DATE	DI- AZIMON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260)
FEB													. 00
JUN													<.02
05 JUL	<.005	<.005	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	<.02
16 AUG													
20 SEP	<.005	<.005	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	.02
12													
DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)
FEB 14													
JUN 05	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	<.015		
JUL				<.007							<.015	<.004	<.010
16 AUG													
20 SEP	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	<.015	<.004	<.010
12													
	DATE	PRO- PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLIRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	
	FEB 14										98	61	
	JUN 05	<.011	<.023	<.011	<.016		<.017	<.005	<.002	E.006	18	21	
	JUL 16	<.011	<.023	<.UII	<.016	<.034	<.017	<.005	<.002	E.006	135	127	
	AUG												
	20 SEP	<.011	<.023	<.011	<.016	<.034	<.017	<.005	<.002	<.009	24	21	
	12										16	17	

E -- Estimated value. M -- Presence verified, not quantified. k -- Counts outside acceptable range (non-ideal colony count).

06227810 LEFTHAND DITCH AT HEADWORKS, NEAR RIVERTON, WY

LOCATION.--Lat $43^{\circ}01'34"$, long $108^{\circ}31'12"$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.33, T.1 N., R.3 E., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, on left bank 0.6 mi downstream from headgates and 6.9 mi west of Riverton.

PERIOD OF RECORD.--May 1991 to September 1999, May to September 2001 (no winter records).

GAGE.--Water-stage recorder. Elevation of gage is 5,060 ft above sea level, from topographic map.

REMARKS.--Records fair. Flow is diverted from Wind River for irrigation. Data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									36	47	41	39
2									35	47	42	39
3									35	47	42	37
4									36			
_										47	41	37
5									38	45	40	31
6									38	39	40	31
7									38	36	39	32
8									37	37	37	33
9									38	37	35	34
10												
10									36	38	33	34
11									35	39	33	34
12									34	38	35	34
13									33	38	34	35
14									31	38	33	35
15									38	39	33	39
13									30	39	33	39
16									43	39	33	43
17									45	40	33	42
18									46	40	34	42
19								8.5	47	40	34	41
20								15	47	40	32	39
21								17	46	40	32	39
22								20	47	40	31	39
23								22	50	40	31	38
24								26	50	40	30	39
25								27	49	39	28	40
26								26	49	40	26	44
27								30	48	42	25	44
28								29	47	43	24	47
29								29	47	43	21	46
30								26	49	43	13	47
31								30		41	28	
31								50			20	
TOTAL									1248	1262	1013	1154
MEAN									41.6	40.7	32.7	38.5
MAX									50	47	42	47
MIN									31	36	13	31
AC-FT									2480	2500	2010	2290
110 11									2100	2500	2010	2270
STATIST	TICS OF MO	NTHLY MEA	N DATA FO	OR WATER Y	EARS 1991	- 2001,	BY WATER	YEAR (WY)	*			
MEAN							.60	24.4	25.5	28.7	25.8	26.2
MAX							.60	35.3	41.6	44.6	47.7	42.9
(WY)							1992	1992	2001	1994	1994	1994
MIN							.60	20.2	12.8	19.4	8.74	10.3
							1992	1993	1995	1993	1998	1999
(WY)							199∠	1993	TAAD	1993	TAAQ	1999

06227810 LEFTHAND DITCH AT HEADWORKS, NEAR RIVERTON, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1991 - 2001*
HIGHEST DAILY MEAN LOWEST DAILY MEAN	50 Jun 23,24 6.0 Oct 1	66 May 25, 30 1997 .00 Many days,
MAXIMUM PEAK FLOW	68 Aug 31	most years 74 ^a Jun 13 1991 May 24 1997
MAXIMUM PEAK STAGE	2.80 Aug 31	3.19 Sep 8 1997

^{*} For period of operation. a Gage height, 2.73 ft in 1991, 3.09 ft in 1997.

06228000 WIND RIVER AT RIVERTON, WY

LOCATION.--Lat $43^{\circ}00^{\circ}38^{\circ}$, long $108^{\circ}22^{\circ}34^{\circ}$, in NE $^{1}/_{4}$ NW $^{1}/_{4}$ sec.2, T.1 S., R.4 E., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, on left bank 20 ft downstream from bridge on State Highway 789, 1.1 mi southeast of post office in Riverton, and 1.5 mi upstream from Little Wind River.

DRAINAGE AREA. -- 2,309 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May to August 1906, August to December 1907, May to October 1908, May 1911 to current year. Monthly discharge only for some periods, published in WSP 1309. Published as Big Wind River near Arapahoe Agency 1906 and as Big Wind River near Riverton 1907-08.

REVISED RECORDS. -- WSP 1509: 1935. WSP 1709: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 4,901.56 ft above sea level. See WSP 1729 for history of changes prior to Oct. 13, 1930 to Apr. 15, 1968, water-stage recorder at site 280 ft upstream at datum 2.00 ft higher. Apr. 16 to Nov. 17, 1968, water-stage recorder at site 155 ft upstream at datum 2.00 ft higher. Nov. 18, 1968 to July 28, 1970, water-stage recorder at site 20 ft downstream at datum 2.00 ft higher. July 29, 1970 to Sept. 30, 1977, water-stage recorder at site 245 ft downstream at datum 2.00 ft higher. Oct. 1, 1977 to Oct. 23, 1997 at site 245 ft downstream at same datum.

REMARKS.--Records poor. Some regulation by Bull Lake beginning in 1938 (station 06224500) and Pilot Butte Reservoir beginning in 1926, combined capacity, 182,000 acre-ft. Diversions upstream from station for irrigation of about 128,000 acres upstream and downstream from station. The Wyoming Canal of the Riverton project is the major diversion. This diversion began in 1926 and part of it can be returned to the river upstream from station through Pilot wasteway. Additional wastewater returns to river downstream from station through Fivemile Creek and Muddy Creek. Bureau of Reclamation data collection platform with satellite telemetry at station.

DIGGUARGE GURLG EEEE DED GEGOND MARIED VEAR OGROPER 2000 DO GERMENDER 2001

		DISCHA	ARGE, CUB	IC FEET P		, WATER Y LY MEAN V	YEAR OCTOBER VALUES	2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	81 63 69 97 88	448 434 412 373 359	e260 e260 e240 e250 e240	e210 e210 e210 e220 e220	e260 e270 e270 e270 e280	e300 e310 e330 e350 e360	296 274 143 99 107	18 19 54 47 26	29 26 30 44 49	33 33 26 26 30	31 33 26 27 32	22 22 22 68 71
6 7 8 9	74 66 63 61 61	391 383 353 362 364	e230 e240 e230 e210 e190	e240 e230 e220 e220 e220	e280 e260 e250 e240 e250	e360 e370 e380 e410 e410	104 98 90 83 77	16 12 22 20 29	37 25 23 24 21	26 27 29 28 30	35 34 32 34 33	71 85 107 109 97
11 12 13 14 15	60 54 55 90 88	e320 e290 e280 e250 e240	e180 e180 e180 e170 e180	e230 e230 e230 e230 e230	e270 e270 e270 e270 e270	e410 e410 e390 e370 e350	76 74 72 69 67	22 40 85 98 240	21 23 41 40 29	58 41 33 25 28	37 32 32 32 32 24	84 46 31 28 36
16 17 18 19 20	88 86 87 85 84	e250 e250 e240 e230 e230	e200 e200 e190 e200 e200	e220 e210 e210 e220 e220	e280 e280 e280 e290 e300	e370 e400 e420 e440 e440	67 49 39 34 34	144 483 75 19 18	22 26 25 27 25	36 30 26 28 23	27 24 21 22 25	60 57 65 90 114
21 22 23 24 25	83 96 93 85 86	e230 e240 e240 e240 e250	e200 e180 e190 e200 e210	e220 e220 e220 e220 e220	e310 e330 e340 e340 e340	e430 e440 e420 e440 e490	27 54 48 40 26	24 29 33 23 32	24 23 23 24 24	27 23 21 22 24	27 22 17 18 17	188 182 169 e170 e175
26 27 28 29 30 31	406 451 460 457 452 443	e260 e260 e270 e270 e270	e210 e220 e230 e230 e220 e210	e220 e220 e230 e240 e240 e250	e340 e330 e320 	555 369 329 319 314 306	16 17 23 21 19	25 37 41 49 41 37	26 33 27 24 26	26 28 28 27 30 29	18 18 18 20 19 24	e200 e205 e220 e230 e245
TOTAL MEAN MAX MIN AC-FT	4612 149 460 54 9150	8989 300 448 230 17830	6530 211 260 170 12950	6930 224 250 210 13750	8060 288 340 240 15990	11992 387 555 300 23790	2243 74.8 296 16 4450	1858 59.9 483 12 3690	841 28.0 49 21 1670	901 29.1 58 21 1790	811 26.2 37 17 1610	3269 109 245 22 6480
STATIST	CICS OF N	MONTHLY ME	EAN DATA	FOR WATER	YEARS 191	12 - 2001	l, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	596 1500 1952 149 2001	451 895 1969 222 1941	348 559 1972 200 1932	329 539 1972 151 1938	333 531 1948 196 1981	350 650 1916 74.9 1981	409 1234 1943 53.8 1989	1215 4618 1928 59.9 2001	2832 7194 1921 28.0 2001	1729 5802 1917 20.3 1994	675 3052 1930 26.2 2001	479 1794 1927 35.7 1988

06228000 WIND RIVER AT RIVERTON, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 W	ATER YEAR	WATER YEARS	3 1912 - 2001
ANNUAL TOTAL	82489		57036			
ANNUAL MEAN	225		156		803	
HIGHEST ANNUAL MEAN					1626	1913
LOWEST ANNUAL MEAN					156	2001
HIGHEST DAILY MEAN	1590	May 26	555	Mar 26	11400	Jun 14 1935
LOWEST DAILY MEAN	19	Jul 9	12	May 7	9.8	May 28 1977
ANNUAL SEVEN-DAY MINIMUM	21	Jul 8	18_	Aug 23	12,	Jul 13 1977
MAXIMUM PEAK FLOW			925 ^a	_ May 17	13300 ^D	Jun 15 1935
MAXIMUM PEAK STAGE			7.01	l Dec 16	10.86 ^{ct}	Jun 10 1997
ANNUAL RUNOFF (AC-FT)	163600		113100		582000	
10 PERCENT EXCEEDS	383		360		2060	
50 PERCENT EXCEEDS	180		97		400	
90 PERCENT EXCEEDS	27		23		162	

Gage height, 4.50 ft. Gage height, 10.15 ft, site and datum then in use. Backwater from ice. Discharge, 10,100 ft 3 /s, site 245 ft downstream, present datum. Estimated. a b c d e

06228000 WIND RIVER AT RIVERTON, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1947-50, 1965-95, February to September 2001.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)
FEB													
15 JUN	1410	266	635	9.4	77	8.1	464	-9.0	.00	54.9	15.5	2.7	19.9
04 JUL	1205	39	635	8.8	101	8.3	542	14.0	13.0				
18 AUG	1140	26	640	11.0	151	8.7	559	31.0	22.0				
20 SEP	1545	34	640	9.8	134	8.7	536	30.0	22.0	45.4	11.5	<.1	49.0
18	1055	59	640	9.7	113	8.1	599	23.0	14.5				
DATE	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
FEB 15	185	4.9	.3	16.8	58.1	289	.13	.097	.002	E.004	.026	E4k	E4k
JUN 04												E26k	E70k
JUL 18							.45	.006	.002	.031	.058	E15k	22
AUG 20	166	6.2	. 4	11.5	107	349	.52	.005	.001	<.007	.025	E16k	43
SEP 18							.52	.051	.004	<.007	.062		
10							.52	.031	.001	1.007	.002		
DATE	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
FEB 15	TOTAL (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)	WATER UNFLTRD TOTAL (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	TOTAL RECOV- ERABLE (UG/L AS CU)	TOTAL (MG/L AS CN)	TOTAL RECOV- ERABLE (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	NIUM, TOTAL (UG/L AS SE)	TOTAL RECOV- ERABLE (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)
FEB 15 JUN 04	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
FEB 15 JUN 04 JUL 18	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
FEB 15 JUN 04 JUL	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
FEB 15 JUN 04 JUL 18 AUG 20 SEP	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.5	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0	TOTAL (MG/L AS CN) (00720) <.01	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14	NIUM, TOTAL (UG/L AS SE) (01147) <2.6	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31
FEB 15 JUN 04 JUL 18 AUG 20	TOTAL (UG/L AS AS) (01002) E1 2 2,6-DI- ETHYL ANILINE WAT FLT	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.5 49.0 ACETO- CHLOR, WATER	WATER UNFILTRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <hz></hz> ALA- CHLOR, WATER,	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 ALPHA BHC	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 E10.8 ATRA- ZINE, WATER,	TOTAL (MG/L AS CN) (00720) <.01 <.01 BEN- FLUR- ALIN WAT FLD	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 150 120 BUTYL- ATE, WATER,	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 CAR- BARYL WATER FLIRD	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 21 25 CARBO- FURAN WATER FLITD	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.01 CHLOR- PYRIFOS	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 CYANA- ZINE, WATER,	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 DCPA WATER FLIRD	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 DEETHYL ATRA- ZINE, WATER,
FEB 15 JUN 04 JUL 18 AUG 20 SEP	TOTAL (UG/L (UG/L AS AS) (01002) E1 2 2 2,6-DI-ETHYL ANILINE	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.5 49.0 ACETO- CHLOR,	WATER UNFLTRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <ala-chlor,< td=""><td>MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 ALPHA</td><td>TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 E10.8 ATRA- ZINE,</td><td>TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 SEN- FLUR- ALIN</td><td>TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 150 120 BUTYL- ATE,</td><td>TOTAL RECOVE ERABLE (UG/L AS PB) (01051) <1 <1 <1 CAR- BARYL WATER</td><td>NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 21 25 CARBO- FURAN WATER</td><td>TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.01 CHLOR-</td><td>NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 CYANA- ZINE,</td><td>TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 DCPA WATER</td><td>TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 ZINE,</td></ala-chlor,<>	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 ALPHA	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 E10.8 ATRA- ZINE,	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 SEN- FLUR- ALIN	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 150 120 BUTYL- ATE,	TOTAL RECOVE ERABLE (UG/L AS PB) (01051) <1 <1 <1 CAR- BARYL WATER	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 21 25 CARBO- FURAN WATER	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.01 CHLOR-	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 CYANA- ZINE,	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 DCPA WATER	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 ZINE,
FEB 15 JUN 04 JUL 18 AUG 20 SEP 18 DATE	TOTAL (UG/L AS AS) (01002) E1	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.5 49.0 ACETO- CHLOR, WATER FLTRD REC (UG/L)	WATER UNFLITED TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <hz></hz> ALA- CHLOR, WATER, DISS, REC, (UG/L)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 SILPHA BHC DIS- SOLVED (UG/L)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 E10.8 ATRA- ZINE, WATER, DISS, REC (UG/L)	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 150 120 120 BUTYL- ATE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 21 25 CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L)	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L)
FEB 15 JUN 04 JUL 18 AUG 20 SEP 18 DATE FEB 15 JUN	TOTAL (UG/L) (UG/L) AS AS) (01002) E1 2 2,6-DI- ETHYL ANILINE WAT FIT 0.7 U GF, REC (UG/L) (82660)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.5 49.0 ACETO- CHLOR, WATER FLTRD REC (UG/L)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <hz></hz> ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 SILPHA BHC DIS- SOLVED (UG/L)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 E10.8 ATRA- ZINE, WATER, DISS, REC (UG/L)	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 150 120 120 BUTYL- ATE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 21 25 CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
FEB 15 JUN 04 JUL 18 AUG 20 SEP 18 DATE FEB 15 JUN 04 JUL	TOTAL (UG/L) (UG/L) AS AS) (01002) E1 2 2,6-DI- ETHYL ANILINE WAT FIT 0.7 U GF, REC (UG/L) (82660)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.5 49.0 ACETO- CHLOR, WATER FLTRD REC (UG/L)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 SILPHA BHC DIS- SOLVED (UG/L)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 E10.8 ATRA- ZINE, WATER, DISS, REC (UG/L)	TOTAL (MG/L AS CN) (00720) <.01 <.01 SEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 150 120 120 BUTYL- ATE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 21 25 CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 SINE, WATER, DISS, REC (UG/L) (04040)
FEB 15 JUN 04 JUL 18 AUG 20 SEP 18 DATE FEB 15 JUN 04 JUL 18 AUG 4 JUL 18 AUG	TOTAL (UG/L) (UG/L) AS AS) (01002) E1 2 2,6-DI- ETHYL ANILINE WAT FIT 0.7 U GF, REC (UG/L) (82660)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.5 49.0 ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	WATER UNFLITED TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <13.0 (UG/L) (13.0) <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 SIMPHA BHC DIS- SOLVED (UG/L) (34253)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 E10.8 E10.8 ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 150 120 120 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 21 25 25 CARBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
FEB 15 JUN 04 JUL 18 AUG 20 SEP 18 DATE FEB 15 JUN 04 JUL 18	TOTAL (UG/L AS AS) (01002) E1	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 66.5 49.0 ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	WATER UNFILTRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <hala- (46342)<="" (ug="" chlor,="" diss,="" l)="" rec,="" td="" water,=""><td>MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253)</td><td>TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 E10.8 E10.8 ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)</td><td>TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)</td><td>TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 150 120 120 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)</td><td>TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) </td><td>NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 21 25 CARBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)</td><td>TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)</td><td>NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L)</td><td>TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L)</td><td>TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) </td></hala->	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 E10.8 E10.8 ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 150 120 120 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 21 25 CARBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)

06228000 WIND RIVER AT RIVERTON, WY--Continued

DATE	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLIRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260)
FEB													
15													<.02
JUN 04													
JUL													
18 AUG													
20 SEP	<.005	<.005	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	.03
18													
DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)
FEB													
15 JUN													
04 JUL													
18													
AUG 20	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	.015	<.004	<.010
SEP 18													
10													
	DATE	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	
	FEB 15										55	40	
	JUN 04										9	.95	
	JUL 18										5	.35	
	AUG 20 SEP	<.011	<.023	<.011	E.032	<.034	<.017	<.005	<.002	<.009	12	1.1	
	18										74	12	

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colonly count).

06228350 SOUTH FORK LITTLE WIND RIVER ABOVE WASHAKIE RESERVOIR, NEAR FORT WASHAKIE, WY

LOCATION.--Lat $42^{\circ}58'06"$, long $109^{\circ}02'13"$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec.18, T.1 S., R.2 W., Fremont County, Hydrologic Unit 10080002, Wind River Indian Reservation, on right bank 1.9 mi upstream from Washakie Dam and 8.0 mi southwest of Fort Washakie.

DRAINAGE AREA. -- 90.3 mi².

PERIOD OF RECORD. -- October 1976 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,440 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB AUG SEP 9.8 17 9.5 9.7 e9 0 e10 e10 12 20 e20 e20 e20 e20 e19 19 12 11 23 115 34 23 e19 e18 31 13 14 212 e137 31 e165 e185 e190 11 13 187 ___ TOTAL. 311.7 12.5 31.5 13.7 11.130.1 20.3 MEAN 20.3 18.3 80.5 31.1 MAX MIN 9.0 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1977 - 2001, BY WATER YEAR (WY) 56.7 96.2 MEAN 42.9 29.2 23.2 17.3 14.8 17.7 49.0 94.3 48.4 34.6 30.9 34.1 MAX 26.1 94.6 (WY) 15 7 MTN 14.5 11.8 6.05 6.72 9.60 29.2 80 5 30 7 20.0 (WY)

06228350 SOUTH FORK LITTLE WIND RIVER ABOVE WASHAKIE RESERVOIR, NEAR FORT WASHAKIE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS	S 1977 - 2001
ANNUAL TOTAL	37279	22080.7		
ANNUAL MEAN	102	60.5	128	
HIGHEST ANNUAL MEAN			188	1986
LOWEST ANNUAL MEAN			60.5	2001
HIGHEST DAILY MEAN	855 May 29	792 May 16	1960	Jun 13 1991
LOWEST DAILY MEAN	13 Jan 6	,7 9.0 Feb 8	4.5	Feb 1 1977
ANNUAL SEVEN-DAY MINIMUM	14 Jan 4	9.7 Feb 2	4.5	Feb 1 1977
MAXIMUM PEAK FLOW		962 May 16	2230	Jun 13 1991
MAXIMUM PEAK STAGE		6.19 May 16	8.48	Jun 13 1991
ANNUAL RUNOFF (AC-FT)	73940	43800	92610	
10 PERCENT EXCEEDS	300	174	379	
50 PERCENT EXCEEDS	33	23	38	
90 PERCENT EXCEEDS	18	12	14	

e Estimated.

06228450 SOUTH FORK LITTLE WIND RIVER BELOW WASHAKIE RESERVOIR, NEAR FORT WASHAKIE, WY

LOCATION.--Lat $42^{\circ}59^{\circ}04^{\circ}$, long $108^{\circ}59^{\circ}57^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec.9, T.1 S., R.2 W., Fremont County, Hydrologic Unit 10080002, Wind River Indian Reservation, on right bank 0.7 mi downstream from Washakie Reservoir, 2.3 mi upstream from Timmoco Creek, and 6.2 mi west of Fort Washakie.

DRAINAGE AREA. -- 93.5 mi².

PERIOD OF RECORD. -- October 1988 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,280 ft above sea level, from topographic map.

REMARKS.--Records good. Flow regulated by Washakie Reservoir.

	5	DISCHA	RGE, CUBI	IC FEET P		, WATER YE LY MEAN VA		R 2000 TO) SEPTEMBI	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	36 47 45 37 42	32 32 32 31 31	22 22 22 21 21	19 e19 19 18 18	e10 9.6 9.6 9.9 9.8	e13 e12 e12 e13 e13	12 11 11 11 11	12 12 13 13	311 311 320 318 302	263 259 254 250 245	34 33 32 31 31	22 22 22 22 22
6 7 8 9	35 35 35 35 35	31 31 31 30 30	21 20 20 20 20 20	e17 e16 e15 e14 13	9.7 9.8 9.8 10	e13 e13 e13 e13 e13	11 11 11 11 11	13 14 14 14 14	285 282 253 217 217	240 235 230 225 220	31 32 38 23 25	22 18 16 16 37
11 12 13 14 15	34 34 34 34 34	30 30 29 49 32	20 20 20 20 22	e13 e13 13 e13 e13	10 10 10 10 11	e12 e12 13 13 12	11 11 11 11 11	46 82 84 84 169	217 218 219 227 241	179 124 103 93 85	26 26 26 26 27	15 15 15 16 15
16 17 18 19 20	34 34 34 34 34	29 25 25 24 24	22 22 22 21 21	e13 e13 e13 e13	e11 e12 e13 11 11	11 12 12 13 13	11 11 11 11 11	180 189 192 194 197	239 237 253 281 288	81 81 77 72 68	27 27 26 25 25	15 15 15 15
21 22 23 24 25	34 34 38 55 32	24 24 24 23 23	21 21 21 21 20	e12 e12 12 e11 e11	12 e12 e13 e13 e13	14 13 12 12 12	11 10 10 11 11	199 199 199 200 202	288 285 282 279 278	59 53 49 49	25 25 25 25 25 24	15 15 16 16 15
26 27 28 29 30 31	32 32 32 32 32 32	23 23 23 23 22	20 20 20 20 20 20	11 e11 11 e11 e10 e10	e13 e14 e13 	12 12 13 13 13 13	11 11 10 11 11	204 208 211 276 311 311	276 274 272 269 266	49 46 41 41 39 37	23 22 22 22 22 22	15 14 12 12 12
TOTAL MEAN MAX MIN AC-FT	1107 35.7 55 32 2200	840 28.0 49 22 1670	643 20.7 22 20 1280	419 13.5 19 10 831	310.2 11.1 14 9.6 615	390 12.6 14 11 774	328 10.9 12 10 651	4069 131 311 12 8070	8005 267 320 217 15880	3896 126 263 37 7730	828 26.7 38 22 1640	512 17.1 37 12 1020
STATIST	TICS OF I	MONTHLY MEA	AN DATA I	FOR WATER	YEARS 198	89 - 2001,	BY WATER	YEAR (WY	()			
MEAN MAX (WY) MIN (WY)	40.5 81.9 1999 18.8 1989	29.1 46.0 1998 4.68 1989	24.4 36.7 1991 5.19 1989	19.6 34.5 1997 6.18 1989	15.8 29.0 1997 7.19 1989	15.3 21.8 1994 6.65 1991	30.6 71.4 1994 5.07 1991	198 298 1999 125 1990	536 897 1991 244 1992	348 774 1995 126 2001	152 264 1993 26.7 2001	86.5 146 1993 17.1 2001

06228450 SOUTH FORK LITTLE WIND RIVER BELOW WASHAKIE RESERVOIR, NEAR FORT WASHAKIE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1989 - 2001
ANNUAL TOTAL	35495.6	21347.2	
ANNUAL MEAN	97.0	58.5	125
HIGHEST ANNUAL MEAN			189 1999
LOWEST ANNUAL MEAN			58.5 2001
HIGHEST DAILY MEAN	969 Jun 2	320 Jun 3	1930 Jun 13 1991
LOWEST DAILY MEAN	5.1 Apr 17	9.6 Feb 2	3.5 Mar 17 1991
ANNUAL SEVEN-DAY MINIMUM	5.7 Apr 16	9.7 Feb 2	3.6 Mar 16 1991
MAXIMUM PEAK FLOW		438 Nov 14	2120 Jun 13 1991
MAXIMUM PEAK STAGE		3.50 Nov 14	6.43 Jun 13 1991
ANNUAL RUNOFF (AC-FT)	70410	42340	90530
10 PERCENT EXCEEDS	302	226	331
50 PERCENT EXCEEDS	32	22	35
90 PERCENT EXCEEDS	13	11	11

e Estimated.

06228510 RAY CANAL AT HEADWORKS, NEAR FORT WASHAKIE, WY

LOCATION.--Lat $43^{\circ}00^{\circ}02^{\circ}$, long $108^{\circ}55^{\circ}56^{\circ}$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.6, T.1 S., R.1 W., Fremont County, Hydrologic Unit 10080002, Wind River Indian Reservation, on right bank 160 ft downstream from headgate, 300 ft upstream from culvert on County Road 43, 2.0 mi upstream from Crooked Creek, and 2.4 mi west of Fort Washakie.

PERIOD OF RECORD.--April 1989 to September 1999, April to September 2001 (no winter records).

GAGE.--Water-stage recorder. Elevation of gage is 5,710 ft above sea level, from topographic map.

REMARKS.--Records good. Flow is diverted from the South Fork Little Wind River for irrigation.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

					DAILY	MEAN VA	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							. 85	11	279	278	50	28
2							e7.0	e14	281	276	47	27
3							e13	e13	283	273	43	27
4							e13	e14	279	268	40	27
5							13	e14	274	262	39	27
3							13	CII	2/1	202	3,7	2,
6							12	e14	266	258	38	25
7							13	e13	266	253	38	24
8							13	e19	256	250	45	20
9							12	e18	229	246	36	20
10							13	e19	228	238	38	30
11							12	e19	229	210	41	20
12							13	42	231	157	41	20
13							14	85	234	130	41	20
14							15	85	239	122	42	22
15							15	157	250	115	43	21
1.0							1.4	165	247	109	44	21
16 17							14 15	165 173	247	109	44	21 21
18							13	198	245	107	43	21
19							13	211	271	97	41	20
20							13	213	286	94	40	20
20							13	213	200	24	40	20
21							13	210	292	84	40	20
22							13	214	290	80	39	21
23							12	212	288	73	36	20
24							12	211	286	71	35	20
25							12	213	288	69	35	20
26							12	217	289	68	33	17
27							12	223	287	68	31	18
28							12	229	285	63	30	15
29							12	255	284	62	28	15
30							11	275	282	58	28	15
31								274		53	28	
moma r							267 05	4020	7000	4506	1105	640
TOTAL MEAN							367.85 12.3	4030 130	7998 267	4596 148	1195 38.5	642 21.4
MAX							12.3	275	292	278	50.5	30
MIN							.85	11	228	53	28	15
AC-FT							730	7990	15860	9120	2370	1270
AC II							750	7550	13000	J120	2370	1270
STATIST	rics of Mo	ONTHLY MEA	N DATA FO	R WATER Y	EARS 1989	- 2001	, BY WATER	YEAR (WY) *			
MEAN	33.4	21.6					18.2	112	202	226	163	101
MAX	73.2	28.9					47.5	199	320	287	241	167
(WY)	1998	1995					1989	1992	1990	1996	1995	1997
MIN	.81	14.2					.97	21.3	29.5	100	38.5	21.4
(WY)	1994	1993					1992	1991	1995	1992	2001	2001

06228510 RAY CANAL AT HEADWORKS, NEAR FORT WASHAKIE, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1989 - 2001*
HIGHEST DAILY MEAN	292 Jun 21	390 Jun 29 1996
LOWEST DAILY MEAN	.85 Apr 1	.00 Apr 1 1991
MAXIMUM PEAK FLOW	303 Jun 3	446 Jun 12 1996
MAXIMUM PEAK STAGE	3.68 Jun 3	4.11 Jun 24 1999

- For period of operation. Estimated.

06228800 NORTH FORK LITTLE WIND RIVER NEAR FORT WASHAKIE, WY

LOCATION.--Lat $43^{\circ}01^{\circ}43^{\circ}$, long $109^{\circ}00^{\circ}02^{\circ}$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$ sec.28, T.1 N., R.2 W., Fremont County, Hydrologic Unit 10080002, Wind River Indian Reservation, on left bank 0.2 mi upstream from North Fork Diversion Canal and 5.9 mi northeast of Fort Washakie.

DRAINAGE AREA. -- 112 mi².

PERIOD OF RECORD. -- October 1988 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,120 ft above sea level, from topographic map. Prior to Oct. 21, 1993, at site 2,000 ft upstream at different datum.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversions for irrigation of 80 acres upstream from station. Data collection platform with satellite telemetry at station.

DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e10 e14 e14 e10 e10 e10 e9.8 e14 e13 e12 e14 e10 e14 e12 e10 e10 e14 e10 e10 €14 e12 e10 e10 e12 e23 e14 e9.4 e11 e14 e9.0 e22 e12 e10 e22 e14 e12 e9.2 e10 e20 e14 e12 e9.4 e9.8 e18 e14 e12 e9.7 e9.5 e17 e15 e12 e10 e10 e9.7 19 e16 e15 e12 e10 e16 e14 e12 e9.4 e10 17 25 e16 e14 e12 e9.7 e10 e17 e10 e10 e15 e11 e17 e16 e10 e10 e16 e16 e11 e1n 31 e16 e16 e11 e10 e16 e16 e11 e10 e10 e15 e16 e11 e14 e16 e11 e10 e16 ₽14 e11 e10 e14 e16 e10 e10 ₽14 e16 e10 e10 e14 e16 e10 e10 e15 e16 e10 e10 17 ₽14 e15 e10 e14 e10 e14 e14 e10 TOTAL 275.5 406.1 30.7 42 MEAN 18.5 14.9 11.4 9.84 13.1 28.9 93.5 38.5 24.5 MAX 9.0 9.5 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1989 - 2001, BY WATER YEAR (WY) MEAN 50.4 34.6 25.5 19.9 18.4 26.0 53.3 66.8 MAX 76.1 57.3 50.1 31.9 29.5 38.8 84.5 (WY) 27.5 13.5 14.7 8.95 13.6 8.52 74.9 38.5 24.5 MIN 13.1 (WY)

06228800 NORTH FORK LITTLE WIND RIVER NEAR FORT WASHAKIE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR	YEAR	FOR 2001 WAT	ER YEAR	WATER YEAR	S 1989 - 2001
ANNUAL TOTAL	39159		22519.6			
ANNUAL MEAN	107		61.7		139	
HIGHEST ANNUAL MEAN					208	1999
LOWEST ANNUAL MEAN					61.7	2001
HIGHEST DAILY MEAN	898 Ma	ay 25	762	May 16	2070	Jun 13 1991
LOWEST DAILY MEAN	14 No	ov 23	9.0	Feb 9	6.5	Feb 3 1989
ANNUAL SEVEN-DAY MINIMUM	14 De	ec 2	9.5	Feb 8	7.4	Feb 2 1989
MAXIMUM PEAK FLOW			850	May 16	2360 ^a	Jun 13 1991
MAXIMUM PEAK STAGE			5.85	May 16	7.19	Jun 17 1999
ANNUAL RUNOFF (AC-FT)	77670		44670		100700	
10 PERCENT EXCEEDS	315		151		389	
50 PERCENT EXCEEDS	33		26		45	
90 PERCENT EXCEEDS	16		10		16	

a Gage height, 6.20 ft, site and datum then in use. e $\mbox{\sc Estimated}.$

06229900 TROUT CREEK NEAR FORT WASHAKIE, WY

LOCATION.--Lat $42^{\circ}57^{\circ}04^{\circ}$, long $108^{\circ}56^{\circ}54^{\circ}$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec.25, T.1 S., R.2 W., Fremont County, Hydrologic Unit 10080002, Wind River Indian Reservation, 50 ft upstream of Blue Trail Crossing, and 5.0 miles southwest of Fort Washakie.

DRAINAGE AREA. -- 16.1 mi².

PERIOD OF RECORD.--Annual maximum, water years 1961-68, 1970-84. May 1990 to September 1999, April to September 2001 (no winter records since 1997).

GAGE.--Water-stage recorder. Elevation of gage is 5,935 ft above sea level, from topographic map. Oct. 1, 1961 to Sept. 30, 1968, crest-stage gage at site 100 ft downstream at datum 1.05 ft lower. Oct. 1, 1969 to Sept. 30, 1984, crest-stage gage at present site at datum 1.05 ft lower.

REMARKS. -- Records good.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 4.7 5.2 5.3 2 ___ ___ ___ ---___ ___ 6.4 4.3 3.8 3.6 3 ------------------6.3 4.4 3.8 3.6 ---------3.7 ---___ ___ 5 4.8 6.0 5.3 4.3 3.7 6 ---------4.9 6.2 5.1 3.8 ------___ 7 4 9 6 1 5 0 4 3 3 8 3 8 8 ------4.8 6.0 5.0 3.9 ---4.3 3.8 ------------------3.9 3.8 10 4.9 6.8 5.0 4.5 3.9 3.8 11 4.9 5.0 4.6 3.9 3.8 ------------------12 4.9 6.5 5.0 4.5 3.9 3.9 13 4.9 6.6 4.9 4.4 3.9 3.9 ---------6.9 4.2 14 ___ ---___ 4.9 4.9 3.9 4.0 ---------15 5.0 4.9 3.9 4.0 16 17 7.0 7.1 ___ ___ ___ ___ 5.0 5.0 4 2 3.9 3.9 ------------------3.9 4.0 5.1 5.0 3.9 6.7 18 4.8 4.0 3.8 19 ___ ___ ___ ___ ___ ___ 5.3 5.5 6.6 4.8 4.0 3.8 3 9 20 4.8 3.9 3.8 4.0 6.6 ___ 4.7 3.9 21 ___ ___ ___ ___ ___ 5.6 6.5 3.9 3.9 22 ------------5.5 6.3 3.9 3.9 23 ---4.6 4.5 4.5 24 ___ ___ ___ ___ ___ ___ 5.4 5.8 4 0 3.8 3.9 25 5.5 5.7 3.7 3.9 3.9 26 ___ ___ ___ ___ ___ ___ 5 7 5 7 4.5 3 9 3 6 3 9 27 5.8 5.7 4.5 3.9 3.9 3.6 28 ---------6.1 5.7 4.5 3.9 3.6 3.9 ___ ___ ___ ___ 5.6 5.5 29 ___ ___ 6.6 4 4 3 9 3 6 4 0 30 6.5 4.3 3.8 3.5 4.0 31 ------------------5.3 3.8 3.6 TOTAL 156.7 194.6 146.0 128.1 117.5 115.7 MEAN ------------------5.22 6.28 4.87 4.13 3.79 3.86 ___ ___ ------5.4 4.3 MAX ------6.6 7.1 4.6 3.9 4.0 ___ ___ ___ ___ ___ ___ AC-FT ------------------311 386 290 254 233 229 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1990 - 1996, BY WATER YEAR (WY)* 5.79 4.79 MEAN 5.28 4.57 4.38 4.54 5.55 18.4 39.7 13.4 6.91 5.89 MAX 8.45 7.37 6.26 5.97 5.15 5.52 7.47 32.4 105 37.1 11.3 9.37 (WY) 1996 1996 1996 1996 1996 1996 1996 1991 1995 1995 1995 1995 3.77 7.71 3.71 3.78 3.78 4.05 3.65 4.12 3.44 12.3 4.43 3.65 MIN (WY) 1991 1991 1995 1991 1991 1991 1991 1992 1994 1994 1994 1994

06229900 TROUT CREEK NEAR FORT WASHAKIE, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1990 - 1996*
ANNUAL MEAN		10.4
HIGHEST ANNUAL MEAN		17.3 1995
LOWEST ANNUAL MEAN		5.95 1994
HIGHEST DAILY MEAN	7.1 May 17	316 Jun 2 1991
LOWEST DAILY MEAN	3.5 Aug 30	3.0 Dec 22 1990
ANNUAL SEVEN-DAY MINIMUM		3.3 Feb 14 1991 500 ^a Jun 2 1991#
MAXIMUM PEAK FLOW	7.3 May 16	500 ^a Jun 2 1991#
MAXIMUM PEAK STAGE	4.27 May 16	7.49 Jun 2 1991#
ANNUAL RUNOFF (AC-FT)		7550

- For period of operation. For period of operation, 1961-68, 1970-84, 1990-99 and 2001. From rating curve extended above 160 ${\rm ft}^3/{\rm s}$ on basis of slope-conveyance computation of peak flow.

06232600 POPO AGIE RIVER AT HUDSON SIDING, NEAR LANDER, WY

LOCATION.--Lat $42^{\circ}51^{\circ}59^{\circ}$, long $108^{\circ}41^{\circ}04^{\circ}$, in $NW^{1}/_{4}$ NE $^{1}/_{4}$ sec.30, T.2 S., R.2 E., Fremont County, Hydrologic Unit 10080003, Wind River Indian Reservation, on left bank at bridge on private road, 1.2 mi downstream from North Popo Agie River, and 3.2 mi northeast of Lander.

PERIOD OF RECORD.--October 1984 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
DEC 28 MAR	1025	70	638	12.0	98	8.3	491	-1.0	.00	.250	.187	.006	.058
26	1110	66	631	11.7		8.8	622			.121	.050	<.006	.035
JUN 07 AUG	1110	79	637	13.2	157	8.7	622	20.0	15.0	E.022	E.032	.018	.055
13	1245	27	638	14.0	189	8.8	814	30.0	21.0	E.032	.055	E.005	.086

DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	0.7 UM-MF (COLS. 100 MI
DEC 28 MAR 26	65 E9k	100
JUN 07 AUG	36	47
13	E11k	E12k

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

06233000 LITTLE POPO AGIE RIVER NEAR LANDER, WY

LOCATION.--Lat $42^{\circ}43^{\circ}00^{\circ}$, long $108^{\circ}38^{\circ}34^{\circ}$, in $NE^{1}/_{4}$ Sec.27, T.32 N., R.99 W., Fremont County, Hydrologic Unit 10080003, on left bank 700 ft downstream from bridge on State Highway 28, 2.5 mi downstream from Red Canyon Creek, and 9.5 mi southeast of post office in Lander.

DRAINAGE AREA. -- 125 mi².

PERIOD OF RECORD.--March 1946 to current year (no winter records since 1971).

REVISED RECORDS.--WSP 1709: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 5,436.49 ft above sea level.

REMARKS.--Records good. Diversions for irrigation of about 540 acres upstream from station. Slight regulation by Christina Lake, capacity, about 3,860 acre-ft. Result of discharge measurement, in cubic feet per second, made during period when station was not in operation, is given below:

Mar. 26 . . . 23.0

COOPERATION. -- Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

		DISCHARGE	, CUBIC	FEET PER		WATER Y MEAN	YEAR OCTOBER	2000 TO	SEPTEMBER	2001		
					DALL	I MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							22	84	141	53	16	35
2							24	79	141	48	16	29
3							23	52	156	45	15	26
4							24	52	156	43	15	24
5							25	65	134	41	17	23
6							29	69	119	41	40	23
7							25	60	108	42	44	24
8							24	63	104	42	47	29
9							23	62	103	38	48	26
10							25	78	109	38	49	25
11							24	93	109	41	48	22
12							23	113	105	41	48	20
13							21	135	106	39	49	20
14							22	176	94	37	51	20
15							21	213	84	39	52	21
16							21	319	78	38	55	20
17							22	300	77	34	53	20
18							28	201	76	30	49	22
19							34	176	72	27	48	21
20							35	182	70	25	45	21
21							30	154	67	23	47	19
22							30	132	65	23	46	18
23							27	133	65	22	45	18
24							28	148	69	21	43	17
25							32	159	75	19	42	16
26							50	160	76	18	42	16
27							42	167	72	19	42	16
28							45	162	69	19	40	15
29							53	160	64	18	39	15
30							62	144	58	17	37	15
31								144		17	37	
TOTAL							880	4235	2822	998	1265	636
MEAN							29.3	137	94.1	32.2	40.8	21.2
MAX							62	319	156	53	55	35
MIN							21	52	58	17	15	15
AC-FT							1750	8400	5600	1980	2510	1260
STATIST	CICS OF MC	NTHLY MEAN I	DATA FO	R WATER Y	EARS 1946	5 - 200	1, BY WATER Y	YEAR (WY) *			
MEAN	35.6	29.7	25.6	23.4	23.7	24.6	48.6	203	338	135	55.7	46.8
MAX	50.7		35.8	32.9	42.5	33.9		398	856	404	98.6	114
(WY)	1972		1951	1948	1962	1948		1980	1986	1995	1950	1973
MIN	22.5		17.5	13.9	17.4	18.8		79.3	73.4	32.2	21.9	21.2
(WY)	1961		1960	1963	1960	1957		1977	1977	2001	1960	2001

06233000 LITTLE POPO AGIE RIVER NEAR LANDER, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER	YEAR*	WATER YEAR:	S 1946 - 2001*
ANNUAL MEAN			80.4	
HIGHEST ANNUAL MEAN			131	1965
LOWEST ANNUAL MEAN			37.0	1960
HIGHEST DAILY MEAN	319 Ma:	y 16	1590	Jun 16 1963
LOWEST DAILY MEAN	15 Au	g 3,4,Sept. 28-30	12	Several days,
				1960,1963
MAXIMUM PEAK FLOW	380 Ma;	y 16	2010	Jun 16 1963
MAXIMUM PEAK STAGE	3.85 Ma	y 16	6.64	Jun 16 1963
ANNUAL RUNOFF (AC-FT)			58230	

* For period of operation.

06233900 POPO AGIE RIVER NEAR ARAPAHOE, WY

LOCATION.--Lat 42°56'47", long 108°30'34", in NE1/4 NE1/4 SW1/4 sec. 27, T.1 S., R.3 E., Fremont County, Hydrologic Unit 10080003, Wind River Indian Reservation, on left bank 1.4 mi southwest of Araphahoe School and 3.0 mi upstream from Little Wind River

Drainage Area. -- 796 mi².

PERIOD OF RECORD.--Water years 1980-92, July to September 2001.

			WATER-	QUALITY D	ATA, WATE	R YEAR OC	TOBER 200	00 TO SEPT	EMBER 200	1			
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)
JUL 26	0930	33	638	6.0	81	7.7	1080	26.0	21.0				
AUG 20	1315	25	657	8.6	113	8.4	1110	28.0	21.0	101	41.5	<.1	76.2
SEP 25	0830	32	640	7.3	83	7.9	1210	13.0	13.0				
DATE	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
JUL 26							.48	.006	<.001	<.007	.039	62	56
AUG 20	237	9.6	.3	10.6	365	770	.47	<.005	<.001	<.007	.035	32	33
SEP 25							.39	.008	.002	<.007	.031	68	57
DATE	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUL													
26 AUG		26.2					100		140				
20 SEP	М	36.3	<13.0	<1	<20.0	<.01	190	<1	140	.07	<3.0	<.40	<31
25													
DATE	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
JUL 26													
AUG 20	<.002	<.004	<.002	<.005	.011	<.010	<.002	<.041	<.020	<.005	<.018	<.003	E.003
SEP 25													
DATE	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260)
JUL 26													
AUG 20	<.005	<.005	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	.03
SEP 25													

06233900 POPO AGIE RIVER NEAR ARAPAHOE, WY--Continued

DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)
JUL 26 AUG													
20 SEP	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	E.005	<.004	<.010
25													
	DATE	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	
	JUL 26 AUG										54	4.9	
	20 SEP	<.011	<.023	<.011	E.009	<.034	<.017	<.005	<.002	<.009	37	2.5	
	25										15	1.3	

E -- Estimated value. M -- Presence verified, not quantified.

06235500 LITTLE WIND RIVER NEAR RIVERTON, WY

LOCATION.--Lat $42^{\circ}59^{\circ}51^{\circ}$, long $108^{\circ}22^{\circ}29^{\circ}$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec.11, T.1 S., R.4 E., Fremont County, Hydrologic Unit 10080002, Wind River Indian Reservation, on right bank 1.8 mi upstream from mouth and 1.9 mi southeast of Riverton.

DRAINAGE AREA.--1,904 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1941 to current year. Prior to October 1958, published as Popo Agie River near Riverton.

REVISED RECORDS.--WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 4,901.84 ft above sea level. Prior to Sept. 19, 1956, at site 600 ft downstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 62,900 acres upstream from station. Bureau of Reclamation data collection platform with satellite telemetry at station.

		DISCHAF	RGE, CUBI	C FEET PE	ER SECOND, DAIL	WATER YE Y MEAN VA		R 2000 TC	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	204 193 196 195 197	280 288 270 254 264	e160 e164 e159 e156 e158	e153 e148 e144 e143 e147	e129 e139 e137 e131 e128	e126 e128 e133 e138 e144	226 223 224 219 217	240 274 281 238 218	469 e470 483 586 453	127 116 108 98 103	24 22 25 22 25	18 19 20 19
6	195	286	e160	e148	e128	e148	219	211	331	96	22	19
7	188	278	e159	e147	e125	e147	217	205	237	89	20	20
8	185	246	e153	e141	e120	e147	202	183	185	87	19	23
9	186	e243	e158	e133	e119	e149	191	165	174	96	18	34
10	187	e206	e163	e137	e124	e150	180	142	176	149	21	40
11	187	e173	e164	e137	e126	e139	172	166	211	119	27	40
12	196	e161	e158	e137	e128	e139	172	209	223	119	31	35
13	203	e153	e152	e140	e129	e148	167	248	239	122	24	32
14	204	e157	e155	e140	e133	e148	161	484	279	122	21	31
15	208	e173	e164	e137	e134	e136	159	839	220	117	19	32
16	214	e161	e162	e134	e135	e132	155	1210	176	123	21	54
17	218	e152	e165	e130	e138	e134	149	1990	153	107	20	53
18	212	e152	e172	e135	e138	e143	149	1320	138	92	24	47
19	212	e157	e173	e135	e133	e156	150	802	127	77	25	49
20	212	e158	e165	e135	e129	e187	175	584	133	67	23	42
21	214	e162	e165	e129	e130	e196	219	636	147	67	21	39
22	233	e165	e162	e129	e130	e197	238	439	150	60	21	38
23	288	e160	e165	e142	e135	e203	240	316	154	54	24	37
24	275	e158	e164	e137	e135	e238	217	321	157	48	27	35
25	270	e155	e155	e132	e132	e274	189	421	141	45	27	33
26 27 28 29 30 31	262 252 248 248 246 251	e155 e161 e161 e152 e152	e156 e161 e160 e151 e150 e152	e129 e134 e133 e126 e128 e130	e129 e132 e130 	280 267 250 241 242 238	184 191 199 210 232	476 556 676 675 e620 499	169 174 155 150 137	41 38 38 34 30 27	22 19 18 18 17	34 33 32 31 31
TOTAL	6779	5793	4961	4250	3656	5498	5846	15644	6997	2616	686	989
MEAN	219	193	160	137	131	177	195	505	233	84.4	22.1	33.0
MAX	288	288	173	153	139	280	240	1990	586	149	31	54
MIN	185	152	150	126	119	126	149	142	127	27	17	18
AC-FT	13450	11490	9840	8430	7250	10910	11600	31030	13880	5190	1360	1960
STATIS MEAN MAX (WY) MIN (WY)	328 728 1983 115 1989	284 501 1974 174 1989	214 351 1974 129 1959	188 302 1974 95.0 1961	YEARS 194 211 728 1962 123 1959	268 579 1998 177 2001	371 1044 1973 148 1989	1120 2351 1958 242 1960	2398 5109 1983 233 2001	999 3345 1995 84.4 2001	268 699 1965 22.1 2001	259 1323 1973 33.0 2001

06235500 LITTLE WIND RIVER NEAR RIVERTON, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENI	DAR YEAR	FOR 2001 WA	TER YEAR	WATER YEAR	S 1941 - 2001
ANNUAL TOTAL	123300		63715			
ANNUAL MEAN	337		175		577	
HIGHEST ANNUAL MEAN					1021	1983
LOWEST ANNUAL MEAN					175	2001
HIGHEST DAILY MEAN	2640	May 30	1990	May 17	12800	Jun 17 1963
LOWEST DAILY MEAN	45	Aug 29	17	Aug 30	17	Aug 30 2001
ANNUAL SEVEN-DAY MINIMUM	50	Aug 26	18	Aug 27	18	Aug 27 2001
MAXIMUM PEAK FLOW			2090	May 17	14700	Jun 17 1963
MAXIMUM PEAK STAGE			4.96	May 17	10.85	Jun 17 1963
ANNUAL RUNOFF (AC-FT)	244600		126400		417800	
10 PERCENT EXCEEDS	701		270		1440	
50 PERCENT EXCEEDS	222		152		265	
90 PERCENT EXCEEDS	80		27		145	

e Estimated.

06235500 LITTLE WIND RIVER NEAR RIVERTON, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1949-58, 1960-64, 1966 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)
DEC 28	1145	165	648	11.9	96	8.3	775	-2.0	.00				
FEB 15	1050	132	638	9.4	77	7.8	862	-9.0	.00	88.1	31.4	2.5	50.7
JUN 07	1425	238	642			8.6	674	29.0	21.0	65.5	23.6	2.4	42.5
JUL 18	1335	92	639	10.4	146	8.4	1080	32.0	23.0				
AUG 22	1300	20	640	8.3	115	8.3	1240	27.0	22.5	89.8	43.0	<.1	107
SEP 17	1200	53	640	8.1	101	8.2	1130	23.0	17.0				
DATE	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
DEC 28												E5k	E9k
FEB 15	194	12.0	. 4	11.2	249	600	.23	.279	.003	.011	.024	E6k	E11k
JUN 07	148	6.5	.3	5.4	197	451	.31	<.005	<.001	.009	.050	E5k	E14k
JUL 18							.45	.008	.002	E.004	.035	E18k	27
AUG 22	221	13.5	.5	9.9	424	858	.70	<.005	.001	<.007	.069	<1	E64k
SEP 17							.44	.009	.001	<.007	.039		
DATE	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	CADMIUM WATER UNFLITED TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
DEC	TOTAL (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)	WATER UNFLTRD TOTAL (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	TOTAL RECOV- ERABLE (UG/L AS CU)	TOTAL (MG/L AS CN)	TOTAL RECOV- ERABLE (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	NIUM, TOTAL (UG/L AS SE)	TOTAL RECOV- ERABLE (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)
DEC 28 FEB	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
DEC 28	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
DEC 28 FEB 15 JUN	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31
DEC 28 FEB 15 JUN 07 JUL 18 AUG 22	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 44.4 43.4	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0	TOTAL (MG/L AS CN) (00720) <.01 <.01	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 100 300	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31
DEC 28 FEB 15 JUN 07 JUL 18 AUG	TOTAL (UG/L AS AS) (01002) <2 E1	TOTAL RECOV-ERABLE (UG/L AS BA) (01007)	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0	TOTAL (MG/L AS CN) (00720) <.01 <.01	TOTAL RECOV-ERABLE (UG/L AS FE) (01045) 100 300	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 .01	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31
DEC 28 FEB 15 JUN 07 JUL 18 AUG 22 SEP	TOTAL (UG/L AS AS) (01002) <2 E1 E2	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 44.4 43.4 51.9	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0 <20.0	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 100 300 450	TOTAL RECOV- REABLE (UG/L AS PB) (01051) <1 <1 M	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 28 38 141	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 .01 <.01	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 <3.0	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 <.40	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31
DEC 28 FEB 15 JUN 07 JUL 18 AUG 22 SEP 17	TOTAL (UG/L AS AS) (01002) <2 E1 E2 ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TOTAL RECCV- ERABLE (UG/L AS BA) (01007) 44.4 43.4 51.9 ACETO- CHLOR, WATER FLIRD REC (UG/L)	WATER UNFLITRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <13.0 (13.0 (13.0) (14.0) -	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 ALPHA BHC DIS- SOLVED (UG/L)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0 <20.0 ATRA- ZINE, WATER, DISS, REC (UG/L)	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 100 300 450 BUTYL- ATE, WATER, DISS, REC (UG/L)	TOTAL RECOV- REABLE (UG/L AS PB) (01051) <1 <1 M CAR- BARYL WATER FLITED 0.7 U GF, REC (UG/L)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 28 38 141 CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 .01 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L)	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 <3.0 ZINE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 <.40 DCPA WATER FLIRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
DEC 28 FEB 15 JUN 07 JUL 18 AUG 22 SEP 17 DATE DEC 28 FEB	TOTAL (UG/L AS AS) (01002) <2 E1 E2 E1 ANILINE WAT FLT 0.7 U GF, REC (UG/L)	TOTAL RECCV- ERABLE (UG/L AS BA) (01007) 44.4 43.4 51.9 ACETO- CHLOR, WATER FLIRD REC (UG/L)	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <13.0 Language CHLOR, WATER, DISS, REC, (UG/L) (46342)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 ALPHA BHC DIS- SOLVED (UG/L)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0 <20.0 ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 100 300 450 BUTYL- ATE, WATER, DISS, REC (UG/L)	TOTAL RECOV- REABLE (UG/L AS PB) (01051) <1 <1 M CAR- BARYL WATER FLITED 0.7 U GF, REC (UG/L)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 28 38 141 CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 .01 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L)	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 <3.0 ZINE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 <.40 DCPA WATER FLIRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERRBLE (UG/L AS ZN) (01092) <31 <31 <31 SILVE WATEA ZINE WATEA DISS, REC (UG/L)
DEC 28 FEB 15 JUN 07 JUL 18 AUG 22 SEP 17 DATE DEC 28 FEB 15 JUN	TOTAL (UG/L AS AS) (01002) <2 E1 E2 E1 ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TOTAL RECCV- ERABLE (UG/L AS BA) (01007) 44.4 43.4 51.9 ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <13.0 <13.0 (13.0) <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 -	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0 <20.0 ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 BEN-FLUR-ALIN WAT FLU O.7 U GF, REC (UG/L) (82673)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 100 300 450 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 M CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 28 38 141 CARBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 .01 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 SINE DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
DEC 28 FEB 15 JUN 07 JUL 18 AUG 22 SEP 17 DATE DEC 28 FEB 15 JUN 07 JUL 07	TOTAL (UG/L AS AS) (01002) <2 E1 E2 E2 ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TOTAL RECCV- ERABLE (UG/L AS BA) (01007) 44.4 43.4 51.9 ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260) < < < < < < < < <-	WATER UNFLITED TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < <	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0 <20.0 <20.0 (20.0) (20.0) (20.0) 34TRA- ZINE, WATER, DISS, REC (UG/L) (39632)	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 100 300 450 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) < < < < < < < < <-	TOTAL RECOV- REABLE (UG/L AS PB) (01051) <1 <1 M CAR- BARYL WATER FLITED 0.7 U GF, REC (UG/L)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 28 38 141 CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) E.007	TOTAL RECOV- ERRABLE (UG/L AS HG) (71900) <.14 .01 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 <3.0 ZINE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	TOTAL RECOV- ERRABLE (UG/L AS ZN) (01092) <31 <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.008
DEC 28 FEB 15 JUN 07 JUL 18 AUG 22 SEP 17 DATE DEC 28 FEB 15 JUN 07 JUL 18 AUG AUG	TOTAL (UG/L (UG/L (UG/L (UG/L (UG/L) (01002))))))))))))))))))))))))))))))))))	TOTAL RECCV- ERABLE (UG/L AS BA) (01007) 44.4 43.4 51.9 ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260) <.004	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <- <- <- <- <- <- <- <- <- <- <- <-	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0 <20.0 <21.0 ATRA- ZINE, WATER, DISS, REC (UG/L) (39632) 031031	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 <.01 USA FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 100 300 450 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) <.002	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 M CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 28 38 141 CARBO- FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674) E.007	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 .01 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 <3.0 CYANA-ZINE, WATER, DISS, REC (UG/L) (04041) <.018	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 <31 <11 ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.008
DEC 28 FEB 15 JUN 07 JUL 18 AUG 22 SEP 17 DATE DEC 28 FEB 15 JUN 07 JUL 18	TOTAL (UG/L AS AS) (01002) <2 E1 E2 E2 ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TOTAL RECCV- ERABLE (UG/L AS BA) (01007) 44.4 43.4 51.9 ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260) < < < < < < < < <-	WATER UNFLITED TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0 <13.0	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < <	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0 <20.0 <20.0 (20.0) (20.0) (20.0) 34TRA- ZINE, WATER, DISS, REC (UG/L) (39632)	TOTAL (MG/L AS CN) (00720) <.01 <.01 <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 100 300 450 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) < < < < < < < < <-	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 M CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) < < < < < < < < <-	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 28 38 141 CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) E.007	TOTAL RECOV- ERRABLE (UG/L AS HG) (71900) <.14 .01 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	NIUM, TOTAL (UG/L AS SE) (01147) <2.6 <3.0 <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.43 <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	TOTAL RECOV- ERRABLE (UG/L AS ZN) (01092) <31 <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.008

06235500 LITTLE WIND RIVER NEAR RIVERTON, WY--Continued

DATE	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260)
DEC 28													
FEB 15													<.02
JUN 07	<.005	<.005	<.021	.253	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	
JUL 18													
AUG													
22 SEP	<.005	<.005	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	.07
17													
DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)
DEC 28													
FEB 15													
JUN 07	.014	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	E.003	<.004	<.010
JUL								V.010					
18 AUG													
22 SEP	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	E.004	<.004	<.010
17													
	DATE	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	
	DEC 28												
	FEB 15										46	16	
	JUN 07	<.011	<.023	<.011	<.016	<.034	<.017	<.005	<.002	<.009	22	14	
	JUL 18		1.023					1.003			22	5.5	
	AUG												
	22 SEP	<.011	<.023	<.011	E.006	<.034	<.017	<.005	<.002	<.009	30	1.6	
	17										76	11	

E -- Estimated value. M -- Presence verified, not quantified. k -- Counts outside acceptable range (non-ideal colony count).

06236100 WIND RIVER ABOVE BOYSEN RESERVOIR, NEAR SHOSHONI, WY

LOCATION.--Lat $43^{\circ}07^{\circ}45^{\circ}$, long $108^{\circ}13^{\circ}24^{\circ}$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.24, T.2 N., R.5 E., Fremont County, Hydrologic Unit 10080001, on left bank 5.3 mi upstream from Boysen Reservoir and 9.4 mi southwest of Shoshoni.

DRAINAGE AREA.--4,390 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1990 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,775 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Natural flow affected by Bull Lake, Pilot Butte Reservoir, and several small reservoirs, combined capacity, 190,000 acre-ft, and diversions for irrigation of about 191,000 acres upstream from station. Data collection platform with satellite telemetry at station.

		DISCH	ARGE, CUI	BIC FEET P		, WATER YE LY MEAN VA		R 2000 TC	SEPTEMBE	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	378	761	e500	e390	e340	e400	586	341	541	236	135	123
2	366	768	e500	e380	e350	e400	556	369	512	213	134	126
3	355	731	e490	e380	e360	e410	479	407	530	187	137	130
4	362	680	e490	e370	e370	e430	426	392	650	165	129	162
5	358	662	e480	e380	e370	e430	417	326	579	166	132	198
6	344	714	e480	e390	e380	e440	402	316	464	169	127	204
7	333	725	e500	e400	e370	e440	393	298	363	158	116	225
8	325	649	e520	e380	e350	e440	372	282	301	150	118	250
9	330	663	e500	e370	e338	e460	352	262	268	151	117	214
10	326	654	e480	e350	e330	e460	336	238	268	224	120	222
11	321	552	e470	e360	e330	e470	323	228	287	206	131	223
12	327	e540	e450	e370	e340	e460	314	276	322	188	133	189
13	339	e520	e420	e370	e350	e450	312	346	345	175	134	162
14	367	e520	e400	e370	e360	e440	300	505	399	158	136	156
15	361	e520	e400	e360	e350	e440	287	870	358	165	136	163
16	368	e500	e420	e350	e350	e450	279	1160	294	178	138	208
17	366	e480	e410	e340	e360	e460	269	2240	256	169	145	219
18	363	e460	e400	e340	e360	e460	262	1420	240	154	132	218
19	362	e460	e410	e340	e360	e470	263	825	240	147	137	234
20	361	e460	e380	e350	e370	e480	276	612	236	134	141	245
21	361	e460	e370	e350	e370	e480	336	665	278	132	148	281
22	389	e460	e370	e350	e380	e500	363	549	288	139	143	e400
23	442	e460	e370	e360	e380	e520	365	438	283	143	129	e380
24	429	e480	e370	e350	e380	e560	340	395	298	138	125	e370
25	413	e490	e370	e350	e390	e600	293	474	289	139	137	e370
26 27 28 29 30 31	616 746 751 746 732 730	e500 e500 e500 e520 e520	e370 e380 e380 e390 e380 e380	e360 e370 e370 e360 e350 e350	e400 e420 e410 	e660 e740 e660 633 608 604	279 276 316 317 329	520 585 690 735 646 595	268 305 283 263 241	144 147 150 146 153 141	127 128 119 113 113 124	e360 e370 e380 e390 e400
TOTAL	13367	16909	13230	11260	10218	15455	10418	18005	10249	5065	4034	7572
MEAN	431	564	427	363	365	499	347	581	342	163	130	252
MAX	751	768	520	400	420	740	586	2240	650	236	148	400
MIN	321	460	370	340	330	400	262	228	236	132	113	123
AC-FT	26510	33540	26240	22330	20270	30650	20660	35710	20330	10050	8000	15020
STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 199	90 - 2001,	BY WATER	YEAR (WY	·)			
MEAN	780	812	567	546	561	700	636	1786	4770	2070	642	551
MAX	1455	1212	719	665	755	1096	1074	4175	9432	6650	1696	860
(WY)	1999	1999	1996	1996	1996	1998	1999	1999	1999	1995	1997	1997
MIN	393	564	427	356	361	499	347	513	342	163	130	252
(WY)	1993	2001	2001	1993	1994	2001	2001	1990	2001	2001	2001	2001

06236100 WIND RIVER ABOVE BOYSEN RESERVOIR, NEAR SHOSHONI, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WA	TER YEAR	WATER YEA	ARS 1990 - 2001
ANNUAL TOTAL	222777		135782			
ANNUAL MEAN	609		372		1240	
HIGHEST ANNUAL MEAN					2063	1999
LOWEST ANNUAL MEAN					372	2001
HIGHEST DAILY MEAN	3880	May 30	2240	May 17	17900	Jun 14 1991
LOWEST DAILY MEAN	180	Aug 30	113	Aug 29,30	113	Aug 29,30 2001
ANNUAL SEVEN-DAY MINIMUM	201	Aug 24	121	Aug 27	121	Aug 27 2001
MAXIMUM PEAK FLOW			2610 ^a	L May 17	18700	Jun 14 1991
MAXIMUM PEAK STAGE			5.80	Nov 13	9.31	Jun 14 1991
ANNUAL RUNOFF (AC-FT)	441900		269300		898500	
10 PERCENT EXCEEDS	927		585		2380	
50 PERCENT EXCEEDS	500		362		638	
90 PERCENT EXCEEDS	270		141		348	

Gage height, 3.83 ft. Backwater from ice. Estimated. a b e

06236100 WIND RIVER ABOVE BOYSEN RESERVOIR, NEAR SHOSHONI, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974 to current year.

PERIOD OF DAILY RECORD. -

SUSPENDED-SEDIMENT DISCHARGE: April 1991 to July 1991, April 1993 to current year (irrigation season only).

INSTRUMENTATION: Sediment pumping sampler set for once or twice daily.

EXTREMES FOR PERIOD OF RECORD. --

IREMES FOR PERIOD OF RECORD.—
SEDIMENT CONCENTRATIONS: Maximum daily mean during period of operation, 5,630 mg/L, June 13, 1991; minimum daily mean during period of operation, 15 mg/L, July 4, 5, 2001.
SEDIMENT LOADS: Maximum daily during period of operation, 242,000 tons, June 13, 1991; minimum daily during period of operation, 6.7 tons, July 4, 5, 2001.

EXTREMES FOR CURRENT YEAR. --

IREMES FOR CURRENT YEAR.-SEDIMENT CONCENTRATIONS: Maximum daily mean during period of operation, 1,160 mg/L, May 18; minimum daily mean during period of operation, 15 mg/L, July 4, 5.

SEDIMENT LOADS: Maximum daily during period of operation, 6,260 tons, May 17; minimum daily during period of operation, 6.7 tons, July 4, 5.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)
JUN	0005	F10	644	0.6	0.0	0.4	F06	25.0	14.0	F0 6	16.0	0.4	24.6
06 JUL	0905	519	644	8.6	99	8.4	526	25.0	14.0	50.6	16.0	2.4	34.6
18 AUG	0925	154	644	6.6	86	8.5	824	27.0	19.5				
22 SEP	0925	158	645	7.6	95	8.4	691	20.5	18.0	55.1	17.3	.3	62.6
18	1510	220	640	11.7	149	8.3	734	23.0	18.5				
DATE	ANC UNFLITED TIT 4.5 LAB (MG/L AS CACO3) (90410)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
JUN 06	139	4.8	.3	7.4	123	331	. 47	.024	.001	.022	.094	E62k	120
JUL 18							.53	.014	.005	.028	.090	100	E66k
AUG 22	208	7.4	.5	9.2	142	442	.65	.010	.003	.007	.072	<1	56
SEP 18							.40	.051	.003	.008	.046		
10							. 40	.031	.003	.000	.040		
DATE	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUN 06	TOTAL (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)	WATER UNFLTRD TOTAL (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	TOTAL RECOV- ERABLE (UG/L AS CU)	TOTAL (MG/L AS CN)	TOTAL RECOV- ERABLE (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	NIUM, TOTAL (UG/L AS SE)	TOTAL RECOV- ERABLE (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)
JUN 06 JUL 18	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUN 06 JUL 18 AUG 22	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUN 06 JUL 18 AUG	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147) <3.0	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUN 06 JUL 18 AUG 22 SEP	TOTAL (UG/L AS AS) (01002) E2 2	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 48.2 62.4	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0	TOTAL (MG/L AS CN) (00720) <.01 <.01	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 720 410	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 62 79	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .02 <.01	NIUM, TOTAL (UG/L AS SE) (01147) <3.0	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31
JUN 06 JUL 18 AUG 22 SEP 18	TOTAL (UG/L AS AS) (01002) E2 2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 48.2 62.4 ACETO- CHLOR, WATER FLIRD REC (UG/L)	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 ALA- CHLOR, WATER, DISS, REC, (UG/L)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 ALPHA BHC DIS- SOLVED (UG/L)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0 ATRA- ZINE, WATER, DISS, REC (UG/L)	MAT FLD 0.7 U GF, REC (UG/L)	TOTAL RECOV- REABLE (UG/L AS FE) (01045) 720 410 BUTYL- ATE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) 1 M CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 62 79 CARBO- FURAN WATER FLITED 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .02 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L)	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 ZINE, WATER, DISS, REC (UG/L)
JUN 06 JUL 18 AUG 22 SEP 18 DATE JUN 06 JUL 18	TOTAL (UG/L AS AS) (01002) E2 2,6-DI-ETHYL ANILINE WAT FIT 0.7 U GF, REC (UG/L) (82660)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 48.2 62.4 ACETO- CHLOR, WATER FLIRD REC (UG/L) (49260)	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253)	TOTAL RECOV- REABLE (UG/L AS CU) (01042) <20.0 <20.0 ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	TOTAL (MG/L AS CN) (00720) (00	TOTAL RECOV- REABLE (UG/L AS FE) (01045) 720 410 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	TOTAL RECOV- REABLE (UG/L AS PB) (01051) 1 M CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 62 79 CARBO- FURAN WATER FLITRD 0.7 U G.7 REC (UG/L) (82674)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .02 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 SINE, WATER, DISS, REC (UG/L) (04040)
JUN 06 JUL 18 AUG 22 SEP 18 DATE JUN 06 JUL 18	TOTAL (UG/L (UG/L) AS AS) (01002) E2 2,6-DI-ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002	TOTAL RECCV- ERABLE (UG/L AS BA) (01007) 48.2 62.4 ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260) <.004	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0 ATRA- ZINE, WATER, DISS, REC (UG/L) (39632) E.005	TOTAL (MG/L AS CN) (00720) <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 720 410 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) <.002	TOTAL RECOV- REABLE (UG/L AS PB) (01051) 1 M CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 62 79 CARBO- FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .02 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041) <.018	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.003

06236100 WIND RIVER ABOVE BOYSEN RESERVOIR, NEAR SHOSHONI, WY--Continued

DATE	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260)
JUN 06 JUL	<.005	<.005	<.021	.097	<.009	<.005	<.003	<.004	<.035	E.017	<.050	<.006	.02
18													
AUG 22 SEP	<.005	<.005	<.021	<.002	<.009	<.005	<.003	<.004	<.035	E.009	<.050	<.006	.04
18													
DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)
JUN 06 JUL	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	E.003	<.004	<.010
18													
AUG 22 SEP	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	E.008	<.004	<.010
18													
	DATE	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO-BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	
	JUN 06 JUL	<.011	<.023	<.011	E.004	<.034	<.017	<.005	<.002	<.009	12	17	
	18										44	18	
	AUG 22 SEP	<.011	<.023	<.011	E.009	<.034	<.017	<.005	<.002	<.009	32	14	
	18										60	36	

E -- Estimated value. M -- Presence verified, not quantified. k -- Counts outside acceptable range (non-ideal colony count).

06236100 WIND RIVER ABOVE BOYSEN RESERVOIR, NEAR SHOSHONI, WY--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)										
	APR	IL	MAY		JUNE		JULY		AUGUS	Т	SEPTEM	BER
1			62	115	93	136	29	19				
2			109	109	81	112	31	18				
3			108	119	83	119	23	12				
4			101	107	124	218	15	6.7				
5			114	101	128	201	15	6.7				
6			79	67	59	75	19	8.5				
7			86	69	42	41	32	14				
8			54	41	46	37	22	9.0				
9			40	28	25	18	54	22				
10			39	25	23	17	250	154				
11			42	26	30	23	150	83				
12			59	44	36	31	59	30				
13			93	88	27	25	35	17				
14			186	259	30	32	29	12				
15			391	945	33	31	36	16				
16			482	1520	45	36	51	24				
17			1030	6260	34	23	38	18				
18			1160	4610	28	18	34	14				
19			463	1070	35	23	52	21				
20			176	297	38	24	53	19				
21			163	292	45	34	45	16				
22			111	167	36	28	69	26				
23			85	101	32	24	160	62				
24			79	84	37	30	48	18				
25			90	115	37	29	45	17				
23			90	113	37	29	43	17				
26			98	138	39	28	62	24				
27			132	209	42	35	42	16				
28			143	267	34	26	43	17				
29			158	315	30	22	63	25				
30			113	199	36	24	73	30				
31			105	169			26	10				
TOTAL	L			17956		1520		784.9				
VEND		20260 9										

YEAR 20260.9

06244500 FIVEMILE CREEK ABOVE WYOMING CANAL, NEAR PAVILLION, WY

LOCATION.--Lat $43^{\circ}18^{\circ}05^{\circ}$, long $108^{\circ}42^{\circ}08^{\circ}$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{2}/_{4}$ sec.24, T.4 N., R.1 E., Fremont County, Hydrologic Unit 10080005, on left bank 1,700 ft upstream from Wyoming Canal siphon and 4.0 mi north of Pavillion.

DRAINAGE AREA. -- 118 mi².

PERIOD OF RECORD.--October 1949 to September 1975, October 1988 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 5,500 ft above sea level, from topographic map. Aug. 27, 1948, to Mar. 28, 1950, at site 0.2 mi downstream at different datum. Mar. 29, 1950, to Apr. 23, 1974, at site 325 ft downstream at present datum. Apr. 24, 1974, to September 30, 1975, at site 25 ft downstream at present datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Flow regulated by reservoir system about 10.5 mi upstream. Diversion for irrigation of about 320 acres upstream from station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in September 1948 reached a stage of about 6.1 ft, discharge, $2,600 \, \mathrm{ft^3/s}$, on basis of slope-area measurement of peak flow.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN TTTT. AUG SEP e9.0 4.1 e7.1 e7.4 2 3 0 7.3 e5.5 e6 0 e8.9 9.3 6 8 4 0 .33 0.7 .10 2.9 e8.7 9.1 4.0 3 e5.6 e6.0 .08 7.5 6.8 .18 .10 3.4 e6.0 e6.2 e8.6 9.0 3.8 5 3.8 7.6 e6.1 e6.6 e7 4 e8.5 8.7 6.8 3.6 0.9 0.9 12 e6.2 e7.6 e8.6 6.5 6 4.2 7.3 e7.1 8.5 3.2 0.8 .09 .50 2.7 13 7 4.6 6.2 e6.3 e7.0 e7.0 e8.8 8.2 6.0 .08 .10 8 4.9 5.3 e6.8 e9.2 5.5 2.6 .09 4.4 e6.4 e6.7 8.1 .11 e6.3 .10 .10 5.2 3.1 e10 7.7 5.4 2.4 2.4 2.1 10 5.3 3.0 e6.0 e6.4 e6.5 e11 6.7 5.0 .10 .11 1.8 e5.7 11 5.5 2 7 e6 4 e6.8 e11 6.7 4 9 2.0 4.6 11 1 8 2.2 2.5 12 5.5 e5.4 e6.4 e7.1 e11 6.9 4.8 1.2 .11 1.5 6.7 e5.4 3.0 1.5 13 5.5 e3.0 e6.3 e7.1 13 4.7 5.1 .11 e5.4 2.4 14 5.7 e3.9 e6.1 e7.0 12 6.6 4 6 1 4 .12 2 1 15 6.1 e5.9 13 6.4 1.6 3.6 e4.5 e5.6 e6.9 4.6 .12 16 5.7 5.7 e4 6 e6.0 e5 8 e7 0 15 6 4 3 6 1 8 1 6 12 3.8 17 13 2.8 1.8 .11 e6.2 e7.2 6.5 1.2 e4.6 e5.6 e4.7 e7.4 2.5 3.3 18 6.0 e6.1 e5.4 11 6.6 1.8 .11 e6.0 6.8 19 6.0 e4.8 e5.4 e7 8 11 2.6 1.8 1 2 11 3.3 2.8 20 12 2.7 1.8 1.0 6.4 e5.9 e5.5 .11 e4.8 e8.0 7.6 7.6 6.6 7.4 21 e4 8 e6.0 e5 6 e8 0 11 3 1 1 8 84 11 2.7 22 11 3.1 1.6 .11 2.5 e4.9 e6.1 e5.8 e8.4 .71 23 e5.0 e6.1 e6.0 e8.8 11 .64 2.6 7.7 7.8 7.4 24 7.5 7.6 e5 0 e6.1 e6.3 e9 2 10 3 2 1.4 68 2.5 1.3 13 25 e6.3 e9.0 10 3.4 2.6 e5.2 e6.1 .52 7.9 7.8 1.2 2 8 26 7 6 e5 2 e8 6 10 3 9 50 e6 1 e6 3 2 9 27 8.0 e6.2 2.9 e5.0 e6.2 e9.0 10 4.3 .63 .96 28 8.1 e4.8 e6.3 e5.9 e9.4 9.9 8.0 4.4 1.1 .41 3.0 7.1 7.0 7.8 7.2 .86 29 e5 7 e6 6 e5 8 9 8 4 3 18 88 3 2 e5.6 e6.7 9.8 3.4 30 e6.0 .67 .10 31 7.0 e6.4 e6.3 ---9.7 4.1 .08 .43 TOTAL 179.7 153.0 186.3 190.2 212.9 325.5 228.3 141.4 65.73 26.95 29.88 77.84 MEAN 5.80 5.10 6.01 6.14 7.60 10.5 7.61 4.56 2.19 .87 .96 2.59 9.7 6.7 7.1 9.4 7.0 MAX 8.1 7.6 15 4.1 5.1 13 13 MIN 2.9 2.5 5.4 6.3 8.5 6.4 .67 .08 .07 .10 AC-FT 356 303 370 377 422 646 453 280 130 53 59 154 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1950 - 2001, BY WATER YEAR (WY) 2.45 5.80 4.80 5.85 2.81 MEAN 3.08 3.40 2.47 3.96 5.36 2.05 1.07 MAX 6.98 10.2 6.69 7.72 10.6 13.3 8.95 53.4 48.8 17.8 7.53 14.5 (WY) 1994 1992 1993 1994 1991 1993 1994 1991 1991 1997 1997 1973 .000 .000 .000 .000 .000 . 27 .097 .043 .000 MIN .38 .000 .000 1955 (WY) 1955 1955 1953 1951 1956 1954 1954 1952 1956 1954 1952

06244500 FIVEMILE CREEK ABOVE WYOMING CANAL, NEAR PAVILLION, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1950 - 2001
ANNUAL TOTAL	1386.27	1817.70	
ANNUAL MEAN	3.79	4.98	3.58
HIGHEST ANNUAL MEAN			12.4 1991
LOWEST ANNUAL MEAN			.25 1955
HIGHEST DAILY MEAN	9.6 Mar 8	15 Mar 16	273 Sep 20 1950
LOWEST DAILY MEAN	.02 Jul 18	.07 Aug 1,2	.00 Several days,
			most years
ANNUAL SEVEN-DAY MINIMUM	.02 Aug 4	.08 Jul 31	.00 Several days,
			most years
MAXIMUM PEAK FLOW		24 Mar 16	1750 ^a Sep 6 1951
MAXIMUM PEAK STAGE		1.98 Mar 16	5.60 ^b Sep 6 1951
ANNUAL RUNOFF (AC-FT)	2750	3610	2590
10 PERCENT EXCEEDS	7.3	8.8	7.7
50 PERCENT EXCEEDS	4.2	5.5	2.2
90 PERCENT EXCEEDS	.04	.16	.00

From rating curve extended above 350 $\mathrm{ft}^3/\mathrm{s}.$ From floodmarks. Estimated.

06253000 FIVEMILE CREEK NEAR SHOSHONI, WY

LOCATION.--Lat $43^{\circ}13^{\circ}20^{\circ}$, long $108^{\circ}13^{\circ}06^{\circ}$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$ sec.19, T.3 N., R.6 E., Fremont County, Hydrologic Unit 10080005, on right bank 1.2 mi upstream from normal high-water line of Boysen Reservoir at elevation 4,725 ft and 5.0 mi west of Shoshoni.

DRAINAGE AREA.--418 mi^2 , of which 133 mi^2 probably is noncontributing.

PERIOD OF RECORD.--May 1941 to September 1942, August 1948 to September 1983, October 1988 to current year.

REVISED RECORDS. -- WSP 1709: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,750 ft above sea level, from topographic map. May 10, 1941 to Sept. 30, 1942, nonrecording gage at site 1.0 mi downstream at different datum. Aug. 28, 1948 to Sept. 30, 1983, at same site and datum.

REMARKS.--Records good except those for estimated daily discharge, which are poor. Natural flow of stream affected by regulation from reservoir system in the headwaters, diversions for irrigation, and return flow from irrigated areas. Data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of July 24, 1923, discharge, 3,500 ${\rm ft}^3/{\rm s}$, from estimate provided by Bureau of Reclamation, gage height not determined.

		2100111	102, 0021	0 1221 12	DAILY	MEAN VA	LUES	2000 10	02112122	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	202 192 190 162 140	92 90 88 87 89	e64 e65 e64 e64	e61 e62 e60 e60 e60	e58 e60 e64 e62 e62	e61 e63 e65 e66 e65	59 59 58 58 58	158 153 142 146 138	208 210 216 220 228	213 226 218 207 230	226 229 191 195 193	210 189 177 162 144
6 7 8 9 10	131 127 125 123 122	87 84 83 85 80	e66 e67 e68 e68 e64	e60 e59 e59 e56 e58	e62 e59 e52 e47 e46	e65 e65 e64 e62 e64	59 58 57 51 57	133 132 158 136 146	223 221 212 202 198	224 221 209 185 209	183 187 181 175 178	125 110 106 95 90
11 12 13 14 15	120 127 128 116 114	82 80 e81 e78 e75	e62 e60 e60 e60 e62	e58 e58 e58 e57 e56	e47 e50 e50 e50 e52	e62 e63 e62 e62 e58	94 87 61 89 84	176 179 162 156 140	195 217 226 229 222	221 213 212 206 194	171 171 181 190 191	87 87 87 87
16 17 18 19 20	112 109 108 107 106	e70 e67 e65 e66 e66	e68 e66 e65 e64 e62	e54 e54 e56 e58 e60	e52 e52 e52 e56 e56	55 57 59 58 61	72 88 122 110 118	174 174 179 177 184	213 224 222 210 214	193 190 188 186 206	185 166 173 175 180	85 82 83 79 77
21 22 23 24 25	107 110 108 107 105	e66 e66 e64 e64 e66	e61 e62 e63 e64 e64	e58 e58 e58 e58 e56	e58 e61 e67 e68 e68	61 60 60 58 57	130 124 126 151 198	205 197 213 207 199	218 212 205 199 204	211 206 215 209 212	176 182 177 180 176	75 69 66 65 65
26 27 28 29 30 31	103 100 98 96 94 93	e67 e67 e68 e67 e65	e64 e63 e62 e60 e60	e56 e56 e56 e55 e54 e55	e68 e68 e66 	58 58 57 58 58	177 156 149 151 150	207 217 215 217 199 197	218 224 217 212 206	217 216 221 221 218 215	178 170 159 157 158 168	63 62 62 62 61
TOTAL MEAN MAX MIN AC-FT	3782 122 202 93 7500	2255 75.2 92 64 4470	1966 63.4 68 60 3900	1784 57.5 62 54 3540	1613 57.6 68 46 3200	1880 60.6 66 55 3730	3011 100 198 51 5970	5416 175 217 132 10740	6425 214 229 195 12740	6512 210 230 185 12920	5602 181 229 157 11110	2899 96.6 210 61 5750
STATIST	rics of Mo	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 1941	- 2001,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	147 298 2000 18.0 1942	80.1 135 1998 14.8 1942	59.2 114 1998 8.25 1942	50.8 89.9 1998 2.60 1942	48.7 79.5 1959 6.24 1942	52.6 87.2 1963 17.8 1942	82.0 201 1999 12.7 1942	180 275 1999 28.1 1942	279 442 1976 97.4 1941	330 524 1983 141 1977	337 525 1983 139 1977	289 527 1999 88.4 1941

06253000 FIVEMILE CREEK NEAR SHOSHONI, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEND	AR YEAR	FOR 2001 WA	ATER YEAR	WATER YEARS	S 1941 - 2001
ANNUAL TOTAL	59317		43145			
ANNUAL MEAN	162		118		163	
HIGHEST ANNUAL MEAN					253	1999
LOWEST ANNUAL MEAN					54.8	1942
HIGHEST DAILY MEAN	350	Jul 20	230	Jul 5	964	Sep 11 1973
LOWEST DAILY MEAN	41	Apr 10	46	Feb 10	1.0	Jan 4 1942
ANNUAL SEVEN-DAY MINIMUM	44	Apr 5	49	Feb 8	1 _n 4	Jan 1 1942
MAXIMUM PEAK FLOW			257 ^a	oct 3	3390	Jun 15 1962
MAXIMUM PEAK STAGE			6.29	9 Mar 12	9.61 ^C	Dec 27 1954
ANNUAL RUNOFF (AC-FT)	117700		85580		118300	
10 PERCENT EXCEEDS	301		213		363	
50 PERCENT EXCEEDS	110		88		104	
90 PERCENT EXCEEDS	56		58		40	

Gage height, 3.19 ft. Gage height, 7.85 ft. Backwater from ice. Estimated. a b c e

06258900 BOYSEN RESERVOIR NEAR SHOSHONI, WY

LOCATION.--Lat $43^{\circ}25^{\circ}00^{\circ}$, long $108^{\circ}10^{\circ}37^{\circ}$, in $NW^{1}/_{4}$ NW $^{1}/_{4}$ sec.16, T.5 N., R.6 E., Fremont County, Hydrologic Unit 10080005, at dam on Wind River and 13 mi north of Shoshoni.

DRAINAGE AREA. -- 7,700 mi².

PERIOD OF RECORD.--October 1951 to current year.

GAGE. -- Water-stage recorder. Datum of gage is sea level (Bureau of Reclamation datum of 1933).

REMARKS.--Reservoir is formed by rockfill dam completed by Bureau of Reclamation in October 1951. Capacity, 802,000 acre-ft below elevation 4,725.00 ft, top of spillway gate. Includes 59,880 acre-ft dead storage below elevation 4,657.00 ft, invert of penstock pipe. Figures given herein represent total contents. Water used for irrigation, flood control, and power generation.

COOPERATION. -- Records provided by Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 992,000 acre-ft, July 6, 7, 1967, elevation, 4,730.83 ft; minimum daily contents (since normal use of water started), 252,000 acre-ft, Mar. 18, 19, 1956, elevation, 4,684.18 ft.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 542,000 acre-ft, Oct. 1, maximum daily elevation, 4,713.41 ft, Oct. 1; minimum daily contents, 304,000 acre-ft, Sept. 30, minimum daily elevation, 4,694.04 ft.

Capacity table (elevation, in feet, and contents, in acre-feet)

4,690	265,000	4,695	314,000
4,700	368,000	4,715	566,000
4,705	427,000	4,710	493,000
4,710	443,000	4,705	427,000

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	542000	530000	524000	516000	505000	494000	507000	496000	473000	428000	375000	328000
2	541000	530000	524000	516000	504000	494000	508000	495000	473000	426000	374000	327000
3	541000	530000	524000	516000	504000	494000	507000	494000	471000	424000	372000	325000
4	540000	531000	524000	515000	503000	494000	507000	493000	471000	422000	371000	324000
5	540000	530000	524000	515000	503000	494000	507000	492000	470000	420000	369000	322000
6	539000	530000	523000	515000	503000	494000	507000	491000	469000	418000	368000	321000
7	539000	530000	524000	515000	503000	494000	506000	490000	467000	416000	366000	319000
8	538000	530000	523000	515000	502000	494000	506000	489000	466000	414000	365000	319000
9	537000	530000	524000	514000	502000	495000	505000	488000	465000	412000	363000	317000
10	537000	530000	523000	514000	501000	495000	504000	487000	463000	411000	361000	316000
11	536000	529000	523000	513000	500000	496000	505000	486000	461000	410000	360000	316000
12	536000	529000	523000	513000	500000	496000	504000	484000	460000	408000	358000	314000
13	535000	528000	522000	513000	500000	497000	504000	483000	458000	407000	357000	313000
14	535000	527000	522000	512000	500000	497000	503000	482000	457000	405000	355000	313000
15	534000	527000	521000	512000	499000	497000	503000	481000	456000	403000	353000	312000
16	534000	526000	521000	512000	499000	498000	503000	481000	454000	401000	352000	311000
17	533000	527000	521000	511000	498000	498000	502000	484000	452000	399000	350000	310000
18	533000	526000	521000	511000	498000	499000	502000	485000	450000	398000	349000	310000
19	532000	526000	520000	511000	497000	499000	501000	485000	448000	396000	347000	309000
20	532000	526000	520000	510000	497000	500000	501000	484000	447000	394000	346000	308000
21	531000	526000	520000	510000	497000	501000	501000	483000	445000	392000	344000	308000
22	530000	525000	519000	509000	496000	502000	501000	482000	444000	391000	343000	308000
23	530000	525000	519000	509000	496000	502000	501000	481000	442000	389000	341000	307000
24	529000	525000	519000	508000	496000	504000	501000	480000	440000	388000	339000	307000
25	529000	525000	518000	508000	495000	504000	500000	478000	438000	386000	338000	306000
26 27 28 29 30 31	529000 529000 529000 529000 530000 529000	525000 524000 525000 525000 524000	518000 519000 518000 517000 517000	508000 507000 507000 506000 506000 505000	495000 495000 494000 	505000 506000 506000 506000 507000 507000	500000 499000 498000 498000 497000	478000 477000 476000 476000 475000 474000	437000 435000 433000 431000 429000	385000 383000 382000 380000 378000 377000	337000 335000 334000 332000 330000 329000	306000 306000 305000 305000 304000
MAX	542000	531000	524000	516000	505000	507000	508000	496000	473000	428000	375000	328000
MIN	529000	524000	517000	505000	494000	494000	497000	474000	429000	377000	329000	304000
(#)	4712.58	4712.24	4711.72	4710.91	4710.12	4711.03	4710.32	4708.62	4705.16	4700.89	4696.41	4694.04
(*)	-13,000	-5,000	-7,000	-12,000	-11,000	13,000	-10,000	-23,000	-45,000	-52,000	-48,000	-25,000

WTR YR 2001 MAX 542,000 MIN 304,000 (*) -238,000

^(#) Elevation, in feet, at end of month.
(*) Change in contents, in acre-feet.

06258900 BOYSEN RESERVOIR NEAR SHOSHONI, WY--Continued

06259000 WIND RIVER BELOW BOYSEN RESERVOIR, WY

LOCATION.--Lat $43^{\circ}25'30"$, long $108^{\circ}10'42"$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$ sec.9, T.5 N., R.6 E., Fremont County, Hydrologic Unit 10080005, on right bank 0.6 mi downstream from Boysen Dam and 13 mi north of Shoshoni.

DRAINAGE AREA. -- 7,701 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1951 to current year.

REVISED RECORDS. -- WSP 1709: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 4,608.58 ft above sea level.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Flow regulated by Boysen Reservoir (See station 06258900) since October 1951. Natural flow also affected by Bull Lake, Pilot Butte Reservoir, and several small reservoirs, combined capacity, 190,000 acre-ft, and diversions for irrigation of about 196,000 acres upstream from station. Bureau of Reclamation data collection platform with satellite telemetry at station.

COOPERATION.--Station operated and data provided by Bureau of Reclamation from April 1998; record computed and reviewed by U.S. Geological Survey.

		DISCHA	RGE, CUB	IC FEET P	ER SECOND, DAIL	WATER YE Y MEAN VA		R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	653	723	709	709	702	643	612	951	1220	e1280	1050	949
2	653	714	711	e710	701	617	612	933	1220	e1280	1050	940
3	656	718	717	e710	703	596	622	912	1220	1290	1040	943
4	655	721	717	706	702	601	615	909	1220	1280	1040	928
5	658	732	720	701	692	600	608	910	1230	1280	1050	939
6	654	735	716	703	696	599	608	917	1180	1270	1050	947
7	652	737	716	703	708	596	614	927	1110	1270	1040	913
8	647	733	715	703	701	591	615	944	1110	1280	1040	842
9	642	e730	719	705	699	596	624	937	1120	1270	1040	845
10	643	e730	719	708	698	600	617	947	1170	1270	1040	824
11	660	e730	717	701	700	601	618	975	1210	1250	1050	789
12	661	e730	716	704	699	601	617	1020	1210	1210	1050	765
13	649	e730	734	716	704	599	615	1050	1220	1220	1050	725
14	647	e730	728	709	700	604	617	1110	1240	1230	1050	703
15	647	719	717	707	700	595	613	1200	1240	1220	1050	703
16	652	712	715	706	703	597	614	1230	1240	1190	1060	671
17	e650	708	711	697	705	596	613	1240	1230	1180	1050	638
18	e680	717	712	709	705	593	607	1230	1220	1160	1040	611
19	e700	716	707	715	707	594	611	1220	1210	1140	1040	596
20	702	713	709	718	707	595	675	1230	1210	1110	1040	567
21	710	712	702	718	705	591	647	1230	1210	1060	1040	563
22	716	713	702	718	706	601	623	1240	1200	1040	1040	567
23	719	713	701	718	708	610	617	1230	1200	1040	1020	563
24	723	714	701	720	710	609	667	1210	1210	1040	1000	561
25	714	714	700	724	709	611	735	1230	1200	1040	1000	558
26 27 28 29 30 31	719 720 720 724 728 735	714 711 710 708 709	700 696 699 697 697	724 716 705 707 704 703	712 703 679 	611 616 605 609 612 610	751 771 812 811 863	1210 1210 1210 1210 1210 1220	1230 1270 1280 1280 e1280	1040 1060 1050 1050 1060 1050	996 994 992 993 995 967	557 550 540 533 523
TOTAL	21089	21596	22019	21997	19664	18699	19644	34202	36390	36210	31957	21353
MEAN	680	720	710	710	702	603	655	1103	1213	1168	1031	712
MAX	735	737	734	724	712	643	863	1240	1280	1290	1060	949
MIN	642	708	696	697	679	591	607	909	1110	1040	967	523
AC-FT	41830	42840	43670	43630	39000	37090	38960	67840	72180	71820	63390	42350
STATIS MEAN MAX (WY) MIN (WY)	1199 2846 1983 332 1961	1169 2086 1959 306 1978	1164 2005 1959 301 1989	1098 2208 1958 299 1989	YEARS 195 1060 2202 1958 210 1952	1 - 2001, 1142 2035 1997 213 1952	1261 2259 1998 389 1952	YEAR (WY 1504 4314 1999 777 1952	2323 7252 1991 980 1992	2524 8816 1967 935 1992	1520 2789 1997 909 1992	1303 2502 1973 712 2001

06259000 WIND RIVER BELOW BOYSEN RESERVOIR, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDA	R YEAR	FOR 2001 WA	TER YEAR	WATER YEAR	S 1951 - 2001
ANNUAL TOTAL	327729		304820			
ANNUAL MEAN	895		835		1429	
HIGHEST ANNUAL MEAN					2349	1983
LOWEST ANNUAL MEAN					612	1961
HIGHEST DAILY MEAN	1340	Jul 11-13	1290	Jul 3	13200	Jul 7 1967
LOWEST DAILY MEAN	642	Oct 9	523	Sep 30	4.7	Apr 3 1962
ANNUAL SEVEN-DAY MINIMUM	650	Oct 8	546	Sep 24	106	Oct 12 1951
MAXIMUM PEAK FLOW			1350	Jul 8	13500	Jul 7 1967
MAXIMUM PEAK STAGE			4.98	Jul 8	13.35	Jul 7 1967
ANNUAL RUNOFF (AC-FT)	650100		604600		1036000	
10 PERCENT EXCEEDS	1240		1220		2190	
50 PERCENT EXCEEDS	841		716		1160	
90 PERCENT EXCEEDS	701		609		665	

e Estimated.

06259000 WIND RIVER BELOW BOYSEN RESERVOIR, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1953-54, 1956, 1960-92, June to September 2001.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)
JUN 06 JUL	1210	1360	647	8.8	106	7.8	744	26.0	16.0	63.4	20.6	2.8	65.7
17 AUG	1215	1180	645	7.0	93	8.2	747	32.0	21.0				
21 SEP	1305	1000	637	8.3	121	8.7	747	32.5	25.0	56.6	20.2	<.1	67.4
20	1250		650	8.7	110	8.3	781	23.0	18.5				
DATE	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
JUN 06	175	7.9	. 4	2.5	201	479	.32	.008	.001	<.007	.017		
JUL 17							.32	.035	.004	.007	.026	E3k	E1k
AUG 21	165	8.9	. 4	6.1	209	498	.70	<.005	<.001	E.006	.068	E3k	E4k
SEP 20							.41	.093	.010	.065	.081	E2k	E1k
DATE	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	CADMIUM WATER UNFLITED TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUN 06	TOTAL (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)	WATER UNFLTRD TOTAL (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	TOTAL RECOV- ERABLE (UG/L AS CU)	TOTAL (MG/L AS CN)	TOTAL RECOV- ERABLE (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	NIUM, TOTAL (UG/L AS SE)	TOTAL RECOV- ERABLE (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)
JUN 06 JUL 17	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUN 06 JUL 17 AUG 21	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUN 06 JUL 17 AUG	TOTAL (UG/L AS AS) (01002)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL (MG/L AS CN) (00720)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NIUM, TOTAL (UG/L AS SE) (01147) <3.0	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUN 06 JUL 17 AUG 21 SEP	TOTAL (UG/L AS AS) (01002) E2 3 2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 59.6 62.2 ACETO- CHLOR, WATER FLTRD REC (UG/L)	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) <13.0 <13.0 ALA- CHLOR, WATER, DISS, REC, (UG/L)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 ALPHA BHC DIS- SOLVED (UG/L)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <20.0 <20.0 ATRA- ZINE, WATER, DISS, REC (UG/L)	TOTAL (MG/L AS CN) (00720) <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 20 20 BUTYL- ATE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 12 23 CARBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .01 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L)	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 SITURE ATRA- ZINE, WATER, DISS, REC (UG/L)
JUN 06 JUL 17 AUG 21 SEP 20 DATE JUN 06 JUL JUL	TOTAL (UG/L (UG/L) (01002) E2 3 2,6-DI-ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 59.6 62.2 ACETO-CHLOR, WATER FLTRD REC (UG/L) (49260) <.004	WATER UNFLITED TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 ALA-CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005	TOTAL RECOV-ERABLE (UG/L AS CU) (01042) <20.0 <20.0 <20.0 <umbed 1<="" no.="" td=""><td>TOTAL (MG/L AS CN) (00720) <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010</td><td>TOTAL RECOV- REABLE (UG/L AS FE) (01045) 20 20 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) <.002</td><td>TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 CAR- BARYL WATER FLIRD 0.7 U GF, REC (UG/L) (82680) <.041</td><td>NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 12 23 CARBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)</td><td>TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .01 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933) <.005</td><td>NIUM, TOTAL (UG/L AS SE) (01147) <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041) <.018</td><td>TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003</td><td>TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.003</td></umbed>	TOTAL (MG/L AS CN) (00720) <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010	TOTAL RECOV- REABLE (UG/L AS FE) (01045) 20 20 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) <.002	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 CAR- BARYL WATER FLIRD 0.7 U GF, REC (UG/L) (82680) <.041	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 12 23 CARBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .01 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041) <.018	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.003
JUN 06 JUL 17 AUG 21 SEP 20 DATE JUN 06 JUL 17 AUG	TOTAL (UG/L AS AS) (01002) E2 3 2,6-DI-ETHYL ANILINE WAT FIT 0.7 U GF, REC (UG/L) (82660) <.002	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 59.6 62.2 ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260) <.004	WATER UNFLITED TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 KALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005	TOTAL RECOVE RABLE (UG/L AS CU) (01042) <20.0 <20.0 ATRA- ZINE, WATER, DISS, REC (UG/L) (39632) E.004	TOTAL (MG/L AS CN) (00720) <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 20 20 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) <.002	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 12 23 CARBO- FURAN WATER FILTED 0.7 U GF, REC (UG/L) (82674) <.020	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .01 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041) <.018	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40 DCPA WATER FLIRD 0.7 U GF, REC (UG/L) (82682) <.003	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.003
JUN 06 JUL 17 AUG 21 SEP 20 DATE JUN 06 JUL 17	TOTAL (UG/L (UG/L) (01002) E2 3 2,6-DI-ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 59.6 62.2 ACETO-CHLOR, WATER FLTRD REC (UG/L) (49260) <.004	WATER UNFLITED TOTAL (UG/L AS CD) (01027) <13.0 <13.0 <13.0 ALA-CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005	TOTAL RECOV-ERABLE (UG/L AS CU) (01042) <20.0 <20.0 <20.0 <umbed 1<="" no.="" td=""><td>TOTAL (MG/L AS CN) (00720) <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010</td><td>TOTAL RECOV- REABLE (UG/L AS FE) (01045) 20 20 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) <.002</td><td>TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 CAR- BARYL WATER FLIRD 0.7 U GF, REC (UG/L) (82680) <.041</td><td>NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 12 23 CARBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)</td><td>TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .01 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933) <.005</td><td>NIUM, TOTAL (UG/L AS SE) (01147) <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041) <.018</td><td>TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003</td><td>TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.003</td></umbed>	TOTAL (MG/L AS CN) (00720) <.01 <.01 BEN-FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010	TOTAL RECOV- REABLE (UG/L AS FE) (01045) 20 20 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) <.002	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 CAR- BARYL WATER FLIRD 0.7 U GF, REC (UG/L) (82680) <.041	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 12 23 CARBO- FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) .01 <.01 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 <3.0 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041) <.018	TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) <31 <31 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.003

06259000 WIND RIVER BELOW BOYSEN RESERVOIR, WY--Continued

DATE	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260)
JUN 06 JUL	<.005	<.005	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	.02
17 AUG													
21 SEP	<.005	<.005	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	.04
20													
DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)
JUN 06 JUL	<.013	<.006	<.002	<.007	E.001	<.007	<.002	<.010	<.006	<.011	<.015	<.004	<.010
17													
AUG 21 SEP	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	E.004	<.004	<.010
20													
	DATE	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	
	JUN 06 JUL	<.011	<.023	<.011	E.005	<.034	<.017	<.005	<.002	<.009	47	173	
	17										8	25	
	AUG 21 SEP	<.011	<.023	<.011	<.016	<.034	<.017	<.005	<.002	<.009	4	11	
	20										2		

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

06259050 WIND RIVER AT WEDDING OF WATERS, NR THERMOPOLIS, WY

LOCATION.--Lat $43^{\circ}33'48"$, long $108^{\circ}12'46"$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec.8, T.7 N., R.6 W., Crook County, Hydrologic Unit 10080007, at the Wind River Indian Reservation boundary about 4.5 mi south of Thermopolis on U.S. Highway 20.

PERIOD OF RECORD.--July to September 2001.

		DIS- CHARGE,	BARO- METRIC	2012211 2	OXYGEN, DIS-	PH WATER	SPE-	0 10 0011	BIBBIC 200	CALCIUM	MAGNE- SIUM,	POTAS- SIUM,	SODIUM,
DATE	TIME	INST. CUBIC FEET PER SECOND (00061)	PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	SOLVED (PER- CENT SATUR- ATION) (00301)	WHOLE FIELD (STAND- ARD UNITS) (00400)	CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	TOTAL RECOV- ERABLE (MG/L AS K) (00937)	TOTAL RECOV- ERABLE (MG/L AS NA) (00929)
JUL													
17 AUG	1600	1070	649	7.6	105	8.5	733	36.0	23.0				
21 SEP	1000	941	652	8.0	104	8.4	753	24.0	20.0	57.2	20.6	<.1	64.8
20	1100	630	654	6.0	75	8.0	780	20.0	18.5				
DATE	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
JUL 17							.32	.021	<.001	.013	.028	E23k	E6k
AUG 21	170	9.2	. 4	6.0	205	498	.50	.036	.002	.014	.046	E7k	E7k
SEP 20							.31	.105	.009	.043	.057	E3k	E4k
DATE	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)
JUL 17													
AUG 21	3	61.3	<13.0	<1	<20.0	<.01	40	<1	27	.04	<3.0	<.40	<31
SEP 20		01.5											
20													
DATE	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
JUL 17													
AUG 21	<.002	<.004	<.002	<.005	.009	<.010	<.002	<.041	<.020	<.005	<.018	<.003	E.003
SEP 20													
DATE	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260)
JUL 17													
17 AUG 21	<.005	<.005	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	.03
SEP 20													

06259050 WIND RIVER AT WEDDING OF WATERS, NR THERMOPOLIS, WY--Continued

DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)
JUL 17 AUG													
21 SEP	<.013	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011	E.003	<.004	<.010
20													
	DATE	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO-BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	
	JUL 17										24	69	
	AUG 21	<.011	<.023	<.011	E.004	<.034	<.017	<.005	<.002	<.009	4	10	
	SEP 20										1	1.7	

 $[\]mbox{\bf E}$ -- Estimated value. $\mbox{\bf k}$ -- Counts outside acceptable range (non-ideal colony count).

06260300 ANCHOR RESERVOIR NEAR ANCHOR, WY

LOCATION.--Lat 43°39'50", long 108°49'27", in sec.26, T.43 N., R.100 W., Hot Springs County, Hydrologic Unit 10080007, at dam on South Fork Owl Creek, 2.0 mi downstream from Middle Fork, 3.0 mi southeast of Anchor, and 32 mi west of Thermopolis.

DRAINAGE AREA. -- 131 mi².

PERIOD OF RECORD. -- November 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is sea level (Bureau of Reclamation datum).

REVISED RECORDS. -- WRD 1996: 1995(M).

REMARKS.--Reservoir is formed by concrete arch dam completed by Bureau of Reclamation in 1960. Capacity, 17,230 acre-ft below elevation 6,441.00 ft, crest of spillway. Includes 68 acre-ft below elevation 6,343.75 ft, invert of river outlet. Figures given herein represent total contents. Water used for irrigation of lands in Owl Creek basin.

COOPERATION .-- Records provided by Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 9,250 acre-ft, July 4, 1967, elevation, 6,418.52 ft; maximum elevation, 6,419.10 ft, June 12, 1991; no storage on many days, most years.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 1,060 acre-ft, May 6, elevation, 6,371.90 ft; minimum daily contents, 106 acre-feet, Nov. 24-25; elevation, 6,347.00 ft.

Capacity table (elevation in feet, and contents, in acre-feet)

191 6,372 1,050 6,382 1,920 6,352 6,362 492

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	286 286 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	310 310 310 310 310	733 738 744 750 756	301 305 310 262 260	275 272 274 280 310		271 268 263 263 265
6 7 8 9 10	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	310 310 310 310 310	767 773 790 821 851	263 280 291 295 296	305 309 300 301 336	278	
11 12 13 14 15	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	310 310 310 310 310	864 956 1020 1110 1050	297 298 283 276 282	324 337 321 339 347	296 283	266
16 17 18 19 20	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	310 310 310 310 310	1030 1010 982 824 761	278 285 292 288 294	347 350 351 350 347	307	
21 22 23 24 25	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 283	283 283 283 283 286	323 329 338 372 411	535 414 333 314 314	295 302 301 303 302	343 337 335 336 333		266 266 266 266 266
26 27 28 29 30 31	283 283 283 283 283 283	283 283 283 283 283	283 283 283 283 283 283	283 283 283 283 283 283	283 283 283 	289 295 301 304 307 310	452 535 628 679 733	314 314 314 314 314 314	293 273 266	328 324 317 308 293 294	267 269 271	266 266
MAX MIN (#) (*)	286 283 6,356.00 -3	283 283 6,356.00 0	283 283 6,356.00 0	283 283 6,356.00 0	283 283 6,356.00 0	310 283 6,356.90 +27	733 310 6,367.00 +23	1110 314 6,357.00 -41		351 272 6.356.36 +21	6,355.59	315 263 6,355.40 -5

WTR YR 2001 MAX 1110 MIN 260 (*) -20 (#) Elevation, in feet, at end of month. (*) Change in contents, in acre-feet.

06260300 ANCHOR RESERVOIR NEAR ANCHOR, WY--Continued

06260400 SOUTH FORK OWL CREEK BELOW ANCHOR RESERVOIR, WY

LOCATION.--Lat43°39'57", long 108°47'34", in sec.25, T.43 N., R.100 W., Hot Springs County, Hydrologic Unit 10080007, on left bank 1.6 mi downstream from Anchor Dam and 30 mi west of Thermopolis.

DRAINAGE AREA. -- 131 mi².

(WY)

1965

1962

1961

1960

1960

1961

1991

1981

2001

1994

2001

2000

PERIOD OF RECORD. -- April 1959 to current year (no winter records since 1988).

REVISED RECORDS. -- WDR WY-76-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 6,120 ft above sea level, from topographic map.

REMARKS.--Records fair. Flow regulated by Anchor Dam (station 06260300). No diversion upstream from station. Results of discharge measurements, in cubic feet per second, made during the period when station was not in operation, are given below:

Oct. 3 . . . 3.04 Mar. 19 . . . 2.75

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP . 75 30 7.8 2.3 ------___ ---------2 84 4.6 34 6 5 4.1 2.1 3 5.0 1.9 ---------------.84 4.2 26 3.3 ------------------.70 18 5 .55 3.7 9.6 12 3.0 1.7 ---------3.9 6 ------.50 8.6 17 4.1 ---7 2.5 8.9 .48 5.0 13 18 19 8 .47 3.0 7.4 4.8 15 ---------------.42 5.1 22 15 ---10 .35 5.2 24 31 4.9 4.8 11 12 5.2 9.4 . 35 22 25 5.6 3.7 ------------------.50 19 24 5.4 3.6 24 17 13 .40 18 4.8 3.4 13 4.3 14 ___ ___ ___ ___ ___ ___ .33 42 4.1 15 ------___ 15 67 .32 4.6 16 17 ___ ___ ___ ___ ___ ___ .32 62 13 20 5 5 5.2 5.2 ---------------.32 ---14 13 6.0 58 2.5 71 18 16 12 6.1 8.4 7.1 19 ___ ___ ___ ___ ___ ___ 6.6 80 14 11 5.1 3.9 20 76 14 10 6.4 5.7 4.7 21 5.7 72 15 ___ ___ ___ ___ ___ ___ 10 3 6 22 5.3 58 18 9.4 3.4 23 ---4.6 28 19 8.4 3.0 4.4 24 ___ ___ ___ ___ ___ ___ 3.9 37 19 7.8 7.9 2.4 4.3 3.9 25 3.9 42 20 37 16 7 7 4 0 26 ---___ ___ 3 3 2 0 ___ ___ ___ 27 3.0 45 16 7.3 2.0 4.1 28 ------------------2.9 40 14 6.7 2.1 3.8 ___ ___ ___ ---___ ___ 29 3 4 28 11 5 9 2 0 3 7 30 ---------3.8 28 8.5 31 ------------------28 4.3 2.1 TOTAL ___ 63.74 982.0 515.7 373.3 112.2 138.0 MEAN ------------------2.12 31.7 17.2 12.0 3.62 4.60 ------------------80 34 8.9 MAX 6.6 31 6.1 MIN ___ ---___ ---___ ---.32 3.7 8.5 4.3 2.0 1.7 AC-FT ------------------126 1950 1020 740 223 274 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1959 - 2001, BY WATER YEAR (WY)* MEAN 7.40 2.71 .98 .71 2.06 8.61 48.2 98.2 57.0 12.9 .40 26.0 MAX 20.5 8.90 3.86 2.39 2.82 8.66 30.2 90.1 226 124 79.4 37.1 (WY) 1983 1982 1982 1981 1988 1960 1987 1974 1986 1982 1995 1992 2.49 .013 .000 .000 .000 .000 .000 14.3 17.2 3.62 2.52 MIN 4.67

06260400 SOUTH FORK OWL CREEK BELOW ANCHOR RESERVOIR, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1959 - 2001*
ANNUAL MEAN		22.1
HIGHEST ANNUAL MEAN		35.9 1986
LOWEST ANNUAL MEAN		11.3 1985
HIGHEST DAILY MEAN	80 May 19	357 Jun 18 1999
LOWEST DAILY MEAN	.32 Apr 15-17	.00 Several days,
MAXIMUM PEAK FLOW	86 May 18	most years 373 ^a May 26 1967
MAXIMUM PEAK STAGE	2.80 May 18	4.22 Jun 17 1999
ANNUAL RUNOFF (AC-FT)		16050

- For period of operation. Gage height, 3.64 ft.

06264700 BIGHORN RIVER AT LUCERNE, WY

LOCATION.--Lat $43^{\circ}44^{\circ}10^{\circ}$, long $108^{\circ}09^{\circ}38^{\circ}$, in $SE^{1}/_{4}$ sec.32, T.44 N., R.94 W., Hot Springs County, Hydrologic Unit 10080007, at bridge on Black Mountain road, 0.7 mi upstream from Kirby Creek, 0.8 mi east of Lucerne, and 1.0 mi downstream from Owl Creek.

PERIOD OF RECORD.--Water years 1966 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
DEC 27 FEB	1020	736	658	12.3	101	7.9	758	1.5	1.0	<.041	<.047	<.006	<.018
27	0945	805	662	11.1	95	8.1	784	-3.5	3.0	<.041	<.047	<.006	<.018
MAY 15 JUL	1040	1090	648	8.3	98	8.2	803	29.0	15.5	<.040	E.025	<.006	.020
30	1130	1180	651	10.8	146	8.3	831	25.5	22.0	E.024	E.042	<.006	<.020

DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	0.7 UM-MF (COLS., 100 ML
DEC 27 FEB	220	160
27	200	200
MAY 15	220	220
JUL 30	29	35

 $^{{\}tt E}$ -- Estimated value.

06265337 COTTONWOOD CREEK AT HIGH ISLAND RANCH, NEAR HAMILTON DOME, WY

LOCATION.--Lat $43^{\circ}45^{\circ}46^{\circ}$, long $108^{\circ}40^{\circ}34^{\circ}$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$ $SE^{1}/_{4}$ sec.24, T.44 N., R.99 W., Hot Springs County, Hydrologic Unit 10080007, on right bank 15 ft upstream from county bridge, 5.2 miles west of Hamilton Dome, and 12 miles south of Grass Creek.

DRAINAGE AREA. -- 81.4 mi².

PERIOD OF RECORD.--May 1977 to September 1978 (discharge measurements and water quality only), April 1993 to current year. Prior to April 1993, published as Cottonwood Creek at county bridge, near Hamilton Dome.

GAGE.--Water-stage recorder. Elevation of gage is 5,677 ft above sea level, from topographic map. Prior to Sept. 9, 1996, at site 9 ft downstream at datum 3.00 ft higher.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. State of Wyoming data collection platform with satellite telemetry at station.

		DISC	HARGE, CUE	IC FEET PE		, WATER Y LY MEAN V	YEAR OCTOBER VALUES	2000 TO) SEPTEMB	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	2.1 e.90 .00 .00	.00 .00 .00 e.00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 e.01 e.01	1.9 2.2 2.1 2.5 2.0	7.2 5.7 3.8 2.6 3.4	1.6 1.2 1.5 3.1 2.8	.88 .08 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9 10	.00 .00 .00 .00	e.00 e.00 e.00 e.00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	e.02 e.02 e.03 e.06 e.10	2.4 2.6 3.0 2.5 2.2	3.6 3.2 3.2 4.8 6.0	2.1 1.4 1.0 .63 .22	.00 .00 .00 .00	.00 .00 .00 .00	10 11 5.8 4.4 2.1
11 12 13 14 15	.00 .00 .00 .00	e.00 e.00 e.00 e.00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	e.15 e.25 e.40 e.60 e1.0	2.1 2.1 2.3 2.1 2.1	5.2 5.5 5.7 6.4 5.8	.00 .00 7.6 10 6.6	12 4.2 6.7 14 12	.00 .00 .00 .00	1.0 .39 .15 6.2 8.7
16 17 18 19 20	.00 .00 .00 .00	e.00 e.00 e.00 e.00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	e1.5 e2.5 e3.0 3.8 4.2	2.1 2.2 3.4 6.5 8.2	4.8 4.3 3.3 2.8 3.0	3.8 2.6 2.3 2.3 1.9	6.3 3.2 1.7 .67	.00 .00 .00 .00	3.5 3.6 8.3 6.1 3.4
21 22 23 24 25	.00 .00 .00 .04	e.00 e.00 e.00 e.00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	4.3 5.3 5.4 4.9 3.2	3.9 3.3 2.7 3.0 4.2	3.1 2.1 1.9 1.4 1.6	1.5 .93 .36 .02	.00 .00 .00 3.2 .00	.00 .00 .00 .00	1.9 1.1 .68 .56
26 27 28 29 30 31	3.8 2.8 1.7 1.3 .89 2.1	e.00 e.00 e.00 e.00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00	2.5 2.3 2.3 2.6 2.3 2.1	6.7 9.6 9.1 9.4 7.7	4.3 7.5 5.0 3.2 2.4 2.1	.00 .00 2.6 2.5 1.6	.00 .00 .00 .00 .00	.00 .00 .00 .00	.16 .24 .21 .00 .10
TOTAL MEAN MAX MIN AC-FT	16.33 .53 3.8 .00 32	3.00 .10 2.1 .00 6.0	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	54.85 1.77 5.4 .00 109	116.1 3.87 9.6 1.9 230	124.9 4.03 7.5 1.4 248	62.16 2.07 10 .00 123	375.02 12.1 310 .00 744	0.12 .004 .12 .00	79.90 2.66 11 .00 158
STATIST	TICS OF	MONTHLY N	MEAN DATA	FOR WATER	YEARS 19	93 - 2001	l, BY WATER	YEAR (W)	7)			
MEAN MAX (WY) MIN (WY)	5.19 14.7 1999 .53 2001	2.92 6.91 1994 .10 2001	1.28 2.96 1998 .000 2001	1.03 2.83 1997 .000 2001	1.54 3.30 1996 .000 2001	7.66 26.9 1998 1.77 2001	12.3 30.2 1999 3.87 2001	38.4 84.1 1999 4.03 2001	51.5 142 1997 2.07 2001	14.7 30.6 1997 1.01 2000	4.83 8.95 1998 .004 2001	3.95 9.11 1998 .000 2000

06265337 COTTONWOOD CREEK AT HIGH ISLAND RANCH, NEAR HAMILTON DOME, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1993 - 2001
ANNUAL TOTAL	1161.21	832.38	
ANNUAL MEAN	3.17	2.28	11.7
HIGHEST ANNUAL MEAN			21.7 1999
LOWEST ANNUAL MEAN			2.28 2001
HIGHEST DAILY MEAN	38 May 24	310 Jul 10	895 Jun 11 1997
LOWEST DAILY MEAN	.00 Many days	.00 Many days	.00 Many days,
			most years
ANNUAL SEVEN-DAY MINIMUM	.00 Aug 9	00 Oct 1 3410 ^a Jul 10 10.76 ^b Jul 10	00 Most years 3410 ^a h Jul 10 2001
MAXIMUM PEAK FLOW		3410 ^a _h Jul 10	3410 ^a _b Jul 10 2001
MAXIMUM PEAK STAGE		10.76 ^D Jul 10	10.76 ^b Jul 10 2001
ANNUAL RUNOFF (AC-FT)	2300	1650	8480
10 PERCENT EXCEEDS	9.3	4.8	38
50 PERCENT EXCEEDS	.66	.00	3.6
90 PERCENT EXCEEDS	.00	.00	.00

- From rating curve extended above $1060~{\rm ft}^3/{\rm s}$ on basis of slope-area determination of peak flow. From floodmarks. Estimated. a b e

06274300 BIGHORN RIVER AT BASIN, WY

LOCATION.--Lat $44^{\circ}23^{\circ}00^{\circ}$, long $108^{\circ}02^{\circ}08^{\circ}$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec.21, T.51 N., R.93 W., Big Horn County, Hydrologic Unit 10080007, on left bank 10 ft downstream from county bridge on E Street, 0.2 mi northeast of Big Horn County Courthouse in Basin, and 1.8 mi downstream from Antelope Creek.

DRAINAGE AREA. -- 13,223 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1983 to current year.

GAGE.--Water-stage recorder. Datum of gage is 3,821.29 ft above sea level.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 226,000 acres upstream from station. U.S. Geological Survey data collection platform with satellite telemetry at station.

		DISCHA	RGE, CUBIC	C FEET PER		WATER Y Y MEAN V	EAR OCTOBER ALUES	2000 TO	SEPTEMBER	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	999	1270	e1200	e1050	e1000	e940	914	798	982	710	463	552
2	1020	1260	e1150	e1000	e1000	e920	920	846	973	702	e450	552
3	1030	1260	e1150	e960	e1000	e920	917	832	1050	633	e435	577
4	1030	1250	e1200	e1000	e1020	e900	915	779	1170	612	e425	541
5	1020	1260	e1220	e1010	e1020	e940	918	697	1200	618	e415	445
6	1060	1260	e1150	e1020	e1020	e980	915	672	1090	597	e405	480
7	1140	1250	e1170	e1030	e1000	e1150	899	704	994	582	e400	1030
8	1090	e1250	e1200	e1050	e1000	e1300	902	662	860	595	e395	1060
9	1060	e1200	e1250	e960	e960	e1450	918	672	852	622	405	738
10	1130	e1100	e1000	e980	e850	e1450	887	817	944	675	424	659
11	1230	e1100	e900	e1000	e900	e1300	833	927	1010	1320	449	630
12	1200	e1050	e800	e1000	e940	e1150	791	980	1060	1290	520	599
13	1190	e1000	e700	e1020	e960	e1150	816	1300	1340	988	532	608
14	1180	e1000	e800	e1020	e1050	e1050	821	1730	1810	882	450	612
15	1190	e1050	e1100	e1030	e1000	e1000	775	2060	1840	911	415	604
16	1190	e1050	e1200	e1050	e960	999	780	1910	1400	993	439	633
17	1190	e1100	e1100	e960	e960	989	726	1700	1290	836	478	647
18	1190	e1100	e1200	e1000	e1000	999	683	1330	1230	727	503	606
19	1210	e1150	e1100	e1030	e1100	995	685	1090	1100	691	513	558
20	1240	e1200	e1000	e1050	e1050	998	683	998	987	637	542	503
21	1230	e1200	e980	e1030	e1050	1000	922	1070	897	638	511	517
22	1260	e1200	e1000	e1010	e1050	1000	991	845	838	595	498	485
23	1300	e1220	e1030	e1000	e1050	987	784	737	1000	579	502	476
24	1270	e1250	e1050	e1000	e1100	957	680	730	807	534	496	482
25	1330	e1250	e1100	e1020	e1150	943	604	853	827	512	484	477
26 27 28 29 30 31	1390 1300 1290 1290 1270 1270	e1200 e1200 e1250 e1200 e1250	e1080 e1080 e1080 e1060 e1050 e1050	e1050 e1070 e1050 e1000 e920 e960	e1200 e980 e960 	940 965 960 946 933 918	604 596 563 603 724	982 1210 1330 1270 1240 1120	798 844 960 872 756	486 519 514 513 502 467	489 501 463 464 478 512	471 474 445 445 461
TOTAL	36789	35380	33150	31330	28330	32129	23769	32891	31781	21480	14456	17367
MEAN	1187	1179	1069	1011	1012	1036	792	1061	1059	693	466	579
MAX	1390	1270	1250	1070	1200	1450	991	2060	1840	1320	542	1060
MIN	999	1000	700	920	850	900	563	662	756	467	395	445
AC-FT	72970	70180	65750	62140	56190	63730	47150	65240	63040	42610	28670	34450
							, BY WATER Y	·		2410	1100	1221
MEAN	1565	1445	1324	1226	1278	1539	1459	2519	4075	2418	1182	1331
MAX	2346	2439	1933	1975	1772	2753	2929	6252	11210	8574	2627	2326
(WY)	1984	1984	1985	1992	1997	1998	1998	1999	1991	1995	1997	1998
MIN	694	659	642	566	504	634	723	1052	1059	357	455	579
(WY)	1989	1989	1989	1989	1989	1989	1992	1989	2001	1988	1988	2001

06274300 BIGHORN RIVER AT BASIN, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	ER YEAR	WATER YEAR	S 1984 - 2001
ANNUAL TOTAL	417604		338852			
ANNUAL MEAN	1141		928		1781	
HIGHEST ANNUAL MEAN					2913	1999
LOWEST ANNUAL MEAN					800	1989
HIGHEST DAILY MEAN	3500	May 17	2060	May 15	16600	Jun 8 1991
LOWEST DAILY MEAN	568	Aug 29	395	Aug 8	276	Jul 27 1988
ANNUAL SEVEN-DAY MINIMUM	590	Aug 24	410	Aug 4	292	Jul 24 1988
MAXIMUM PEAK FLOW			2400	May 15	19500	Jun 7 1991
MAXIMUM PEAK STAGE			7.52	Nov 23	10.49	Jun 7 1991
ANNUAL RUNOFF (AC-FT)	828300		672100		1290000	
10 PERCENT EXCEEDS	1500		1250		2980	
50 PERCENT EXCEEDS	1130		988		1400	
90 PERCENT EXCEEDS	661		502		697	

e Estimated.

06274300 BIGHORN RIVER AT BASIN, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1983 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
DEC 27	1515	1080	666	11.9	94	7.8	918	.00	.00	E.036	.266	<.006	<.018
FEB 27	1410	924		8.0		8.1	883	26.0	.00	.047	.195	E.003	<.018
MAY 15	1530	2280	659	8.0	91	7.7	344	29.0	14.5	<.040	.149	.007	<.020
JUL 30	1430	523	660	11.4	157	8.4	1040	20.5	24.0	<.040	.533	.008	<.020

DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)			
DEC 27	E23k	21	83	242
27	E1k	20	148	369
MAY 15	1700	E1800k	2180	13400
JUL 30	80	62	86	121

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

06276500 GREYBULL RIVER AT MEETEETSE, WY

LOCATION.--Lat $44^{\circ}09^{\circ}20^{\circ}$, long $108^{\circ}52^{\circ}35^{\circ}$, in sec.4, T.48 N., R.100 W., Park County, Hydrologic Unit 10080009, on right bank at Meeteetse, 0.3 mi upstream from bridge on State Highway 120, and 3.0 mi upstream from Meeteetse Creek.

DRAINAGE AREA. -- 681 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June to December 1897, April to October 1903 (gage heights and discharge measurements only), July 1920 to current year (no winter records since 1971). Partial records only for some periods prior to 1931, published in WSP 1309.

REVISED RECORDS.--WSP 1309: 1923(M), 1924, 1925(M). WSP 1709: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 5,739.42 ft above sea level. See WSP 1916 for history of changes prior to Apr. 28, 1938. Apr. 28, 1938 to May 24, 1961, at site on left bank at datum 2.00 ft higher. May 25, 1961, to May 9, 1967, at site 100 ft downstream at present datum.

REMARKS.--Records fair, except for Apr. 1-19 and June 24, 25, which are poor. Some regulation by Sunshine Reservoir beginning May 1940, capacity, 52,990 acre-ft, and Lower Sunshine Reservoir beginning December 1972, capacity, 58,900 acre-ft. Diversions for irrigation of about 10,600 acres upstream from station. Several diversions upstream from station for irrigation downstream from station. Results of discharge measurements, in cubic feet per second, made during the period when station was not in operation, are given below:

Oct. 10 . . . 81.0 Mar. 29 . . . 64.3

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES DAY OCT NOV DEC FEB MAY AUG SEP JAN MAR APR JUL e47 ___ ___ ___ ___ ---------------------___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 52 279 137 ___ ---------___ ---___ ___ ___ ___ ___ ___ 411 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ------___ ___ ___ ___ ___ ___ ---------------------___ ___ ___ ___ ___ ------------------------------------___ ---___ ---------------___ ---------------------------TOTAL ------MEAN ---___ ___ ---62.7 98.8 MAX ------------MIN AC-FT ___ ___ ___ ___ ___ ___ STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1921 - 2001, BY WATER YEAR (WY)* 78.3 64.5 63.7 77.3 MEAN MAX (WY) 27.0 72.5 52.8 33.9 35.1 26.8 84.2 MTN 45.0 (WY)

YELLOWSTONE RIVER BASIN 06276500 GREYBULL RIVER AT MEETEETSE, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1921 - 2001*
ANNUAL MEAN		333
HIGHEST ANNUAL MEAN		566 1957
LOWEST ANNUAL MEAN		130 1940
HIGHEST DAILY MEAN	599 Jul 10	6770 Jun 6 1957
LOWEST DAILY MEAN	23 Sep 5	13 Apr 18 1989
MAXIMUM PEAK FLOW	839 Jul 10	13600 ^a _h Jun 15 1963
MAXIMUM PEAK STAGE	2.24 Jul 10	9.20 Jun 15 1963
ANNUAL RUNOFF (AC-FT)		241200

* For period of operation. a From rating curve extended above 4,600 ${\rm ft}^3/{\rm s}$ on basis of velocity-area study. b From floodmark.

06276500 GREYBULL RIVER AT MEETEETSE, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1995 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
DEC 19 MAR	1215	33	615	13.6	116	8.1	661	9.5	.00	<1	E10k	50	4.5
01	1145	40		10.2		7.9	617	5.0	.00	E2k	5	4	.43
MAY 16 JUL	1750	302	614	8.4	105	8.3	154	20.0	15.5	55	85	68	55
31	1640	290	618	7.8	109	8.9	498	28.0	21.0	31	40	39	31

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

06278300 SHELL CREEK ABOVE SHELL RESERVOIR, WY

LOCATION.--Lat 44°30'29", long 107°24'11", in sec.1, T.52 N., R.88 W., Big Horn County, Hydrologic Unit 10080010, Bighorn National Forest, on right bank 0.2 mi upstream from Shell Reservoir, 1.1 mi downstream from Buckley Creek, 6.0 mi southeast of Shell Creek ranger station, and 19 mi east of Shell.

DRAINAGE AREA. -- 23.1 mi².

PERIOD OF RECORD.--October 1956 to current year. Prior to October 1969, published as Shell Creek above Shell Creek Reservoir. REVISED RECORD.--WSP 1629: 1958. WSP 1709: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 9,050 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. No diversions upstream from station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 7.0 7.8 7.0 4.7 20 2.4 e80 2.3 2 4.4 2.9 2.4 1.8 1.9 e2.5 e50 e90 19 4.7 e4.2 3 2.8 1.9 43 e100 2.4 1.9 e2.5 4.5 18 2.0 e2.6 e80 5 6.1 e4.6 2.6 2.4 2.0 1.8 e2.6 30 e60 16 4.3 2.0 6 5.6 2.6 2.3 2.0 1.8 e2.6 29 e54 15 3.8 7 5.1 e3.7 2.7 2 1 2.1 1 8 e2 7 29 e50 14 3 9 5 0 2.7 8 5.3 e3.4 2.1 e2.8 e50 2.1 1.8 31 14 4.5 4.8 5.5 2.6 1.9 2.0 1.8 43 e64 4.2 2.0 10 5.4 e3.2 2.5 1.9 1.9 e2.9 69 e76 14 4.3 4.7 4.1 3.7 11 5.7 e3.0 2.5 2.0 1.9 1.8 e2.8 89 e72 13 3.9 2.1 12 2.5 e6.0 e2.9 1.9 1.9 e2.7 145 e66 13 4.0 13 e6.0 e2.9 2.4 2.0 1.9 1.9 e2.7 251 e70 12 3.9 3.6 2.3 2.0 2.0 14 e5.8 e2.9 1.9 e2.7 331 e60 11 3.8 4.9 15 5.6 e3.01.9 e2.6 330 e50 12 3.7 5.7 16 17 2.3 1.9 1.9 5.0 4.7 5.8 e2.8 1 9 2 1 e2.6 350 e45 12 4 1 1.9 2.0 11 e5.8 e2.8 e2.6 198 e40 4.6 e2.7 2.5 1.9 2.0 e3.2 4.6 18 e5.6 1.9 137 e36 10 3.9 19 5.5 e5.3 e2.7 e2.7 2 4 1.8 1.9 1.9 2.0 e4.3 125 e32 9.5 8.9 3.5 4.4 2.4 2.1 20 133 30 4.5 e5.4 e2.7 e2.7 21 5.1 2 4 1 8 1.9 e2.1 e5 4 56 29 8.3 3.2 4.1 5.1 2.4 1.9 3.9 22 1.8 e2.2 42 28 7.9 3.1 e4.5 23 2.4 1.9 7.6 e5.6 e2.7 e2.4 e4.0 29 3.8 e2.7 2.7 5.4 5.9 24 2 4 e1 8 1.9 2 2 e3.7 e100 30 11 2.9 3.7 25 2.4 1.9 e2.2 32 8.4 2.7 3.6 e1.8 e4.3 e130 2.7 2.7 26 5 8 2 2 e1 8 1 9 e2 3 e9 0 e160 30 7 7 2.8 3.5 27 2.3 1.9 7.3 2.7 3.4 e5.7 e2.5 e180 30 1.8 e15 e2.4 28 5.6 2.8 2.4 1.8 1.9 e30 e160 27 6.9 2.7 3.3 5.5 5.2 1.7 2 7 3.2 29 2 8 2.4 e2.3 e25 e130 23 6.3 30 2.9 e2.1 21 5.6 40 e110 31 5.0 2.4 1.6 --e2.3 e90 5.3 2.5 TOTAL 178.2 96.0 77.3 61.3 53.8 63.3 199.2 3727 1484 355.7 113.5 114.8 5.75 7.8 MEAN 3.20 2.49 1.98 1.92 2.04 6.64 120 49.5 11.5 3.66 3.83 MAX 4.7 3.0 2.4 2.1 2.5 40 350 100 20 5.0 5.7 1.6 1.8 1.8 2.5 5.3 2.5 2.0 MIN AC-FT 353 190 153 122 107 126 395 7390 2940 706 225 228 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1957 - 2001, BY WATER YEAR (WY) 2.72 2.15 105 MEAN 8.51 5.80 3.80 2.25 5.66 204 48.0 13.1 9.74 MAX 17.6 11.2 7.18 4.50 3.67 3.76 28.4 289 353 188 45.6 44.9 (WY) 1962 1962 1995 1995 1998 1999 1987 1958 1968 1975 1968 1968 2.91 1.55 2.77 3.10 1.95 1.09 1.14 1.23 15.2 48.9 11.5 MIN 3.66 (WY) 1989 1976 1970 1980 1980 1961 1970 1975 1994 2001 2001 1988

06278300 SHELL CREEK ABOVE SHELL RESERVOIR, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1957 - 2001
ANNUAL TOTAL	10057.0	6524.1	
ANNUAL MEAN	27.5	17.9	34.2
HIGHEST ANNUAL MEAN			50.2 1968
LOWEST ANNUAL MEAN			17.9 2001
HIGHEST DAILY MEAN	452 May 29	350 May 16	1010 Jun 15 1963
LOWEST DAILY MEAN	1.9 Mar 31	1.6 Jan 31	.60 Mar 7 1967
ANNUAL SEVEN-DAY MINIMUM	2.0 Mar 29	1.7 Jan 25	.90 Jan 27 1980
MAXIMUM PEAK FLOW		499 May 14	.90 Jan 27 1980 1870 ^a h Jun 15 1963
MAXIMUM PEAK STAGE		4.99 May 14	7.84 ^b Jun 15 1963
ANNUAL RUNOFF (AC-FT)	19950	12940	24760
10 PERCENT EXCEEDS	83	50	96
50 PERCENT EXCEEDS	4.3	3.5	5.8
90 PERCENT EXCEEDS	2.1	1.9	1.9

From rating curve extended above 725 ${\rm ft}^3/{\rm s}$ on basis of velocity-area study. From floodmarks. Estimated. a b e

06278500 SHELL CREEK NEAR SHELL, WY

LOCATION.--Lat $44^{\circ}33^{\circ}54^{\circ}$, long $107^{\circ}42^{\circ}44^{\circ}$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec.17, T.53 N., R.90 W., Big Horn County, Hydrologic Unit 10080010, on right bank 0.9 mi upstream from White Creek and 5.0 mi northeast of Shell.

DRAINAGE AREA. -- 145 mi².

PERIOD OF RECORD.--October 1940 to current year (no winter records since 1971). Prior to December 1940, monthly discharge only, published in WSP 1309.

REVISED RECORDS.--WSP 1239: 1941, 1945(M). WSP 1709: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 4,370.05 ft above sea level.

REMARKS.--Records good. Some regulation by two small reservoirs, capacity, 3,650 acre-ft. Diversions upstream from station for irrigation of about 80 acres downstream from station. Results of discharge measurements, in cubic feet per second, made during the periods when station was not in operation, are given below:

Oct. 4 . . . 64.8 Mar. 27 . . . 32.3

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY NOV DEC FEB MAY AUG SEP OCT JAN APR ------------------7 ---------29 51 ___ ___ ___ ---------___ ___ ___ ___ ___ 13 ___ ___ ___ ___ ___ ___ 27 136 72 ___ ___ ---------___ ------___ ___ ___ ___ ___ ------------------------___ ___ ---___ ---------------------------___ ___ ___ ___ TOTAL ---------MEAN ------------38.2 88.9 68.1 45.6 ------------MAY MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1941 - 2001, BY WATER YEAR (WY)* 77.8 MEAN 57.0 47.2 41.5 36.9 35.2 35.1 50.6 99.5 95.2 48.7 76.4 60.4 44.6 48.0 MAX (WY) 25.9 57.7 MTN 35.3 31.5 30.0 28.3 26.9 29.0 80.4 69.2 36.0 (WY)

06278500 SHELL CREEK NEAR SHELL, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1941 - 2001*
ANNUAL MEAN		119
HIGHEST ANNUAL MEAN		160 1968
LOWEST ANNUAL MEAN	==	77.3 1966
HIGHEST DAILY MEAN	730 May 15	1980 Jun 4 1968
LOWEST DAILY MEAN	26 Apr 15	13 Apr 10 1989
MAXIMUM PEAK FLOW	910 May 15	3020 ^a Jun 24 1945
MAXIMUM PEAK STAGE	4.72 May 15	7.49 Jun 24 1945
ANNUAL RUNOFF (AC-FT)		85900

^{*} For period of operation. a From rating curve extended above 1,600 ${\rm ft}^3/{\rm s}.$

06279500 BIGHORN RIVER AT KANE, WY

LOCATION.--Lat $44^{\circ}45^{\circ}31^{\circ}$, long $108^{\circ}10^{\circ}51^{\circ}$, in $NM^{1}/_{4}$ $NE^{1}/_{4}$ $SW^{1}/_{4}$ sec.9, T.55 N., R.94 W., Big Horn County, Hydrologic Unit 10080010, on right bank 180 ft upstream from Bighorn Canyon National Recreation Area boundary, 0.5 mi upstream from normal high-water line of Bighorn Lake at elevation 3,660 ft, 1.3 mi upstream from Five Springs Creek, and 5.9 mi south of Kane.

DRAINAGE AREA.--15,765 mi^2 . Area at sites used prior to May 17, 1956, 15,846 mi^2 .

PERIOD OF RECORD. -- August 1928 to current year.

REVISED RECORDS.--WSP 1309: 1929(M). WSP 1509: 1929. WSP 1709: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 3,660 ft above sea level, from topographic map. Aug. 29, 1928, to Apr. 25, 1932, nonrecording gage, and Apr. 25, 1932, to May 16, 1956, water-stage recorder at site 12.5 mi downstream at different datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation by Boysen Reservoir (station 06258900) since October 1951. Diversions for irrigation of about 376,000 acres upstream from station. U.S. Army Corps of Engineers data collection platform with satellite telemetry at station. Water-quality data are published in the special studies section of this report.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1923, 14.8 ft, Sept. 30, 1923, site and datum in use April 1932 to May 1956.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			,		DAIL	Y MEAN VA	LUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1140	1310	e1250	1200	1080	1210	1080	1010	1110	837	561	583
2	1170	1300	e1200	1150	1120	1170	1070	1030	1010	791	576	626
3	1180	1280	e1150	1150	1130	1150	1080	1060	1050	729	556	620
4	1180	1260	e1150	1110	1160	1150	1070	968	1190	664	555	636
5	1170	1260	e1200	1170	1160	1120	1070	868	1320	653	557	573
6	1200	1250	1260	1170	1160	1160	1070	792	1250	661	531	535
7	1250	e1200	1150	1180	1170	1190	1070	813	1140	641	488	857
8	1280	e1250	1160	1190	e1150	1250	1060	793	1010	634	431	1310
9	1220	e1200	e1200	1210	e1100	1380	1080	735	914	e640	447	966
10	1240	e1150	e1250	1090	e1000	1630	1070	809	945	e660	477	788
11	1280	e1100	e1200	1140	e950	1550	1040	1030	1040	e2000	491	753
12	1290	e1100	1110	1160	e1100	1450	959	1110	1090	e1900	521	715
13	1270	e1050	915	1170	e1150	1430	958	1470	1300	1160	615	688
14	1270	e1000	804	1170	e1200	1440	979	2150	2290	1010	568	720
15	1260	e1000	964	1180	e1250	1340	981	2600	2510	965	490	716
16	1260	e1050	e1100	1170	e1200	1280	966	2560	1890	1120	485	728
17	1250	e1050	e1200	1210	1160	1270	922	2280	1540	1040	533	737
18	1240	e1100	1120	1070	1160	1300	911	1770	1450	911	560	739
19	1240	e1100	1200	1140	1190	1320	877	1360	1320	819	576	679
20	1270	e1150	e1200	1150	1290	1340	893	1150	1170	788	607	634
21	1270	e1200	e1150	1190	1240	1340	996	1210	1060	766	609	609
22	1290	e1200	1080	1170	1240	1300	1260	1070	944	771	579	607
23	1330	e1200	1080	1170	1260	1210	1100	839	1030	737	562	572
24	1310	e1250	1090	1180	1260	1160	935	749	919	672	561	567
25	1340	e1250	1140	1150	1260	1120	845	801	910	622	555	562
26 27 28 29 30 31	1480 1370 1330 1330 1320 1310	e1250 e1200 e1200 e1250 e1200	1170 1140 1140 1150 1140 1150	1170 1210 1220 1200 1080 1030	1320 1300 1260 	1100 1130 1140 1120 1120 1100	765 795 757 801 911	965 1230 1460 1420 1350 1260	869 1190 1020 1100 938	585 578 595 606 601 582	547 559 549 519 530 555	557 567 554 538 543
TOTAL	39340	35360	35213	35950	33020	38970	29371	38712	36519	25738	16750	20279
MEAN	1269	1179	1136	1160	1179	1257	979	1249	1217	830	540	676
MAX	1480	1310	1260	1220	1320	1630	1260	2600	2510	2000	615	1310
MIN	1140	1000	804	1030	950	1100	757	735	869	578	431	535
AC-FT	78030	70140	69840	71310	65500	77300	58260	76790	72440	51050	33220	40220
STATIST	rics of M	ONTHLY ME	AN DATA F	FOR WATER	YEARS 193	0 - 2001,	BY WATER	YEAR (WY)			
MEAN	1818	1685	1469	1377	1548	1836	1824	3205	5858	3180	1458	1536
MAX	3994	2871	2506	2871	3164	3171	3454	7505	14680	11650	6388	3673
(WY)	1983	1984	1983	1972	1983	1972	1943	1947	1944	1967	1930	1973
MIN	524	737	627	580	550	740	696	1005	1032	501	305	386
(WY)	1936	1961	1961	1937	1933	1989	1961	1960	1934	1961	1940	1935

06279500 BIGHORN RIVER AT KANE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDA	AR YEAR	FOR 2001 W	VATER YEAR	WATER YEARS	1930 - 2001*
ANNUAL TOTAL	482157		385222			
ANNUAL MEAN	1317		1055		2233	
HIGHEST ANNUAL MEAN					3524	1947
LOWEST ANNUAL MEAN					915	1989
HIGHEST DAILY MEAN	4280	May 18	2600	May 15	24800	Jun 15 1935
LOWEST DAILY MEAN	625	Aug 30	431	Aug 8	179	Jul 22 1934
ANNUAL SEVEN-DAY MINIMUM	657	Aug 25	484	Aug 6	184	Jul 18 1934
MAXIMUM PEAK FLOW			3140	Jun 14	25200 ^a	Jun 16 1935
MAXIMUM PEAK STAGE			3.5	52 Jun 14	11.10 ^a	Jun 16 1935
ANNUAL RUNOFF (AC-FT)	956400		764100		1618000	
10 PERCENT EXCEEDS	1760		1320		4000	
50 PERCENT EXCEEDS	1250		1120		1650	
90 PERCENT EXCEEDS	746		576		796	

- August 1928 to September 1929 not included in computations, monthly only for select months. Site and datum then in use. Estimated.

06279795 CROW CREEK AT MOUTH, AT PAHASKA, WY

LOCATION.--Lat 44'30°48", long 109'58°22", Park County, Hydrologic Unit 10080012, Shoshone National Forest, on right bank 0.3 mi upstream from mouth and 0.8 mi northwest of Pahaska.

DRAINAGE AREA. -- 19.1 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- March 1989 to September 1993, March to September 2001 (no winter records).

GAGE.--Water-stage recorder. Elevation of gage is 6,760 ft above sea level, from topographic map.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. No diversion upstream from station. U.S. Geological Survey data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 70 105 8.3 2 ___ ___ ___ ---___ ___ e6.0 52 105 40 11 8.1 3 49 -----e5.8 ------------110 36 11 8.1 ------___ ---___ ___ 5 e5.6 82 88 32 11 8.2 6 7 -----e5.6 88 82 31 11 9.7 ---___ ---___ e6.0 91 74 29 11 8 9 74 8 --e6.0 8.5 117 33 10 ------------------77 31 8.3 10 e5.4 137 83 30 10 8.1 ---11 --e5.2 140 84 25 10 8.0 ------------12 23 e5.1 141 88 10 8.0 13 e4.8 165 84 22 8.0 --------e5.2 e5.2 77 72 22 14 ___ ___ 161 8.6 ------15 156 9.6 8.2 16 17 172 123 20 19 9.4 9.2 7.8 7.8 ___ ___ ___ ___ e6.0 68 -----------------e9.0 65 18 e11 104 63 19 9.1 19 ___ ___ ___ ---___ 9.4 102 63 18 9 0 7.6 7.4 ___ 9.4 20 e5.6 62 17 105 8.9 7.3 7.3 21 ___ ___ ___ ___ ___ e5.6 9 2 94 62 16 8 9 22 ---9.4 --e5.6 90 63 15 8.8 23 9.7 95 e6.0 7.3 7.2 24 ___ ___ ___ ___ ___ e6.4 10 98 70 14 8 7 25 e6.2 11 67 14 98 8.6 7.1 7.1 26 ___ ___ ___ ___ ___ e5 8 16 103 62 14 8 5 27 e6.0 35 100 56 13 8.5 28 -----e6.2 60 96 52 8.4 7.0 ___ ___ ---29 ___ ___ e6.2 69 97 48 12 8.4 7 0 30 e6.0 12 8.3 6.9 58 101 46 31 --------------e5.8 104 12 8.3 TOTAL 415.6 3332 2221 697 296.8 234.8 7.83 MEAN ------------------13.9 107 74.0 22.5 9.57 ---___ ------MAX ------69 172 110 43 12 ___ ___ ___ ___ ___ ___ 4.8 49 12 8.3 MIN AC-FT ------------------824 6610 4410 1380 589 466 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1989 -2001, BY WATER YEAR (WY)* MEAN 13.0 63.9 110 52.1 18.3 11.6 ---------------MAX ---18.5 107 155 80.9 30.7 16.3 ---(WY) 1990 2001 1991 1993 1993 1993 59.8 6.49 9.57 7.83 36.0 22.5 MIN (WY) ---___ ---___ 1991 1990 1992 2001 2001 2001

06279795 CROW CREEK AT MOUTH, AT PAHASKA, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1989 - 2001*
HIGHEST DAILY MEAN	172 May 16	259 Jun 12 1991
LOWEST DAILY MEAN	4.8 ^e Apr 13	3.7 Mar 20-22 1993
MAXIMUM PEAK FLOW	236 May 13	324 Jun 12 1991
MAXIMUM PEAK STAGE	2.23 May 13	2.74 Jun 12 1991

- For period of operation. Estimated.

06279795 CROW CREEK AT MOUTH, NEAR PAHASKA, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--March 1989 to September 1993, March to September 2001 (no winter records).

PERIOD OF DAILY RECORD. -

SPECIFIC CONDUCTANCE: March 1989 to September 1993, March to September 2001 (no winter records).

PH: June 1989 to September 1993, March to September 2001 (no winter records).

WATER TEMPERATURE: July 1989 to September 1993, March to September 2001 (no winter records).

DISSOLVED OXYGEN: March to September 2001 (no winter records).

SUSPENDED-SEDIMENT DISCHARGE: March 1989 to September 1993, March to September 2001 (no winter records).

INSTRUMENTATION: Water-quality monitor and sediment pumping sampler.

REMARKS.--Water-temperature records represent water temperature at sensor within 0.2°C .

EXTREMES FOR PERIOD OF RECORD .--

TREMES FOR PERIOD OF RECORD.—

SPECIFIC CONDUCTANCE: Maximum daily mean, 112 microsiemens, May 5, 1990; minimum daily mean, 30 microsiemens, May 30, 1990.
PH: Maximum, 9.2, July 17, 1991; minimum, 6.5, July 22, 1992.

WATER TEMPERATURE: Maximum, 14.9°C, August 8, 1990; minimum, 0.0°C, on many days during March and April most years.

DISSOLVED OXYGEN: Maximum daily mean 11.9 mg/L, June 13, 2001; minimum daily mean, 8.1 mg/L, July 25, 2001.

SEDIMENT CONCENTRATIONS: Maximum daily mean, 204 mg/L, June 25, 1992; minimum daily mean, 0.0 mg/L, September 27-30, 1989.

SEDIMENT LOADS: Maximum daily, 118 tons, June 12, 1991; minimum daily, 0 tons, September 27-30, 1989 and March 20 to April 25, June 26, 27, July 4-7, August 2-4, 6-11, July 14 to September 5, and September 8-30, 2001.

EXTREMES FOR CURRENT YEAR . --

SPECIFIC CONDUCTANCE: Maximum daily mean during period of operation, 92 microsiemens, Sept. 10, 11, 13; minimum daily mean during period of operation, 38 microsiemens, May 9.

PH: Maximum during period of operation, 8.5, Sept. 5; minimum during period of operation, 7.4, May 12-16 and May 30 to June 1.

DISSOLVED OXYGEN: Maximum daily mean during period of operation, 11.9 mg/L, June 13; minimum during period of operation, 8.1 mg/1, July 25.

mg/1, July 25.

WATER TEMPERATURE: Maximum during period of operation, 14.4°C, Aug. 6, minimum during period of operation, 0.0°C, Apr. 11.

SEDIMENT CONCENTRATIONS: Maximum daily mean during period of operation, 180 mg/L, July 10; minimum daily mean during period of operation, 1 mg/L, Apr. 3-5, 7, 8, 10-12, 14, 16, 19-23.

SEDIMENT LOADS: Maximum daily during period of operation, 32 tons, May 13; minimum daily during period of operation, 0.0 tons, Mar. 20 to Apr. 25, June 26, 27, July 4-7, Aug. 2-4, 6-11, July 14 to Sept. 5, and Sept. 8-30.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
MAR													
20 APR	1700	5.6	594	10.9	97	8.0	88	4.0	.5	7.00	1.92	.69	9.3
12	1800	5.1	590	10.3	95	8.1	92	1.0	1.5				
19 MAY	1500	9.3	589	9.2	87	8.1	86	2.0	2.5				
08	1500	116	599	9.6	97	7.8	62	17.5	5.5	5.79	1.60	.63	4.9
17	1500	118	599	9.6	100	7.9	46	17.0	6.5	4.15	1.17	.57	3.7
29 JUN	1400	98	594	9.7	102	7.5	46	21.0	6.7	3.82	1.01	.41	4.0
05	1800	79	595	10.6	111	7.7	43	16.0	6.5	4.53	1.23	.45	4.4
22 JUL	1330	60	599	9.7	107	7.9	53	28.0	9.0	4.26	1.16	.45	4.2
18	1600	18	598	8.9	105	7.8	71	20.0	11.6	6.13	1.66	.63	6.9
AUG 15	1700	0.6	F07	0.6	100	0 1	0.5	06.0	11 0	6 50	1 05	7.0	7.0
SEP	1700	9.6	597	8.6	100	8.1	85	26.0	11.2	6.57	1.85	.73	7.8
05	1600	7.9	595			8.0	86	24.0	9.5	6.90	1.94	.77	8.3
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
MAR	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
MAR 20	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)
MAR 20 APR 12	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
MAR 20 APR 12 19	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
MAR 20 APR 12 19	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 E.07	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .11	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .056	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006
MAR 20 APR 12 19 MAY 08 17	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 24.2 21.5 18.3	DIS- SOLVED (MG/L AS SO4) (00945) 3.4 3.2 1.8	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 1.19 19.4 17.8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 74 56 45	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041 <.040	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 E.07 E.09 E.05	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .056 E.025 E.041 .102	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006 <.006 E.003 <.006
MAR 20 APR 12 19 MAY 08 17 29	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 24.2 21.5	DIS- SOLVED (MG/L AS SO4) (00945) 3.4 3.2	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 74 56	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 E.07 E.09	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .1112 E.06	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .056 E.025 E.041	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006 <.006 E.003
MAR 20 APR 12 19 MAY 08 17	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 24.2 21.5 18.3	DIS- SOLVED (MG/L AS SO4) (00945) 3.4 3.2 1.8	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 1.19 19.4 17.8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 74 56 45	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041 <.040	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 E.07 E.09 E.05	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .056 E.025 E.041 .102	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006 <.006 E.003 <.006
MAR 20 APR 12 19 MAY 08 17 29 JUN 05 22	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .7 .5 .3	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1 <.2 <.2 E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 24.2 21.5 18.3 16.9	DIS- SOLVED (MG/L AS SO4) (00945) 3.4 3.2 1.8 1.8	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 1.19 19.4 17.8 13.0	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 74 56 45 42	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041 <.040 <.040	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 E.07 E.09 E.05 E.06	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .1112 E.06 .10 .10	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .056 E.025 E.041 .102 <.050	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006 <.006 E.003 <.006 <.006
MAR 20 APPR 12 19 MAY 08 17 29 JUN 05 22 JUL	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .7 .5 .3 .3	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1 <.2 <.2 E.1 <.2 E.2	DIS- SOLVED (MG/L AS SIO2) (00955) 24.2 21.5 18.3 16.9 19.2 17.5	DIS- SOLVED (MG/L AS SO4) (00945) 3.4 3.2 1.8 1.8	DIS- SOLVED (TONS PER AC-FT) (70303) .11 .08 .08 .07	DIS- SOLVED (TONS PER DAY) (70302) 1.19 19.4 17.8 13.0 11.9 8.94	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 79 62 56 49 56 55	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 74 56 45 42 47 45	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041 <.040 <.040 <.040	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 E.07 E.09 E.05 E.06 <.10 <.10	GEN,AM- MONIA + ORGANIC TOTTAL (MG/L AS N) (00625) .1112 E.06 .10 .10 E.07 .09	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .056 E.025 E.041 .102 <.050 <.050 <.050	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006 <.006 E.003 <.006 <.006 <.006 E.003
MAR 20 APR 12 19 MAY 08 17 29 JUN 05 22 JUL 18 AUG	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .7 .5 .3 .3 .3	RIDE, DIS- SOIVED (MG/L AS F) (00950) E.1 <.2 <.2 E.1 <.2 E.2	DIS- SOLVED (MG/L AS SIO2) (00955) 24.2 21.5 18.3 16.9 19.2 17.5	DIS- SOLVED (MG/L AS SO4) (00945) 3.4 3.2 1.8 1.8 1.9 1.8	DIS- SOLVED (TONS PER AC-FT) (70303) .11 .08 .08 .07 .08	DIS- SOLVED (TONS PER DAY) (70302) 1.19 19.4 17.8 13.0 11.9 8.94 3.10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 79 62 56 49 56 55 62	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 74 56 45 42 47 45 62	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041 <.040 <.040 <.040 <.040	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 E.07 E.09 E.05 E.06 <.10 <.10 <.10	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .1112 E.06 .10 .10 E.07 .09	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .056 E.025 E.041 .102 <.050 <.050 <.050	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006 <.006 E.003 <.006 <.006 <.006 E.003
MAR 20 APPR 12 19 MAY 08 17 29 JUN 05 22 JUL 18	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .7 .5 .3 .3	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1 <.2 <.2 E.1 <.2 E.2	DIS- SOLVED (MG/L AS SIO2) (00955) 24.2 21.5 18.3 16.9 19.2 17.5	DIS- SOLVED (MG/L AS SO4) (00945) 3.4 3.2 1.8 1.8	DIS- SOLVED (TONS PER AC-FT) (70303) .11 .08 .08 .07	DIS- SOLVED (TONS PER DAY) (70302) 1.19 19.4 17.8 13.0 11.9 8.94	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 79 62 56 49 56 55	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 74 56 45 42 47 45	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041 <.040 <.040 <.040	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 E.07 E.09 E.05 E.06 <.10 <.10	GEN,AM- MONIA + ORGANIC TOTTAL (MG/L AS N) (00625) .1112 E.06 .10 .10 E.07 .09	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .056 E.025 E.041 .102 <.050 <.050 <.050	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.006 <.006 E.003 <.006 <.006 <.006 E.003

06279795 CROW CREEK AT MOUTH, NEAR PAHASKA, WY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)
MAR													
20 APR	.063	.056	.068	2.6	4	E.03	.7	3.3	<.06	21	<.04	<.8	.02
12				1.1									
19 MAY	.058	.047	.067										
08	.050	.038	.049	3.1	10	E.05	.5	3.9	<.06	8	<.04	E.5	.03
17	.037	.038	.061										
29 JUN	.029	.021	.037										
05	.032	.024	.042		8	E.04	. 4	3.2	<.06	14	<.04	<.8	.02
22 JUL	.031	.023	.037										
18	.045	.040	.064	2.1	5	<.05	.6	4.7	<.06	16	<.04	E.5	.02
18													
AUG 15	.048	.047	.057	1.4	4	.14	3.9	4.7	<.06	219	E.04	E.5	.56
SEP	0.50		0.50	0 1		0.5	_			1.0		- 4	0.0
05	.053	.043	.060	2.1	4	.05	.6	3.8	<.06	18	.05	E.4	.02
DATE	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
MAR 20	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE)	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	LIUM, DIS- SOLVED (UG/L AS TL)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
MAR	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
MAR 20 APR 12 19	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
MAR 20 APR 12 19	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
MAR 20 APR 12 19 MAY 08 17	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS PB) (01049) <.08	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056) .6 .6 <3.0	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 38.7	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
MAR 20 APR 12 19 MAY 08 27 29	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046) M	DIS- SOLVED (UG/L AS PB) (01049) <.08	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.2	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <.3	DIS- SOLVED (UG/L AS AG) (01075) <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 38.7	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 5.5 3.7	DIS- SOLVED (UG/L AS ZN) (01090)
MAR 20 APR 12 19 MAY 08 17 29 JUN 05 22	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046) M M 10	DIS- SOLVED (UG/L AS PB) (01049) <.08	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056) .6 .6 <3.0	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.2	DIS- SODLYED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <.3 <.3	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 38.7	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 5.5 3.7	DIS- SOLVED (UG/L AS ZN) (01090)
MAR 20 APR 12 19 MAY 08 17 29 JUN 05 22 JUL 18	DIS- SOLVED (UG/L AS CU) (01040) .5	DIS- SOLVED (UG/L AS FE) (01046) M M 10 M	DIS- SOLVED (UG/L AS PB) (01049) <.08	DIS- SOLVED (UG/L AS LI) (01130) .5 .8 .9	NESE, DIS- SOLVED (UG/L AS MN) (01056) .6 .6 <3.0 <3.0	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.2 43	DIS- SOLVED (UG/L AS NI) (01065) .12 .16	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <.3 <.3 <.3	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 38.7 40.3 32.4	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04 <.04 <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 5.5 3.7 3.4	DIS- SOLVED (UG/L AS ZN) (01090)
MAR 20 APR 12 19 MAY 08 17 29 JUN 05 22 JUL	DIS- SOLVED (UG/L AS CU) (01040) .5 1.7 .4	DIS- SOLVED (UG/L AS FE) (01046) M M 10 M <10 M	DIS- SOLVED (UG/L AS PB) (01049) <.08 -1 2 <.08 	DIS- SOLVED (UG/L AS LI) (01130) .5 .8 .9	NESE, DIS- SOLVED (UG/L AS MN) (01056) .6 .6 <3.0 <3.0	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.243	DIS- SOLVED (UG/L AS NI) (01065) .12 .16 .16	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <.3 <.3 <.3 <.3	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 38.7 40.3 32.4	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04 <.04 <.04 <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 5.5 3.7 3.4	DIS- SOLVED (UG/L AS ZN) (01090) <1 1 1

DATE	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)
MAR	
20	.08
APR	.00
12	
19	
MAY	
08	E.01
17	
29	
JUN	
05	E.02
22	
JUL	
18	.03
AUG 15	3.63
SEP	3.63
05	.03
05	.03

 $[\]tt E$ -- <code>Estimated value. $\tt M$ -- <code>Presence verified, not quantified. </code></code>

06279795 CROW CREEK AT MOUTH, NEAR PAHASKA, WY--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	ECIFIC						WATER YEA					
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1							90	89	89	69	59	65
2							89 90	88 88	89 89	69 69	69 59	69 69
4							88	87	88	69	59	60
5							89	88	88	69	49	61
6							89	88	89	59	49	57
7 8							89 89	88 88	89 89	59 62	49 46	59 56
9							90	89	90	60	38	52
10							91	90	90	45	41	43
11 12							93 90	89 90	90 90	50 47	41 37	46 43
13										50	41	46
14 15										46 47	41 43	44 45
16 17										47	42	45
18												
19 20							 79	 79	 79			
21 22				90	 87	 89	80 89	79 79	79 89			
23				90	88	90	89	89	89			
24 25				90 91	89 88	90 90	89 90	89 79	89 86			
26 27				90 91	88 89	89 91	79 69	69 59	78 66			
28				91	90	91	69	49	60			
29 30				91 90	89 90	90 90	59 69	49 59	58 67	44	43	44
31				91	90	91				45	42	44
MONTH				91	87	90	93	49	83	69	37	53
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
1	44		43	59	JULY 58	59	87	AUGUST 84	85	89	SEPTEMBE 88	R 89
1 2	44 41	JUNE 40 40	43 41	59 60	JULY 58 58	59 59	87 88	AUGUST 84 85	85 86	89 89	SEPTEMBE 88 87	R 89 88
1 2 3 4	44 41 41 43	JUNE 40 40 40 41	43 41 40 42	59 60 62 62	JULY 58 58 60 61	59 59 61 61	87 88 87 88	84 85 86 86	85 86 87 87	89 89 89 88	88 87 86 86	R 89 88 88 87
1 2 3	44 41 41	JUNE 40 40 40	43 41 40	59 60 62	JULY 58 58 60	59 59 61	87 88 87	84 85 86	85 86 87	89 89 89	SEPTEMBE 88 87 86	R 89 88 88
1 2 3 4 5	44 41 41 43 44	JUNE 40 40 40 41 41 41	43 41 40 42 43	59 60 62 62 62 62	JULY 58 58 60 61 61 60	59 59 61 61 62	87 88 87 88 89	84 85 86 86 86 85	85 86 87 87 87	89 89 89 88 88	88 87 86 86 85	89 88 88 87 86
1 2 3 4 5	44 41 41 43 44 47	JUNE 40 40 40 41 41 43 47	43 41 40 42 43 47	59 60 62 62 62 61 62	JULY 58 58 60 61 61 60 61	59 59 61 61 62 61 62	87 88 87 88 89 89	84 85 86 86 85 87	85 86 87 87 87 88	89 89 89 88 88 88	88 87 86 86 85 82	89 88 88 87 86 86
1 2 3 4 5 6 7 8 9	44 41 41 43 44 47 49 49	JUNE 40 40 41 41 41 43 47 45	43 41 40 42 43 47 49 49	59 60 62 62 62 61 62 62 62	JULY 58 58 60 61 61 60 61 60 60	59 59 61 61 62 61 62 61 61	87 88 87 88 89 89 89	84 85 86 86 85 87 87 87 87	85 86 87 87 87 88 88 88	89 89 89 88 88 89 90 91	88 87 86 86 85 82 88 90 90	89 88 88 87 86 86 89 91
1 2 3 4 5	44 41 41 43 44 47 49	JUNE 40 40 41 41 41 43 47	43 41 40 42 43 47 49	59 60 62 62 62 62 61 62 62	JULY 58 58 60 61 61 60 61 60	59 59 61 61 62 61 62 61	87 88 87 88 89 89	84 85 86 86 85 87 87	85 86 87 87 87 88 88	89 89 89 88 88 88	88 87 86 86 85 82 88 90	89 88 88 87 86 86 89
1 2 3 4 5 6 7 8 9 10	44 41 41 43 44 47 49 48 47	JUNE 40 40 41 41 41 43 47 45 45	43 41 40 42 43 47 49 49 47 46	59 60 62 62 62 62 62 62 64	JULY 58 58 60 61 61 60 60 60 56	59 59 61 61 62 61 62 61 61 60	87 88 87 88 89 89 89 89 90 90 89	84 85 86 86 85 87 87 87 87 87	85 86 87 87 87 88 88 88 88 88	89 89 89 88 88 89 90 91 91 92	88 87 86 86 85 82 88 90 90 91	89 88 88 87 86 86 89 91 90
1 2 3 4 5 6 7 8 9	44 41 41 43 44 47 49 49 48 47	JUNE 40 40 41 41 43 47 47 45 45	43 41 40 42 43 47 49 49 47 46	59 60 62 62 62 61 62 62 62 62	JULY 58 58 60 61 61 61 60 61 60 56	59 59 61 61 62 61 62 61 61 60	87 88 87 88 89 89 89 90 90	84 85 86 86 85 87 87 87 87	85 86 87 87 87 88 88 88 88	89 89 89 88 88 88 90 91 91	88 87 86 86 85 82 88 90 90	89 88 88 87 86 86 89 91 90
1 2 3 4 5 6 7 8 9 10 11 12 13 14	44 41 41 43 44 47 49 48 47 46 47 46 47	JUNE 40 40 41 41 43 47 47 45 45 42 44 46 48	43 41 40 42 43 47 49 47 46 45 45 47	59 60 62 62 62 62 62 62 64 65 67 68	JULY 58 58 60 61 61 60 61 60 66 60 66 63 64 67 66	59 59 61 61 62 61 62 61 60 64 65 67 68	87 88 87 88 89 89 89 90 90 89	AUGUST 84 85 86 86 87 87 87 87 87 87 85 85	85 86 87 87 87 88 88 88 88 88 88 88 88 88	89 89 89 88 88 89 90 91 91 92 92	88 87 86 86 85 82 88 90 91 89 90 91	89 88 88 87 86 86 89 91 90 91 90 91
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	44 41 41 43 44 47 49 49 48 47 46 47 48 50 51	JUNE 40 40 41 41 43 47 45 45 42 44 46 48 50	43 41 40 42 43 47 49 49 47 46 45 47 49 50	59 60 62 62 62 62 62 62 64 65 67 68 69	58 58 600 61 61 60 61 60 60 56 63 64 67 66 65	59 59 61 61 62 61 62 61 60 64 65 67 68 67	87 88 87 88 89 89 90 90 90 89 88 88 88 87	84 85 86 86 85 87 87 87 87 87 87 87 87 85 85	85 86 87 87 87 88 88 88 88 88 88 88 88 88 88	89 89 89 88 88 88 89 90 91 91 92 92 89 88	88 87 86 85 82 88 90 91 89 90 89 85 86	89 88 88 87 86 86 89 91 90 91 90 87 87
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	44 41 41 43 44 47 49 48 47 46 47 48 50 51	JUNE 40 40 41 41 43 47 47 45 45 45 42 44 46 48 50	43 41 40 42 43 47 49 47 46 45 45 47 49 50	59 60 62 62 62 62 62 62 64 65 67 68 69 68	JULY 58 58 60 61 61 61 60 61 60 66 63 64 67 66 65 67	59 59 61 61 62 61 62 61 60 64 65 67 68 67	87 88 87 88 89 89 89 90 90 89 88 88 88 88 87 87	AUGUST 84 85 86 86 87 87 87 87 87 87 87 85 85 85	85 86 87 87 87 88 88 88 88 88 88 88 88 88 88	89 89 89 88 88 89 90 91 91 92 92 92 89 88	88 87 86 86 85 82 88 90 91 89 90 91 89 89 89 88 86 88	89 88 88 87 86 86 89 91 90 91 90 87 87 87
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	44 41 41 43 44 47 49 49 49 48 47 46 47 48 50 51	JUNE 40 40 41 41 43 47 45 45 45 45 50 51 51 52	43 41 40 42 43 47 49 49 47 46 45 45 47 49 50 52 52 53	59 60 62 62 62 62 62 64 65 67 68 69 68	58 58 60 61 61 60 60 66 67 70 70	59 59 61 61 62 61 62 61 60 64 65 67 68 67	87 88 87 88 89 89 90 90 90 89 88 88 88 87 87	84 85 86 86 85 87 87 87 87 87 87 85 85 85 85	85 86 87 87 87 88 88 88 88 88 88 88 88 88 88	89 89 89 88 88 88 89 90 91 91 92 92 91 92 89 88	88 87 86 88 87 87 87 87 87	89 88 88 87 86 86 89 91 90 91 90 87 87 89 88
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	44 41 41 43 44 47 49 48 47 46 47 46 50 51 52 52 52 53 53	JUNE 40 40 41 41 43 47 47 45 45 45 50 51 51 52 53	43 41 40 42 43 47 49 47 46 45 45 47 49 50 52 52 53 53	59 60 62 62 62 61 62 62 64 65 67 68 69 68	JULY 58 58 60 61 61 60 61 60 60 56 63 64 67 70 70 71	59 59 61 61 62 61 62 61 60 64 65 67 68 67 71 73	87 88 87 88 89 89 90 90 89 88 88 88 88 87 87 86 88 89 89	AUGUST 84 85 86 86 87 87 87 87 87 88 85 85 85 85	85 86 87 87 87 88 88 88 88 88 88 86 86 86 87 86 87 88	89 89 89 88 88 89 90 91 91 92 92 92 89 88	88 87 86 86 86 85 82 88 90 90 91 89 90 85 86 88 87 87 87	89 88 88 87 86 86 89 91 90 91 90 91 90 87 87 87 89 89 88 88 88
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	44 41 41 43 44 47 49 49 48 47 46 47 48 50 51 52 52 53 53 53	JUNE 40 40 40 41 41 43 47 45 45 45 50 51 51 52 53 52	43 41 40 42 43 47 49 49 47 46 45 45 47 49 50 52 52 53 53 53	59 60 62 62 62 62 62 64 65 67 68 69 68 71 72 74 76	JULY 58 58 60 61 61 61 60 61 60 62 66 63 64 67 66 65 67 70 71 74	59 59 61 61 62 61 62 61 60 64 65 67 68 67 71 71 73 75	87 88 87 88 89 89 90 90 89 88 88 88 87 87 86 88 89 90	84 85 86 86 85 87 87 87 87 87 87 85 85 85 85 86 88	85 86 87 87 87 88 88 88 88 88 88 88 87 86 86 85 87 88 87 89	89 89 89 88 88 88 89 90 91 91 92 92 91 92 89 88	88 87 86 85 82 88 90 91 89 90 89 85 86 88 87 87 87 87	89 88 88 87 86 86 89 91 90 91 90 87 87 89 88 88 88
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	44 41 41 43 44 47 49 48 47 46 47 46 50 51 52 52 53 53 53	JUNE 40 40 41 41 43 47 45 45 45 50 51 51 52 53 52	43 41 40 42 43 47 49 47 46 45 45 47 49 50 52 52 53 53 53	59 60 62 62 62 61 62 62 64 65 67 68 69 68 71 72 74 76	JULY 58 58 60 61 61 61 60 61 60 65 63 64 67 70 70 71 74 76	59 59 61 61 62 61 62 61 61 60 64 65 67 68 67 71 73 75	87 88 87 88 89 89 90 90 89 88 88 88 87 87 86 88 89 90	AUGUST 84 85 86 86 87 87 87 87 87 88 88 88	85 86 87 87 87 88 88 88 88 88 88 87 86 86 85 87 88 88 87 88	89 89 89 88 88 89 90 91 91 92 92 92 89 88 88	88 87 86 86 86 85 82 88 90 90 91 89 90 85 86 88 87 87 87	89 88 88 87 86 86 89 91 90 91 90 87 87 87 89 88 88 88 88 88 88
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	44 41 41 43 44 47 49 49 48 47 46 47 48 50 51 52 52 53 53 53 53	JUNE 40 40 41 41 41 43 47 45 45 45 50 51 51 52 53 52 52 50 50	43 41 40 42 43 47 49 49 47 46 45 45 47 49 50 52 52 53 53 53 53 53	59 60 62 62 62 62 62 64 65 67 68 69 68 71 72 74 76 79 80	JULY 58 58 60 61 61 61 60 61 60 66 67 70 71 74 76 77 78	59 59 61 61 62 61 62 61 60 64 65 67 68 67 71 73 75 77	87 88 87 88 89 90 89 90 89 88 88 88 87 87 86 88 89 90 90 90 90 90 90 90 90 90 90 90 90 90	84 85 86 86 85 87 87 87 87 87 87 85 85 85 85 86 87 88 88	85 86 87 87 87 88 88 88 88 88 88 87 86 86 85 87 88 89 90	89 89 89 88 88 88 89 90 91 92 92 91 92 89 88 88 88 88 88 88 88	88 87 86 88 89 90 91 89 90 89 85 86 88 87 87 87 87 87 86 86 86 86	89 88 88 87 86 86 89 91 90 91 90 91 87 87 88 88 88 88 87 87
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	44 41 41 43 44 47 49 48 47 46 47 47 50 51 52 52 53 53 53 53 53	JUNE 40 40 41 41 43 47 47 45 45 45 50 51 51 52 53 52	43 41 40 42 43 47 49 47 46 45 45 47 49 50 52 52 53 53 53	59 60 62 62 62 62 62 64 65 67 68 69 68 71 72 72 74 76	JULY 58 58 60 61 61 60 61 60 66 56 63 64 67 70 70 71 74 76 77	59 59 61 61 62 61 62 61 60 64 65 67 68 67 71 71 73 75	87 88 87 88 89 90 90 89 88 88 88 87 87 87 86 88 89 90	AUGUST 844 85 86 86 885 87 87 87 87 87 87 885 85 85 86 87 88 88	85 86 87 87 88 88 88 88 88 88 88 87 86 85 86 87 88 89 89	89 89 89 88 88 88 89 90 91 91 92 92 91 92 89 88 89 89 88	88 87 86 86 85 82 88 90 90 91 89 90 85 86 88 87 87 87 87 87 86 86 86	89 88 88 87 86 86 89 91 90 91 90 87 87 87 89 88 88 88 87 88
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	44 41 41 43 44 47 49 49 48 47 46 47 48 50 51 52 52 53 53 53 53 53 52 53	JUNE 40 40 41 41 41 43 47 47 45 45 45 50 51 51 52 53 52 50 69 50 49 50	43 41 40 42 43 47 49 47 46 45 47 49 50 52 52 53 53 53 53 53 53 53 52 51 51 52	59 60 62 62 62 62 62 64 65 67 68 69 68 71 72 74 76 79 80 82 83	JULY 58 58 60 61 61 60 61 60 65 63 64 67 70 71 74 76 77 78 79 80	59 59 61 61 62 61 62 61 61 60 64 65 67 68 67 71 73 75 77 78 79 80 81	87 88 87 88 89 89 90 89 90 89 90 89 90 89 90 90 90 90 90 90 90 90 90 90 90 90 90	84 85 86 86 85 87 87 87 87 87 87 85 85 85 85 85 88 88 89 89 89	85 86 87 87 88 88 88 88 88 88 88 87 86 85 86 87 88 89 90 90	99 89 89 89 88 88 88 89 90 91 92 92 91 92 89 88 88 88 87 88 88 87	88 87 86 88 89 90 91 89 90 89 85 86 88 87 87 87 87 87 86 86 85 85 85 85	89 88 88 87 86 86 89 91 90 91 90 91 90 87 87 87 88 88 88 88 87 86 86
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	44 41 41 43 44 47 49 48 47 46 47 47 50 51 52 52 53 53 53 53 53	JUNE 40 40 41 41 43 47 45 45 45 50 51 51 52 53 52 50 49	43 41 40 42 43 47 49 47 46 45 45 45 47 49 50 52 52 53 53 53 53 53	59 60 62 62 62 62 62 64 65 67 68 69 68 71 72 72 74 76 79 80 82 83 83 84 84	JULY 58 58 60 61 61 61 60 61 60 65 63 64 67 70 70 71 74 76 77 78 79	59 59 61 61 62 61 62 61 61 60 64 65 67 68 67 71 73 75 77 78 79 80	87 88 87 88 89 89 90 90 89 88 88 88 87 87 86 88 89 90	AUGUST 84 85 86 86 87 87 87 87 87 88 88 88	85 86 87 87 87 88 88 88 88 88 87 86 86 85 86 87 89 89	89 89 89 88 88 88 89 90 91 91 92 92 89 88 89 89 89 88 88 88 88 88 88 88	88 87 86 86 85 82 88 90 90 91 89 90 85 86 88 87 87 87 87 87 86 86 86	89 88 88 87 86 86 89 91 90 91 90 87 87 87 88 88 88 87 88
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	44 41 41 43 44 47 49 48 47 46 47 48 50 51 52 52 53 53 53 53 53 53 53 54 56 56	JUNE 40 40 41 41 43 47 47 45 45 42 44 46 48 50 51 52 53 52 52 50 49 50 52 54 54	43 41 40 42 43 47 49 47 46 45 47 49 50 52 53 53 53 53 53 52 51 51 52 55 56	59 60 62 62 62 62 62 64 65 67 68 69 68 71 72 74 76 79 80 82 83 84 85	JULY 58 58 60 61 61 60 61 60 56 63 64 67 70 71 74 76 77 78 79 80 81 83 83	59 59 61 61 62 61 62 61 60 64 65 67 68 67 71 71 73 75 77 78 79 80 81 82 83 84	87 88 87 88 89 90 89 90 89 90 89 90 89 90 90 91 91 91 91	844 85 86 86 85 87 87 87 87 87 87 87 85 85 85 85 86 87 88 88 88 88 88 88 88 88 88 88 88 88	85 86 87 87 87 88 88 88 88 88 88 88 87 86 85 86 87 88 89 90 90 90 90 90	89 89 89 88 88 88 89 90 91 92 92 91 92 89 88 88 88 87 88 88 88 87 88 88 88 88 88	88 87 86 85 89 90 91 89 90 89 85 86 88 87 87 87 87 87 87 86 86 85 85 85 85 84 84 84 83	89 888 887 866 86 89 911 90 91 90 91 87 87 88 88 88 87 86 86 85 85 85
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	44 41 41 43 44 47 49 48 47 46 47 48 50 51 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53	JUNE 40 40 41 41 43 47 45 45 45 42 44 46 48 50 51 52 53 52 52 50 50 49 50 52 54 54 56 56	43 41 40 42 43 47 49 47 46 45 45 45 47 49 50 52 52 53 53 53 53 53 55 56 57 57	59 60 62 62 62 62 64 65 67 68 69 68 71 72 74 76 79 80 82 83 84 85 85 86	JULY 58 58 60 61 61 60 61 60 60 56 63 64 67 70 70 71 74 76 77 78 79 80 81 83 83 83 84	59 59 61 61 62 61 62 61 61 60 64 65 67 68 67 71 73 75 77 78 79 80 81 82 83 84 85	87 88 87 88 89 89 90 90 89 88 88 88 87 87 86 88 89 90 90 91 91 91 91 91 91	AUGUST 844 85 86 86 87 87 87 87 87 87 88 88 88 88 88 88 88	85 86 87 87 87 88 88 88 88 88 88 86 85 86 85 86 87 88 89 90 90 90 90 90 90	89 89 89 88 88 88 89 90 91 91 92 92 91 92 89 88 88 87 88 88 87 88 88 87 88 88 88 88	88 87 89 90 91 89 90 85 86 85 87 87 87 87 86 86 85 85 82 88 87 87 87 87 87 87 87 87 87 87 87 87	89 88 88 87 86 86 89 91 90 91 90 91 90 87 87 87 87 88 88 87 87 88 88 88 87 88 88
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	44 41 41 43 44 47 49 48 47 46 47 48 50 51 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53	JUNE 40 40 41 41 43 47 45 45 45 50 51 51 52 53 52 50 50 49 50 52 54 56	43 41 40 42 43 47 49 47 46 45 45 45 47 49 50 52 52 53 53 53 53 52 51 51 52 53 55 55 57	59 60 62 62 62 61 62 62 64 65 67 68 69 68 71 72 74 76 79 80 82 83 84 84 85 85	JULY 58 58 60 60 61 61 60 61 60 66 65 67 70 70 71 74 76 77 78 80 81 83 83 83	59 59 61 61 62 61 62 61 60 64 65 67 68 67 71 73 75 77 78 80 81 82 83 84 84	87 88 87 88 89 89 90 90 89 88 88 88 87 87 86 88 89 90 90 90 91 91 91 91 91	AUGUST 84 85 86 86 87 87 87 87 87 88 88 88	85 86 87 87 87 88 88 88 88 88 87 86 86 85 86 87 89 90 90 90 90 90	89 89 89 88 88 88 89 90 91 92 92 92 89 88 89 89 89 89 88 87 88 88 87 88 88 88 88 88 88 88 88	88 87 87 86 88 87 87 87 86 86 85 85 82 88 87 87 87 87 86 86 85 85 85 84 84 84 83 83 83	89 88 88 87 86 86 89 91 90 91 90 87 87 87 89 88 88 88 87 86 88 87 88 88 88 88 88 88 87 87 87 88 88
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	44 41 41 43 44 47 49 48 47 46 47 48 50 51 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53	JUNE 40 40 41 41 43 47 45 45 45 42 44 46 48 50 51 52 53 52 52 50 50 49 50 52 54 54 56 56	43 41 40 42 43 47 49 47 46 45 45 45 47 49 50 52 52 53 53 53 53 53 55 56 57 57	59 60 62 62 62 62 64 65 67 68 69 68 71 72 74 76 79 80 82 83 84 85 85 86	JULY 58 58 60 61 61 60 61 60 60 56 63 64 67 70 70 71 74 76 77 78 79 80 81 83 83 83 84	59 59 61 61 62 61 62 61 61 60 64 65 67 68 67 71 73 75 77 78 79 80 81 82 83 84 85	87 88 87 88 89 89 90 90 89 88 88 88 87 87 86 88 89 90 90 91 91 91 91 91 91	AUGUST 844 85 86 86 87 87 87 87 87 87 88 88 88 88 88 88 88	85 86 87 87 87 88 88 88 88 88 88 86 85 86 85 86 87 88 89 90 90 90 90 90 90	89 89 89 88 88 88 89 90 91 91 92 92 91 92 89 88 88 87 88 88 87 88 88 87 88 88 88 88	88 87 89 90 91 89 90 85 86 85 87 87 87 87 86 86 85 85 82 88 87 87 87 87 87 87 87 87 87 87 87 87	89 88 88 87 86 86 89 91 90 91 90 91 90 87 87 87 87 88 88 87 87 88 88 88 87 88 88

06279795 CROW CREEK AT MOUTH, NEAR PAHASKA, WY--Continued

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

D111		1, WAIEK,										
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	OCTO	OBER	NOVE	MBER	DECEN	/IBER	JANU	JARY	FEBRU	JARY	MAF	RCH
1												
2												
4												
5												
6												
7 8												
9												
10												
11												
12 13												
14												
15												
16												
17												
18 19												
20												
21												
22											8.1	8.1
23 24											8.1 8.1	8.1 8.1
25											8.2	8.1
26											8.2	0 1
26 27											8.2	8.1 8.2
28											8.2	8.2
29 30											8.3 8.4	8.2 8.2
31											8.3	8.2
MONTH											8.4	8.1
DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
DAY	MAX API											
	API	RIL	M	ΑY	JUL	1E	JUI	Ϋ́	AUGU	JST	SEPTE	MBER
DAY 1 2												
1 2 3	8.4 8.3 8.2	8.2 8.2 8.2 8.2	7.9 8.0 7.9	7.8 7.9 7.9	JUN 7.6 7.7 7.6	7.4 7.5 7.5	JUI 7.8 7.8 7.8	7.6 7.6 7.6 7.6	AUGU 8.1 8.1 8.1	7.8 7.9 7.9	SEPTE 8.4 8.4 8.4	8.2 8.2 8.2 8.2
1 2	API 8.4 8.3	8.2 8.2	7.9 8.0	7.8 7.9	JUN 7.6 7.7	7.4 7.5	JUI 7.8 7.8	7.6 7.6	AUGU 8.1 8.1	7.8 7.9	SEPTE 8.4 8.4	8.2 8.2
1 2 3 4 5	8.4 8.3 8.2 8.4 8.2	8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9	7.8 7.9 7.9 7.8 7.8	JUN 7.6 7.7 7.6 7.7 7.7	7.4 7.5 7.5 7.6 7.6	JUI 7.8 7.8 7.8 7.8 7.8	7.6 7.6 7.6 7.7 7.7	8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9	SEPTE 8.4 8.4 8.4 8.5	8.2 8.2 8.2 8.2 8.2 8.2
1 2 3 4	8.4 8.3 8.2 8.4	8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9	7.8 7.9 7.9 7.8	JUN 7.6 7.7 7.6 7.7	7.4 7.5 7.5 7.6	JUI 7.8 7.8 7.8 7.8	7.6 7.6 7.6 7.6 7.7	8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9	SEPTE 8.4 8.4 8.4 8.4	8.2 8.2 8.2 8.2 8.2 8.2
1 2 3 4 5	8.4 8.3 8.2 8.4 8.2 8.3 8.3	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9	7.8 7.9 7.9 7.8 7.8 7.8 7.8	7.6 7.7 7.6 7.7 7.7 7.7 7.8 7.8 7.8	7.4 7.5 7.5 7.6 7.6 7.6 7.6 7.6	7.8 7.8 7.8 7.8 7.9 7.9	7.6 7.6 7.6 7.7 7.7 7.7 7.7	8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9	SEPTE 8.4 8.4 8.4 8.5 8.4 8.5	8.2 8.2 8.2 8.2 8.2 8.2 8.3 8.3
1 2 3 4 5	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9	7.8 7.9 7.9 7.8 7.8 7.8 7.6 7.6	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.8	7.4 7.5 7.5 7.6 7.6 7.6 7.6 7.6	7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.9	7.6 7.6 7.6 7.7 7.7 7.7 7.7 7.5 7.5	8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9	SEPTE 8.4 8.4 8.4 8.5 8.4 8.5	8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3
1 2 3 4 5 6 7 8 9	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.3	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.9	7.8 7.9 7.9 7.8 7.8 7.8 7.6 7.6	7.6 7.7 7.6 7.7 7.7 7.7 7.8 7.8 7.8 7.8	7.4 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.6	7.8 7.8 7.8 7.8 7.9 7.9 7.9 7.9 7.9	7.6 7.6 7.6 7.7 7.7 7.7 7.7 7.5 7.5	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0	SEPTE 8.4 8.4 8.4 8.5 8.4 8.5 8.4 8.3 8.3	8.2 8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3
1 2 3 4 5 6 7 8 9	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9	7.8 7.9 7.9 7.8 7.8 7.8 7.6 7.6	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.8	7.4 7.5 7.5 7.6 7.6 7.6 7.6 7.6	7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.9	7.6 7.6 7.6 7.7 7.7 7.7 7.7 7.5 7.5	8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9	SEPTE 8.4 8.4 8.4 8.5 8.4 8.5	8.2 8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3
1 2 3 4 5 6 7 8 9 10 11 12 13	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.4 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.8	7.8 7.9 7.8 7.8 7.8 7.8 7.6 7.6 7.6 7.5 7.4	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.7 7.7	7.4 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6	7.8 7.8 7.8 7.8 7.9 7.9 7.9 7.6 7.8 7.8 7.7	7.6 7.6 7.6 7.7 7.7 7.7 7.5 7.5 7.5 7.5	8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0	SEPTE 8.4 8.4 8.4 8.5 8.4 8.5 8.4 8.4 8.4 8.3 8.4 8.4 8.3	8.2 8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.2 8.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.4 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.8 7.7	7.8 7.9 7.8 7.8 7.8 7.8 7.6 7.6 7.6 7.4	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7	7.4 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	7.8 7.8 7.8 7.8 7.9 7.9 7.6 7.8 7.7 7.8	7.6 7.6 7.6 7.7 7.7 7.7 7.7 7.5 7.5 7.6 7.6	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0	SEPTE 8.4 8.4 8.4 8.5 8.4 8.5 8.4 8.4 8.4 8.3 8.3 8.4 8.4	8.2 8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.2 8.2 8.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.4 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.6 7.6	7.8 7.9 7.8 7.8 7.8 7.8 7.6 7.6 7.6 7.4 7.4	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7	7.4 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	7.8 7.8 7.8 7.8 7.9 7.9 7.9 7.6 7.8 7.7 7.8	7.6 7.6 7.7 7.7 7.7 7.7 7.5 7.5 7.5 7.6 7.6	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.1 8.1 8.2	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.0	SEPTE 8.4 8.4 8.4 8.5 8.4 8.3 8.4 8.4 8.3 8.3	8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.2 8.2 8.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.4 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.8 7.7	7.8 7.9 7.8 7.8 7.8 7.8 7.6 7.6 7.6 7.4	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.7	7.4 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	7.8 7.8 7.8 7.8 7.9 7.9 7.6 7.8 7.7 7.8 7.7	7.6 7.6 7.7 7.7 7.7 7.7 7.5 7.5 7.6 7.6 7.6	8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0	SEPTE 8.4 8.4 8.4 8.5 8.4 8.4 8.3 8.3 8.4 8.4 8.3 8.3	**************************************
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.4 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.6 7.6 7.6	7.8 7.9 7.8 7.8 7.8 7.6 7.6 7.6 7.4 7.4 7.4	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.9 7.8	7.4 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	7.8 7.8 7.8 7.8 7.9 7.9 7.9 7.6 7.8 7.7 7.8 7.7	7.6 7.6 7.6 7.7 7.7 7.7 7.5 7.5 7.5 7.6 7.6 7.6 7.7	8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.1 8.1 8.1 8.2 8.1 8.1 8.3	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 7.9 8.0 8.1 8.1	SEPTE 8.4 8.4 8.4 8.5 8.4 8.4 8.3 8.3 8.3 8.4 8.4 8.3	8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.2 8.2 8.2 8.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	8.4 8.3 8.2 8.3 8.3 8.3 8.4 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.8 7.6 7.6 7.5	7.8 7.9 7.8 7.8 7.8 7.8 7.6 7.6 7.6 7.4 7.4 7.4	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.7 7.7	7.4 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.6 7.8 7.8 7.7 7.8 7.8 7.8 7.9 8.0	7.6 7.6 7.7 7.7 7.7 7.7 7.5 7.5 7.6 7.6 7.6 7.7	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.0 8.0 8.1 8.1 8.1	SEPTE 8.4 8.4 8.4 8.5 8.4 8.4 8.3 8.3 8.3 8.3 8.3 8.3 8.3	**************************************
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.4 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.6 7.6 7.5	7.8 7.9 7.8 7.8 7.8 7.6 7.6 7.6 7.6 7.4 7.4 7.4 7.4	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.7	7.4 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.9 7.6 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.9 8.0 8.0	7.6 7.6 7.6 7.7 7.7 7.7 7.7 7.5 7.5 7.6 7.6 7.6 7.6 7.7	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 7.9 8.0 8.1 8.1 8.1	SEPTE 8.4 8.4 8.4 8.5 8.4 8.3 8.3 8.4 8.4 8.3 8.3 8.3 8.4 8.4 8.4 8.5	8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.2 8.2 8.2 8.2 8.2 8.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.4 8.2 8.2 8.2 8.4 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.8 7.6 7.6 7.5	7.8 7.9 7.8 7.8 7.8 7.8 7.6 7.6 7.6 7.4 7.4 7.4	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.7 7.7	7.4 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.6 7.8 7.7 7.8 7.7 7.8 7.8 7.9 8.0 8.0	7.66 7.66 7.77 7.7 7.77 7.55 7.5 7.66 7.66	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.0 8.0 8.1 8.1 8.1 8.1	SEPTE 8.4 8.4 8.4 8.5 8.4 8.4 8.3 8.3 8.3 8.4 8.4 8.4 8.2 8.3	**************************************
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.4 8.2 8.4 8.2 8.4 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.6 7.7 7.6 7.5	7.8 7.9 7.9 7.8 7.8 7.8 7.6 7.6 7.6 7.4 7.4 7.4 7.4	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.7	7.4 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.7	7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.6 7.8 7.7 7.8 7.7 7.8 7.7 8 7.9 8.0 8.0 8.0 8.0	7.6 7.6 7.6 7.7 7.7 7.7 7.5 7.5 7.6 7.6 7.6 7.7 7.8 7.8	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.0 8.1 8.1 8.1 8.1 8.1 8.1	SEPTE 8.4 8.4 8.4 8.5 8.4 8.4 8.3 8.3 8.3 8.4 8.4 8.4 8.2 8.2 8.2 8.1	8.2 8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.4 8.2 8.2 8.2 8.2 8.4 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.8 7.6 7.5 7.5	7.8 7.9 7.8 7.8 7.8 7.8 7.6 7.6 7.6 7.4 7.4 7.4 7.4	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.9 7.8 7.9 7.9 7.9	7.4 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.7	7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.6 7.8 7.7 7.8 7.7 7.8 7.8 7.7 7.8 7.8 7.9 8.0 8.0 8.0 8.0 8.0	7.66 7.66 7.77 7.7 7.7 7.75 7.55 7.66 7.66	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.1 8.1 8.1 8.1 8.1 8.1	SEPTE 8.4 8.4 8.4 8.5 8.4 8.4 8.3 8.3 8.3 8.4 8.4 8.2 8.2 8.2 8.1 8.1	**BER** 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.2 8.2 8.2 8.2 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.6 7.6 7.5	7.8 7.9 7.9 7.8 7.8 7.8 7.6 7.6 7.6 7.4 7.4 7.4 7.4	7.6 7.7 7.6 7.7 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.7 7.9 7.9 7.9 7.9 7.9	7.4 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.7	7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.6 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 8.0 8.0 8.0 8.0 8.0 8.0	7.6 7.6 7.6 7.7 7.7 7.7 7.5 7.5 7.6 7.6 7.6 7.7 7.8 7.8 7.8 7.8	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.1 8.1 8.1 8.1 8.1 8.1 8.1	SEPTE 8.4 8.4 8.4 8.5 8.4 8.4 8.3 8.3 8.3 8.4 8.4 8.1 8.2 8.2 8.2 8.1 8.1	8.2 8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	8.4 8.3 8.4 8.2 8.3 8.3 8.3 8.4 8.2 8.2 8.4 8.2 8.1 8.2 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.8 7.6 7.5 7.5	7.8 7.9 7.8 7.8 7.8 7.8 7.6 7.6 7.6 7.4 7.4 7.4 7.4	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.9 7.8 7.9 7.9 7.9 7.9 7.9	7.4 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.7	7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.6 7.8 7.7 7.8 7.7 7.8 7.8 7.7 7.8 7.8 7.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0	7.66 7.66 7.77 7.7 7.77 7.55 7.5 7.66 7.66	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.1 8.1 8.1 8.1 8.1 8.1 8.1	SEPTE 8.4 8.4 8.4 8.4 8.5 8.4 8.4 8.3 8.3 8.3 8.4 8.4 8.1 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	**BER** 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.2 8.2 8.2 8.2 8.2 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.6 7.6 7.5	7.8 7.9 7.9 7.8 7.8 7.8 7.6 7.6 7.6 7.4 7.4 7.4 7.4	7.6 7.7 7.6 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.7	7.4 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.7 7.7	7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.6 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	7.66 7.66 7.77 7.7 7.7 7.55 7.66 7.66 7.	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	SEPTE 8.4 8.4 8.4 8.5 8.4 8.4 8.3 8.3 8.3 8.4 8.4 8.4 8.1 8.2 8.2 8.2 8.2 8.1 8.1 8.2 8.2 8.1	8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.4 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.8 7.6 7.5 7.5	7.8 7.9 7.8 7.8 7.8 7.8 7.6 7.6 7.6 7.4 7.4 7.4 7.4	7.6 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.7 7.7	7.4 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.7	7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.6 7.8 7.7 7.8 7.7 7.8 7.8 7.7 7.8 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	7.66 7.66 7.77 7.7 7.75 7.55 7.66 7.66 7	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	SEPTE 8.4 8.4 8.4 8.4 8.5 8.4 8.4 8.3 8.3 8.3 8.4 8.4 8.1 8.2 8.2 8.2 8.1 8.1 8.2 8.2 8.2 8.1	**BER** 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.2 8.2 8.2 8.2 8.2 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.2 8.4 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.6 7.6 7.5	7.8 7.9 7.9 7.8 7.8 7.8 7.6 7.6 7.6 7.4 7.4 7.4 7.4	7.6 7.7 7.6 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.7	7.4 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.7 7.7	7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.6 7.8 7.7 7.8 7.7 7.8 7.7 7.8 7.7 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	7.66 7.66 7.77 7.7 7.7 7.55 7.66 7.66 7.	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	SEPTE 8.4 8.4 8.4 8.5 8.4 8.4 8.3 8.3 8.3 8.4 8.4 8.4 8.1 8.2 8.2 8.2 8.2 8.1 8.1 8.2 8.2 8.1	8.2 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	8.4 8.3 8.4 8.2 8.3 8.3 8.3 8.4 8.2 8.2 8.4 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.7 9.7	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.6 7.6 7.5 7.5 7.6 7.6 7.6	7.8 7.9 7.8 7.8 7.8 7.6 7.6 7.6 7.4 7.4 7.4 7.4 7.4 7.4	7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.7 7.7	7.4 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.7 7.7	7.8 7.8 7.8 7.8 7.9 7.8 7.9 7.6 7.8 7.7 7.8 7.8 7.7 7.8 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	7.66 7.66 7.77 7.7 7.75 7.55 7.66 7.66 7	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	SEPTE 8.4 8.4 8.4 8.4 8.5 8.4 8.4 8.3 8.3 8.3 8.4 8.4 8.1 8.2 8.2 8.1 8.2 8.2 8.1 8.2 8.2 8.1	**BER** 8.2 8.2 8.2 8.2 8.3 8.3 8.3 8.3 8.2 8.2 8.2 8.2 8.2 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	8.4 8.3 8.2 8.4 8.2 8.3 8.3 8.3 8.4 8.2 8.2 8.4 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.8 7.8 7.6 7.5 7.5 7.6	7.8 7.9 7.9 7.8 7.8 7.8 7.6 7.6 7.6 7.7 4 7.4 7.4 7.4 7.4 7.4	7.6 7.7 7.6 7.7 7.8 7.8 7.8 7.8 7.7 7.7 7.7 7.9 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9	7.4 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 7.7 7.7	7.8 7.8 7.8 7.9 7.8 7.9 7.6 7.8 7.7 7.8 7.7 7.8 7.8 7.7 7.8 7.8 7.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	7.66 7.67 7.77 7.77 7.75 7.55 7.66 7.66	8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0 8.0 8.0 8.0 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	SEPTE 8.4 8.4 8.4 8.5 8.4 8.4 8.3 8.3 8.3 8.4 8.4 8.1 8.2 8.2 8.1 8.2 8.2 8.1 8.2 8.2 8.1	**************************************

167

06279795 CROW CREEK AT MOUTH, NEAR PAHASKA, WY--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY	7		MARCH			APRIL			MAY	
1 2 3 4	 	 	 	 		 	2.0 2.0 1.6 1.6	1.2 1.3 .6	1.5 1.5 1.0 1.0	3.5 3.1 5.0 6.2	1.1 .1 .2 .3	2.5 1.5 2.5 2.5
5 6							2.2	1.4	2.0	6.0 5.1	1.0	3.0
7 8 9 10							2.4 2.1 1.1 1.1	1.9 1.1 .4 .2	2.0 1.5 .5	6.3 7.3 6.4 6.4	.7 1.9 2.5 2.0	3.0 3.5 4.0 4.0
11 12							1.1 1.5	.0	.5 1.0	7.5 8.1	2.0	4.0
13 14 15										8.0 6.6 4.0	2.5 3.0 3.2	4.5 4.5 3.5
16 17										4.8	3.0	3.5
18 19 20							2.8	1.4	2.5			
21 22 23 24 25	 	 	 	1.7 1.7 1.8 2.1	1.2 1.2 1.2 1.2	1.5 1.5 1.5 2.0	2.3 3.2 2.9 3.5 4.2	.7 1.6 1.5 2.1 1.9	1.5 2.5 2.0 3.0 3.0	 		
26 27 28 29 30 31		 	 	2.0 1.7 1.8 2.2 2.1	1.7 1.1 .9 1.6 1.5	2.0 1.5 1.5 2.0 1.5	4.6 4.5 4.5 4.7 4.6	2.1 1.4 1.5 1.7	3.5 2.5 2.5 3.0 3.0	 8.2 8.5	 2.7 3.1	 5.0 5.5
MONTH				2.2	.5	1.6	4.7	.0	1.9	8.5	.1	3.6
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
DAY 1 2 3 4 5	9.9 6.9 4.5 4.9		MEAN 6.0 5.5 3.5 4.5	13.3 13.8 14.0 11.9 13.5		10.0 10.0 10.5 9.5 10.5			9.5 10.5 10.5 11.5			
1 2 3 4	9.9 6.9 4.5 4.9	JUNE 3.3 4.1 2.6 2.1	6.0 5.5 3.5 3.5	13.3 13.8 14.0 11.9	JULY 7.0 6.5 6.9 7.2	10.0 10.0 10.5 9.5	13.0 14.0 12.2 13.9	5.6 7.0 7.9 8.5	9.5 10.5 10.5 11.5	11.6 11.5 11.2 11.1	7.1 7.5 7.1 7.2	9.5 9.5 9.5 9.5
1 2 3 4 5 6 7 8 9	9.9 6.9 4.5 4.9 7.2 8.1 9.3 9.5 10.8	JUNE 3.3 4.1 2.6 2.1 2.8 3.6 2.8 3.4 4.1	6.0 5.5 3.5 4.5 5.5 6.5 7.0	13.3 13.8 14.0 11.9 13.5 10.9 11.8 10.8	JULY 7.0 6.5 6.9 7.2 7.5 8.5 7.4 7.9 7.5	10.0 10.0 10.5 9.5 10.5	13.0 14.0 12.2 13.9 14.2 14.4 13.8 14.0 12.5	5.6 7.0 7.9 8.5 8.8 7.7 8.8 8.9 9.6	9.5 10.5 11.5 11.5 11.5 11.0 11.5 11.5	11.6 11.5 11.2 11.1 10.7 10.1 6.4 6.3 7.6	7.1 7.5 7.1 7.2 7.5 6.4 5.2 3.6 3.1	9.5 9.5 9.5 9.5 9.0 8.0 6.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	9.9 6.9 4.5 4.9 7.2 8.1 9.3 10.8 10.6 9.8 6.4 3.6 6.1	JUNE 3.3 4.1 2.6 2.1 2.8 3.6 2.8 3.4 4.1 3.9 4.2 3.6 1.3 2.8	6.0 5.5 3.5 4.5 5.5 6.5 7.0 7.0 6.5 5.5 4.0	13.3 13.8 14.0 11.9 13.5 10.9 11.8 10.8 11.6 11.3	JULY 7.0 6.5 6.9 7.2 7.5 8.5 7.4 7.9 7.5 8.2 7.2 6.7 6.9 8.2	10.0 10.5 9.5 10.5 10.5 9.5 9.5 9.5 9.5 9.5 10.0 10.0	13.0 14.0 12.2 13.9 14.2 14.4 13.8 14.0 12.5 12.8 12.4 13.4 11.9	5.6 7.0 7.9 8.5 8.8 7.7 8.8 9.6 7.5 7.7 7.6 8.9	9.5 10.5 11.5 11.5 11.5 11.0 10.5 10.5 10	11.6 11.5 11.2 11.1 10.7 10.1 6.4 6.3 7.6 8.4 9.0 8.9	7.1 7.5 7.1 7.2 7.5 6.4 5.2 3.1 3.8 4.3 5.1 6.0	9.5 9.5 9.5 9.5 9.0 8.0 6.0 5.5 6.0 7.0 9.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	9.9 6.9 4.5 4.9 7.2 8.1 9.3 9.5 10.8 10.6 9.8 6.1 8.8 10.0 7.8 9.3 9.5 9.5 9.6	JUNE 3.3 4.1 2.6 2.1 2.8 3.6 2.8 3.4 4.1 3.9 4.2 3.6 1.3 2.8 3.3 2.7 4.1 5.0 3.4	6.0 5.5 3.5 4.5 5.5 5.5 7.0 6.5 5.5 4.0 5.5 6.0 6.5 6.5	13.3 13.8 14.0 11.9 13.5 10.9 11.8 11.6 11.3 11.8 14.2 13.3 13.3 10.5	JULY 7.0 6.5 6.9 7.2 7.5 8.5 7.4 7.9 7.5 8.2 7.2 6.7 6.9 8.2 7.5 6.1 6.3 6.9 7.2	10.0 10.5 9.5 10.5 10.0 9.5 9.5 9.5 9.5 9.5 10.0 10.5 9.0	13.0 14.0 12.2 13.9 14.2 14.4 13.8 14.0 12.5 12.8 12.4 13.4 11.9 12.6 11.3	5.6 7.0 7.9 8.5 8.8 7.7 8.8 9.6 7.5 7.7 7.6 8.9 9.6 7.5	9.5 10.5 11.5 11.5 11.5 11.0 10.5 10.5 10	11.6 11.5 11.2 11.1 10.7 10.1 6.4 6.3 7.6 8.4 9.0 8.9 10.5 8.9 8.6 8.7 8.3 8.5	7.1 7.5 7.1 7.2 7.5 6.4 5.2 3.6 3.1 3.8 4.3 5.1 4.3 6.0 5.7	9.5 9.5 9.5 9.5 9.0 8.0 6.0 5.5 6.0 7.0 7.0 7.5 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	9.9 6.9 4.5 4.9 7.2 8.1 9.3 9.5 10.8 10.6 9.8 6.1 8.8 10.0 7.8 9.6 10.8 11.5 12.2 11.1 12.4	JUNE 3.3 4.1 2.6 2.1 2.8 3.6 2.8 3.4 4.1 3.9 4.2 3.6 1.3 2.8 3.3 2.7 4.1 5.0 3.4 3.7	6.0 5.5 3.5 4.5 5.5 6.0 7.0 6.5 5.5 5.5 6.0 5.5 6.0 6.5 7.0 7.0 7.0 6.5 7.0 7.0 6.5 7.0 7.0 8.0 6.0 7.0 7.0 8.0 7.0 7.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	13.3 13.8 14.0 11.9 13.5 10.9 11.8 11.6 11.3 11.8 14.2 13.3 10.5 12.1 12.3 12.1 13.2 13.6 13.4 13.6 13.2 13.6	JULY 7.0 6.5 6.9 7.2 7.5 8.5 7.4 7.9 7.5 8.2 7.2 6.7 6.9 8.2 7.5 6.1 6.3 6.9 7.2 6.8 6.9 7.2 7.3	10.0 10.5 9.5 10.5 10.0 9.5 9.5 9.5 9.5 10.0 10.5 9.5 10.0 10.5 10.5	13.0 14.0 12.2 13.9 14.2 14.4 13.8 14.0 12.5 12.8 12.4 13.4 11.9 12.6 11.3 11.6 12.8 12.1 12.1	5.6 7.0 7.9 8.5 8.8 7.7 8.89 9.6 7.5 7.7 7.6 8.9 8.3 7.5 6.8 6.8 7.7	9.5 10.5 11.5 11.5 11.5 11.0 10.5 10.5 10	11.6 11.5 11.2 11.1 10.7 10.1 6.4 6.3 7.6 8.4 9.0 8.9 10.5 8.9 8.6 8.7 8.3 8.5 7.5	7.1 7.5 7.1 7.2 7.5 6.4 5.2 3.6 3.1 3.8 4.3 5.1 4.3 5.7 4.8 6.0 5.7	9.5 9.5 9.5 9.5 9.0 8.0 6.0 5.5 6.0 7.0 7.0 7.5 6.5 6.0 6.5 6.0
1 2 3 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	9.9 6.9 4.5 4.9 7.2 8.1 9.3 9.5 10.8 10.6 9.8 6.4 3.6 6.1 8.8 10.0 7.8 9.3 9.6 10.8 11.5 12.2 11.1 11.9 11.9 11.9 11.9 11.9 11.9	JUNE 3.3 4.1 2.8 3.6 2.8 3.6 4.1 3.9 4.2 3.6 1.3 3.9 4.2 3.6 1.3 3.7 4.1 5.0 5.5 6.6 6.1 5.9 6.0	6.05.55.55.55.55.55.55.55.55.55.55.55.55.	13.3 13.8 14.0 11.9 13.5 10.9 11.8 11.6 11.3 11.8 14.2 13.3 13.3 10.5 12.1 12.3 12.1 13.6 13.4 13.6 13.9 13.9 13.9	JULY 7.0 6.5 6.9 7.2 7.5 8.5 7.4 7.9 7.5 8.2 7.2 6.7 6.9 7.5 6.1 6.3 6.9 6.2 7.5 6.8 6.8 6.9 6.7 7.0 6.9 7.3 6.7 7.0 6.9 7.3 6.8	10.0 10.5 9.5 10.5 10.0 9.5 9.5 9.5 9.5 9.5 10.0 10.5 9.5 10.0 10.5 10.5 10.5 10.5 10.5	13.0 14.0 12.2 13.9 14.2 14.4 13.8 14.0 12.5 12.8 12.4 13.4 11.9 12.6 11.3 11.6 12.8 12.1 11.7 11.5 12.2 11.5 11.8 11.8 11.8 11.8 11.8	AUGUST 5.6 7.0 7.9 8.5 8.8 7.7 8.8 9.6 7.5 7.7 7.6 8.9 8.3 7.5 6.8 7.7 7.6 6.8 7.7 7.6 6.8 7.7 7.6 6.8 7.7 7.6 6.8 7.7 7.1 6.3	9.5 10.5 11.5 11.5 11.5 11.0 10.5 10.5 10	11.6 11.5 11.2 11.1 10.7 10.1 6.4 6.3 7.6 8.4 9.0 8.9 10.5 8.8 8.6 8.7 8.3 8.5 7.5 8.1 8.0 7.8 8.2 8.8 8.7	SEPTEMBE 7.1 7.5 7.1 7.2 7.5 6.4 5.2 3.6 3.1 3.8 4.3 5.1 7.3 6.0 5.7 4.8 6.8 4.7 4.3 3.7 5.0 4.3 4.2 4.8 5.7 4.9 5.0 6.1 4.3	9.5 9.5 9.5 9.5 9.0 8.0 6.0 5.5 6.0 7.0 9.0 7.5 7.0 6.5 6.5 6.5 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5

06279795 CROW CREEK AT MOUTH, NEAR PAHASKA, WY--Continued

OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		UAI	GEN DISS	JLVED (NG/	D), WIII	IC IDAIC OC	TOBER 200	0 10 555	IDINDBIC Z	001		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1							9.6	9.4	9.5	9.8	9.1	9.5
2 3							9.6 9.9	9.5 9.6	9.5 9.8	10.1 10.2	9.4 9.0	9.7 9.6
4 5							10.0 9.8	9.8 9.6	9.9 9.7	10.1 9.9	8.7 8.7	9.6 9.4
6												9.6
7							9.8 9.8	9.6 9.6	9.7 9.7	9.9 10.2	9.1 9.0	9.7
8 9							10.1 10.2	9.7 10.1	9.9 10.2	10.0 9.5	8.7 8.6	9.5 9.1
10							10.3	10.1	10.2	9.6	8.7	9.2
11							10.3	10.1	10.2	9.7	8.6	9.3
12 13							10.2	10.1	10.2	9.8 9.7	8.6 8.7	9.4 9.4
14										9.8	9.1	9.5
15										9.9	9.6	9.8
16 17										10.2	9.6	9.9
18												
19 20							9.5	9.1	9.2			
21							9.7	9.3	9.5			
22				10.8	10.6	10.7	9.6	9.1	9.4			
23 24				11.0 11.2	10.8 10.9	10.9 11.0	9.7 9.6	9.3 9.1	9.5 9.4			
25				11.0	10.6	10.8	9.7	9.0	9.3			
26				10.6	10.2	10.4	9.6	8.9	9.3			
27 28				10.2 10.0	10.0 9.5	10.1 9.7	9.7 9.6	9.0 8.9	9.4 9.4			
29				9.6	9.3	9.5	9.6	8.9	9.3			
30 31				9.6 9.8	9.3 9.5	9.5 9.6	9.6	9.0	9.3	11.3 11.4	9.8 9.7	10.6 10.6
MONTH				11.2	9.3	10.2	10.3	8.9	9.6	11.4	8.6	9.6
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
1	11.3	JUNE 9.4	10.5	10.6	JULY 8.8	9.8	10.2	AUGUST	9.2	9.4	SEPTEMBE	R 8.8
1 2		JUNE 9.4 10.3			JULY	9.8 9.7	10.2 9.7	AUGUST 8.4 8.2	9.2 8.9	9.4 9.2	SEPTEMBE	8.8 8.7
1 2 3 4	11.3 11.0 11.6 11.8	JUNE 9.4 10.3 10.9 11.0	10.5 10.7 11.2 11.4	10.6 10.6 10.5 10.6	JULY 8.8 8.8 8.7 9.2	9.8 9.7 9.7 9.9	10.2 9.7 9.6 9.4	8.4 8.2 8.5 8.1	9.2 8.9 8.9 8.7	9.4 9.2 9.2 9.4	8.3 8.3 8.3 8.3 8.4	8.8 8.7 8.7 8.9
1 2 3 4 5	11.3 11.0 11.6 11.8 11.6	JUNE 9.4 10.3 10.9 11.0 10.6	10.5 10.7 11.2 11.4 11.1	10.6 10.6 10.5 10.6 10.4	JULY 8.8 8.8 8.7 9.2 8.8	9.8 9.7 9.7 9.9 9.6	10.2 9.7 9.6 9.4 9.4	8.4 8.2 8.5 8.1	9.2 8.9 8.9 8.7 8.7	9.4 9.2 9.2 9.4 9.3	8.3 8.3 8.3 8.3 8.4 8.4	8.8 8.7 8.7 8.9 8.9
1 2 3 4	11.3 11.0 11.6 11.8	JUNE 9.4 10.3 10.9 11.0	10.5 10.7 11.2 11.4	10.6 10.6 10.5 10.6	JULY 8.8 8.8 8.7 9.2	9.8 9.7 9.7 9.9	10.2 9.7 9.6 9.4	8.4 8.2 8.5 8.1	9.2 8.9 8.9 8.7	9.4 9.2 9.2 9.4	8.3 8.3 8.3 8.3 8.4	8.8 8.7 8.7 8.9
1 2 3 4 5	11.3 11.0 11.6 11.8 11.6 11.1 11.4	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.6	10.5 10.7 11.2 11.4 11.1 10.6 10.6	10.6 10.6 10.5 10.6 10.4	JULY 8.8 8.8 8.7 9.2 8.8 9.3 9.1 9.5	9.8 9.7 9.7 9.9 9.6 9.7 9.8 9.9	10.2 9.7 9.6 9.4 9.4 9.8 9.3	8.4 8.2 8.5 8.1 8.1 8.1	9.2 8.9 8.7 8.7 8.6 8.6	9.4 9.2 9.2 9.4 9.3 9.4 9.8	8.3 8.3 8.3 8.4 8.4 9.4	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0
1 2 3 4 5	11.3 11.0 11.6 11.8 11.6	JUNE 9.4 10.3 10.9 11.0 10.6	10.5 10.7 11.2 11.4 11.1	10.6 10.6 10.5 10.6 10.4	JULY 8.8 8.8 8.7 9.2 8.8 9.3 9.1	9.8 9.7 9.7 9.9 9.6 9.7	10.2 9.7 9.6 9.4 9.4	8.4 8.2 8.5 8.1 8.1	9.2 8.9 8.9 8.7 8.7	9.4 9.2 9.2 9.4 9.3	8.3 8.3 8.3 8.4 8.4	8.8 8.7 8.7 8.9 8.9 9.1 9.6
1 2 3 4 5 6 7 8 9	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.6 9.3	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.4 10.2	10.6 10.6 10.5 10.6 10.4 10.0 10.4 10.3	JULY 8.8 8.8 8.7 9.2 8.8 9.3 9.1 9.5 9.2	9.8 9.7 9.7 9.9 9.6 9.7 9.8 9.9	10.2 9.7 9.6 9.4 9.8 9.3 9.2 9.1	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1	9.2 8.9 8.7 8.7 8.8 8.6 8.6 8.7	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4	8.3 8.3 8.3 8.4 8.4 9.4 9.6 9.3	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.9
1 2 3 4 5 6 7 8 9 10	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.6 9.3 9.3	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.4 10.2 10.3	10.6 10.6 10.5 10.6 10.4 10.0 10.4 10.3 10.4 10.1	JULY 8.8 8.8 8.7 9.2 8.8 9.3 9.1 9.5 9.2 9.2 9.0 8.5	9.8 9.7 9.7 9.9 9.6 9.7 9.8 9.7 9.7	10.2 9.7 9.6 9.4 9.4 9.8 9.3 9.2 9.1 9.6	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1 8.2 8.3 8.2	9.2 8.9 8.7 8.7 8.8 8.6 8.6 8.7 8.8	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3	8.3 8.3 8.3 8.4 8.4 9.4 9.6 9.3 9.2	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.9 9.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.0 11.1	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.3 9.3 9.5 10.3 11.1 10.5	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.2 10.3 10.3 10.6 11.5	10.6 10.6 10.5 10.6 10.4 10.0 10.4 10.3 10.4 10.1	JULY 8.8 8.8 8.7 9.2 8.8 9.3 9.1 9.5 9.2 9.2 9.0 8.5 8.6 8.6	9.8 9.7 9.7 9.9 9.6 9.7 9.7 9.7 9.6 9.3	10.2 9.7 9.6 9.4 9.8 9.3 9.2 9.1 9.6 9.5 9.4	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.3	9.2 8.9 8.7 8.7 8.6 8.6 8.7 8.8	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3 10.3 10.0	8.3 8.3 8.3 8.4 8.4 8.5 9.4 9.3 9.2	8.8 8.7 8.7 8.9 9.1 9.6 10.0 9.9 9.7 9.6 9.5 9.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.0 11.1	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.6 9.3 9.3 11.1 10.5 9.8	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.4 10.2 10.3 10.3 10.6 11.5 11.1	10.6 10.6 10.5 10.6 10.4 10.0 10.4 10.3 10.4 10.1	JULY 8.8 8.8 8.7 9.2 8.8 9.3 9.1 9.5 9.2 9.0 8.5 8.6 8.6 9.1	9.8 9.7 9.7 9.9 9.6 9.7 9.8 9.9 9.7 9.7 9.6 9.3 9.6	10.2 9.7 9.6 9.4 9.4 9.3 9.2 9.1 9.6 9.5 9.4 9.3	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.1 8.3	9.2 8.9 8.7 8.7 8.6 8.6 8.7 8.8 8.9 8.7 8.7	9.4 9.2 9.2 9.4 9.3 9.8 10.4 10.5 10.3 10.3 10.0 9.6 10.0	8.3 8.3 8.3 8.4 8.4 8.4 9.6 9.3 9.2 9.1 8.8 9.2	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.9 9.7 9.5 9.2 9.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.9 11.1 11.9 11.5 11.3	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.3 9.3 9.5 10.3 11.1 10.5 9.8	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.2 10.3 10.3 10.6 11.5 11.1 10.7	10.6 10.6 10.5 10.6 10.4 10.0 10.3 10.4 10.1 10.3 10.6 10.5 10.5	JULY 8.8 8.8 8.7 9.2 8.8 9.3 9.1 9.5 9.2 9.0 8.5 8.6 9.1 8.8	9.8 9.7 9.7 9.9 9.6 9.7 9.7 9.7 9.6 9.3 9.6	10.2 9.7 9.6 9.4 9.8 9.3 9.2 9.1 9.6 9.5 9.4 9.5	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.3 8.2 8.4 8.3	9.2 8.9 8.7 8.8 8.6 8.7 8.8 8.7 8.7 8.7 8.9	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3 10.0 9.6 10.0 10.0	8.3 8.3 8.3 8.4 8.4 8.5 9.6 9.3 9.2 9.1 9.1 8.8 9.2	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.9 9.7 9.5 9.5 9.6 9.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.9 11.5 11.3	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.6 9.3 9.3 11.1 10.5 9.8	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.4 10.2 10.3 10.3 10.6 11.5 11.1 10.7	10.6 10.6 10.5 10.6 10.4 10.0 10.4 10.3 10.6 10.5 10.0 10.5 10.0	JULY 8.8 8.8 8.7 9.2 8.8 9.3 9.1 9.5 9.2 9.2 9.0 8.5 8.6 8.6 9.1 8.8 8.7 8.8	9.8 9.7 9.9 9.6 9.7 9.9 9.7 9.6 9.6 9.6 9.6 9.6 9.5	10.2 9.7 9.6 9.4 9.4 9.8 9.3 9.2 9.1 9.6 9.5 9.4 9.5	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.3 8.3 8.5 8.5	9.2 8.9 8.7 8.7 8.8 8.6 8.6 8.7 8.8 8.7 8.7 8.7 8.7 8.9	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3 10.0 9.6 10.0 10.0	8.3 8.3 8.3 8.4 8.4 8.5 9.4 9.3 9.2 9.1 9.1 8.8 9.2 9.3	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.9 9.7 9.5 9.2 9.6 9.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.9 11.5 11.3	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.3 9.3 9.3 11.1 10.5 9.8 9.6 10.1	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.4 10.2 10.3 10.6 11.5 11.1 10.7	10.6 10.6 10.5 10.6 10.4 10.0 10.4 10.3 10.6 10.5 10.5	JULY 8.8 8.8 8.7 9.2 8.8 9.3 9.1 9.5 9.2 9.2 9.0 8.5 8.6 9.1 8.8 8.7	9.8 9.7 9.9 9.6 9.7 9.8 9.7 9.7 9.6 9.6 9.6 9.6	10.2 9.7 9.6 9.4 9.8 9.3 9.2 9.1 9.6 9.5 9.4 9.3 9.5	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.3 8.3 8.3	9.2 8.9 8.7 8.7 8.8 8.6 8.6 8.7 8.7 8.7 8.7 8.9	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3 10.0 9.6 10.0 10.0	8.3 8.3 8.3 8.4 8.4 8.5 9.4 9.3 9.2 9.1 9.1 8.8 9.2	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.7 9.5 9.5 9.7 9.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.9 11.5 11.3 11.5 11.1	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.3 9.3 11.1 10.5 9.8 9.6 10.1 9.8 9.7	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.3 10.3 10.6 11.5 11.1 10.7	10.6 10.6 10.5 10.6 10.4 10.3 10.4 10.1 10.3 10.6 10.5 10.0 10.2 10.5 10.5 10.2 9.8 9.9	JULY 8.8 8.8 9.2 8.8 9.3 9.1 9.5 9.2 9.2 9.0 8.5 8.6 8.6 9.1 8.8 8.7 8.8 8.5 8.3	9.8 9.7 9.9 9.6 9.7 9.8 9.7 9.7 9.6 9.6 9.6 9.6 9.5 9.0	10.2 9.7 9.6 9.4 9.3 9.2 9.1 9.6 9.5 9.4 9.3 9.4 9.5	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.3 8.3 8.3 8.3 8.4 8.3 8.4 8.4 8.4	9.2 8.9 8.7 8.7 8.8 8.6 8.7 8.8 8.7 8.7 8.7 8.7 8.9 9.0 8.8 9.0	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3 10.0 9.6 10.0 10.0	8.3 8.3 8.3 8.4 8.4 8.5 9.4 9.3 9.2 9.1 9.1 8.8 9.2 9.3 9.3 9.3 9.3 9.3	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.9 9.7 9.5 9.2 9.6 9.7 9.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.9 11.5 11.3 11.5 11.1 10.9	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.3 9.3 11.1 10.5 9.8 9.6 10.1 9.8 9.7 9.5	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.2 10.3 10.3 10.6 11.5 11.1 10.7 10.6 10.4 10.4 10.4 10.4	10.6 10.6 10.5 10.6 10.4 10.0 10.4 10.3 10.6 10.5 10.5 10.5 10.5 10.5 10.5 10.9 9.8 9.8	JULY 8.8 8.8 9.2 8.8 9.3 9.1 9.2 9.2 9.0 8.5 8.6 9.1 8.8 8.7 8.8 8.5 8.3 8.4	9.8 9.7 9.9 9.6 9.7 9.8 9.7 9.7 9.7 9.6 9.3 9.6 9.5 9.5 9.0	10.2 9.7 9.6 9.4 9.8 9.3 9.2 9.1 9.6 9.5 9.4 9.5 9.4 9.5 9.6 9.4 9.6	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.3 8.3 8.2 8.4 8.1 8.3 8.1 8.1 8.1	9.29 8.99 8.77 8.8 8.66 8.77 8.8 9.09 8.89 9.0 8.89 9.0 8.89	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3 10.0 9.6 10.0 10.0 10.3 9.8 10.3 10.2 10.4	8.3 8.3 8.3 8.4 8.4 8.5 9.4 9.3 9.2 9.1 8.8 9.2 9.3 9.3 9.4 9.3 9.3 9.4 9.3	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.9 9.7 9.5 9.2 9.5 9.7 9.7 9.7 9.8 9.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.9 11.5 11.3 11.5 11.1 10.9 10.9 10.8	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.3 9.3 9.5 10.3 11.1 10.5 9.8 9.6 10.1 9.8 9.7 9.5	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.4 10.2 10.3 10.3 10.6 11.5 11.1 10.7 10.6 10.6 10.4 10.6 10.4	10.6 10.6 10.5 10.6 10.4 10.0 10.4 10.1 10.3 10.4 10.1 10.5 10.0 10.2 10.5 10.5 10.5 10.9 9.9 9.8 9.9 9.9	JULY 8.8 8.7 9.2 8.8 9.3 9.1 9.5 9.2 9.0 8.5 8.6 9.1 8.8 8.7 8.8 8.7 8.8	9.8 9.7 9.9 9.7 9.9 9.7 9.7 9.6 9.3 9.6 9.6 9.6 9.1 9.0 9.0 8.9	10.2 9.7 9.6 9.4 9.8 9.3 9.2 9.1 9.6 9.5 9.4 9.5 9.4 9.6 9.4 9.6	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.3 8.5 8.5 8.3 8.4 8.4	9.29 8.99 8.77 8.8 8.66 8.78 8.9 9.0 8.9 9.0 8.9 8.9 9.0 8.9 8.9 8.9	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3 10.0 9.6 10.0 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	8.3 8.3 8.3 8.4 8.4 8.5 9.6 9.3 9.2 9.1 9.1 9.1 9.3 9.2 9.3 9.2 9.3 9.2 9.3	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.9 9.7 9.5 9.2 9.6 9.7 9.5 9.7 9.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.9 11.5 11.3 11.5 11.1 10.9 11.4 11.4	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.3 9.3 11.1 10.5 9.8 9.5 10.1 9.8 9.7 9.5	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.4 10.2 10.3 10.6 11.5 11.1 10.7	10.6 10.6 10.5 10.6 10.4 10.3 10.4 10.1 10.3 10.6 10.5 10.0 10.2 9.8 9.9	JULY 8.8 8.8 9.3 9.1 9.5 9.2 9.0 8.5 8.6 9.1 8.8 8.7 8.8 8.5 8.3 8.4 8.4	9.8 9.7 9.9 9.6 9.7 9.8 9.7 9.7 9.6 9.6 9.6 9.5 9.0 9.0 9.0	10.2 9.7 9.6 9.4 9.3 9.3 9.2 9.1 9.6 9.5 9.4 9.5 9.6 9.4 9.4 9.4	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.3 8.5 8.5 8.5 8.5 8.4 8.4 8.4	9.2 8.9 8.7 8.8 8.6 8.6 8.7 8.8 8.7 8.7 8.7 8.9 9.0 8.8 9.0 8.9 9.0 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.5 10.3 10.0 9.6 10.0 10.0 10.3 10.2 10.4 10.6	8.3 8.3 8.3 8.4 8.4 8.5 9.4 9.3 9.2 9.1 9.1 8.8 9.2 9.3 9.3 9.3 9.3 9.3 9.4 9.3 9.4 9.4 9.6	8.8 8.7 8.7 8.9 8.9 9.6 10.0 9.9 9.7 9.6 9.5 9.2 9.6 9.7 9.7 9.7 9.7 9.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.9 11.5 11.3 11.5 11.3 11.5 11.4 11.4 11.4 11.4 11.4 11.0 11.1	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.3 9.3 9.5 10.3 11.1 10.5 9.8 9.6 10.1 9.8 9.7 9.5	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.4 10.2 10.3 10.3 10.6 11.5 11.1 10.7 10.6 10.4 10.6 10.4 10.2 10.3	10.6 10.6 10.5 10.6 10.4 10.0 10.4 10.1 10.3 10.4 10.1 10.5 10.0 10.2 10.5 10.5 10.5 10.5 9.9 9.8 9.8 9.8 9.8	JULY 8.8 8.7 9.2 8.8 9.3 9.1 9.5 9.2 9.0 8.5 8.6 9.1 8.8 8.7 8.8 8.5 8.3 8.4 8.4 8.3 8.2 8.1 8.2	9.8 9.7 9.9 9.7 9.9 9.7 9.7 9.6 9.3 9.6 9.6 9.6 9.1 9.0 9.0 9.9 8.9 8.9	10.2 9.7 9.6 9.4 9.8 9.3 9.2 9.1 9.6 9.5 9.4 9.5 9.4 9.6 9.4 9.5 9.4 9.7	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.3 8.5 8.5 8.3 8.4 8.4 8.4 8.4	9.29 8.99 8.77 8.8 8.66 8.78 8.9 9.0 8.9 9.0 8.9 8.9 9.0 8.9 9.0 8.9	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3 10.0 10.0 10.3 10.0 10.0 10.0 10.0 10.3 10.3 10.3 10.0 1	8.3 8.3 8.3 8.4 8.4 8.5 9.6 9.3 9.2 9.1 9.1 9.1 9.3 9.2 9.3 9.2 9.3	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.9 9.7 9.5 9.2 9.6 9.7 9.5 9.8 10.0 9.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.9 11.5 11.3 11.5 11.1 10.9 11.4 11.4 11.3 10.9 10.8 11.0 10.9	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.3 9.3 11.1 10.5 9.8 9.6 10.1 9.8 9.7 9.5 9.3 9.1 9.8 9.7 9.5	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.4 10.2 10.3 10.6 11.5 11.1 10.7 10.6 10.4 10.6 10.4 10.6 10.4 10.6 10.4 10.6	10.6 10.6 10.5 10.6 10.4 10.3 10.4 10.1 10.3 10.6 10.5 10.5 10.5 10.2 10.5 10.5 10.5 10.9 9.9 9.8 9.9 9.8 9.8 9.9 9.8	JULY 8.8 8.8 9.3 9.1 9.5 9.2 9.0 8.5 8.6 9.1 8.8 8.7 8.8 8.5 8.3 8.4 8.4 8.3 8.2 8.1	9.8 9.7 9.9 9.7 9.9 9.7 9.7 9.6 9.6 9.7 9.7 9.6 9.5 9.0 9.0 9.9 9.0 9.0 9.0 9.0 9.0 9.0 9.0	10.2 9.7 9.6 9.4 9.8 9.3 9.2 9.6 9.5 9.4 9.5 9.6 9.4 9.5 9.6 9.3 9.5 9.7	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.3 8.5 8.5 8.5 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	9.29 8.99 8.77 8.86 8.66 8.77 8.9 9.98 8.99 8.89 9.0 8.89 9.0 8.99 8.99	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3 10.0 9.6 10.0 10.0 10.3 10.3 10.3 10.0 10.3 10.3 10.3 10.3 10.3 10.3 10.0 10.0 10.0 10.3	SEPTEMBE 8.3 8.3 8.3 8.4 8.4 8.5 9.4 9.6 9.3 9.2 9.1 8.8 9.2 9.3 9.4 9.6 9.4 9.6 9.4 9.6 9.4 9.6 9.4 9.6 9.4 9.6	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.5 9.7 9.5 9.2 9.6 9.7 9.7 9.5 9.8 9.7 9.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.9 11.5 11.3 11.5 11.3 11.5 11.4 11.4 11.4 11.4 11.7 11.9 11.9 11.9 11.9 11.9	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.3 9.3 9.5 10.3 11.1 10.5 9.8 9.6 10.1 9.8 9.7 9.5 9.3 9.1 9.3 9.1 9.3 9.1 9.3	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.4 10.2 10.3 10.3 10.6 11.5 11.1 10.7 10.6 10.4 10.6 10.4 10.6 10.4 10.2 10.3	10.6 10.6 10.5 10.6 10.4 10.0 10.4 10.1 10.3 10.6 10.5 10.0 10.2 10.5 10.5 10.5 10.5 9.9 9.8 9.8 9.8 9.6 9.8 9.6 9.7	JULY 8.8 8.7 9.2 8.8 9.3 9.1 9.5 9.2 9.0 8.5 8.6 9.1 8.8 8.7 8.8 8.5 8.3 8.4 8.4 8.3 8.2 8.1 8.2 8.2 8.2	9.8 9.7 9.9 9.7 9.9 9.7 9.7 9.6 9.3 9.6 9.6 9.0 9.0 9.0 9.9 9.9 9.0 9.9 9.9	10.2 9.7 9.6 9.4 9.8 9.3 9.2 9.1 9.6 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.7	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.3 8.5 8.3 8.4 8.4 8.4 8.4 8.4 8.4	9.29.98.77 8.86.66.78 8.77.79 8.89.00 8.98.99 8.99.00 8.99.99	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3 10.0 10.0 10.3 10.3 10.3 10.2 10.4 10.6 10.3 10.5 10.6 10.3 1	8.3 8.3 8.3 8.4 8.4 8.5 9.6 9.3 9.2 9.1 9.1 9.1 9.3 9.2 9.3 9.4 9.6 9.4 9.6 9.4 9.4 9.4 9.4 9.2 9.4	8.8 8.7 8.9 8.9 9.1 9.6 10.0 9.9 9.7 9.6 9.5 9.2 9.6 9.7 9.9 9.8 10.0 9.8 10.0 9.8 10.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.9 11.5 11.3 11.5 11.1 10.9 11.4 11.4 11.3 10.9 10.8 11.0 10.9	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.3 9.3 11.1 10.5 9.8 9.6 10.1 9.8 9.7 9.5 9.3 9.1 9.8 9.7 9.5	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.4 10.2 10.3 10.6 11.5 11.1 10.7 10.6 10.4 10.6 10.4 10.6 10.4 10.6 10.4 10.6	10.6 10.6 10.5 10.6 10.4 10.3 10.4 10.1 10.3 10.6 10.5 10.5 10.5 10.2 10.5 10.5 10.5 10.9 9.9 9.8 9.9 9.8 9.8 9.9 9.8	JULY 8.8 8.8 9.3 9.1 9.5 9.2 9.0 8.5 8.6 9.1 8.8 8.7 8.8 8.5 8.3 8.4 8.4 8.3 8.2 8.1	9.8 9.7 9.9 9.7 9.9 9.7 9.7 9.6 9.6 9.7 9.7 9.6 9.5 9.0 9.0 9.9 9.0 9.0 9.0 9.0 9.0 9.0 9.0	10.2 9.7 9.6 9.4 9.8 9.3 9.2 9.6 9.5 9.4 9.5 9.6 9.4 9.5 9.6 9.3 9.5 9.7	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.3 8.5 8.5 8.5 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	9.29 8.99 8.77 8.86 8.66 8.77 8.9 9.98 8.99 8.89 9.0 8.89 9.0 8.99 8.99	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3 10.0 9.6 10.0 10.0 10.3 10.3 10.3 10.0 10.3 10.3 10.3 10.3 10.3 10.3 10.0 10.0 10.0 10.3	SEPTEMBE 8.3 8.3 8.3 8.4 8.4 8.5 9.4 9.6 9.3 9.2 9.1 8.8 9.2 9.3 9.4 9.6 9.4 9.6 9.4 9.6 9.4 9.6 9.4 9.6 9.4 9.6	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.5 9.7 9.5 9.2 9.6 9.7 9.7 9.5 9.8 9.7 9.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.9 11.5 11.3 11.5 11.1 10.9 10.9 10.9 11.0	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.3 9.3 9.5 10.3 11.1 10.5 9.8 9.6 10.1 9.8 9.6 10.1 9.7 9.5 9.3 9.1 9.4 9.1 9.3 9.6 9.2 9.0 9.2	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.2 10.3 10.3 10.6 11.5 11.1 10.7 10.6 10.4 10.6 10.4 10.2 10.3 10.3 10.4 10.6 10.4 10.6 10.4 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	10.6 10.6 10.5 10.6 10.4 10.0 10.4 10.1 10.3 10.6 10.5 10.0 10.2 10.5 10.5 10.5 10.2 9.8 9.9 9.8 9.9 9.8 9.8 9.9 9.6 9.7 9.6 9.7 9.7 9.7	JULY 8.8 8.8 9.2 8.8 9.3 9.1 9.5 9.2 9.0 8.5 8.6 9.1 8.8 8.7 8.8 8.7 8.8 8.1 8.2 8.1 8.2 8.2 8.4 8.2	9.8 9.7 9.9 9.6 9.7 9.7 9.7 9.6 9.3 9.6 9.6 9.6 9.0 9.0 9.9 8.9 8.9 8.9 8.9 8.9	10.2 9.7 9.6 9.4 9.3 9.2 9.1 9.6 9.5 9.4 9.5 9.6 9.4 9.3 9.5 9.6 9.5 9.6 9.7	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.1 8.3 8.2 8.4 8.4 8.4 8.4 8.4 8.5 8.5 8.5 8.4 8.4	9.29 8.77 8.66 8.78 8.77 8.9 8.98 9.0 8.98 9.0 8.99 8.99 8.99 8.	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3 10.0 10.0 10.0 10.0 10.0 10.0 10.3 10.3 10.0 10.0 10.0 10.0 10.3 10.3 10.0 1	SEPTEMBE 8.3 8.3 8.3 8.4 8.4 8.5 9.4 9.6 9.3 9.2 9.1 9.1 8.8 9.2 9.3 9.4 9.3 9.4 9.4 9.6 9.4 9.6 9.4 9.6 9.4 9.6 9.4 9.6 9.7	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.9 9.7 9.5 9.2 9.6 9.7 9.5 9.8 9.7 9.9 9.8 10.0 9.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	11.3 11.0 11.6 11.8 11.6 11.1 11.4 11.2 11.0 11.1 11.9 11.5 11.3 11.5 11.3 11.5 11.4 11.4 11.4 11.4 11.7 11.9 10.9 10.8 11.0 11.0 11.0 11.1	JUNE 9.4 10.3 10.9 11.0 10.6 9.9 9.6 9.3 9.3 9.5 10.3 11.1 10.5 9.8 9.6 10.1 9.8 9.7 9.5 9.3 9.1 9.3 9.1 9.3 9.1 9.3	10.5 10.7 11.2 11.4 11.1 10.6 10.6 10.4 10.2 10.3 10.3 10.6 11.5 11.1 10.7 10.6 10.4 10.6 10.4 10.6 10.4 10.6 10.4 10.6	10.6 10.6 10.5 10.6 10.4 10.0 10.4 10.1 10.3 10.6 10.5 10.0 10.2 10.5 10.5 10.5 10.5 9.9 9.8 9.8 9.9 9.6 9.8 9.7 9.7 9.7 9.3	JULY 8.8 8.7 9.2 8.8 9.3 9.1 9.5 9.2 9.0 8.5 8.6 9.1 8.8 8.7 8.8 8.5 8.3 8.4 8.4 8.3 8.2 8.1 8.2 8.2 8.2 8.4 8.2 8.6	9.8 9.7 9.9 9.7 9.9 9.7 9.7 9.6 9.3 9.6 9.6 9.0 9.0 9.0 9.9 8.9 9.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	10.2 9.7 9.6 9.4 9.8 9.3 9.2 9.1 9.6 9.5 9.4 9.5 9.4 9.5 9.4 9.5 9.7 9.5 9.5 9.4 9.5	8.4 8.2 8.5 8.1 8.1 8.1 8.1 8.1 8.3 8.2 8.4 8.3 8.5 8.3 8.4 8.4 8.4 8.4 8.4 8.5 8.5 8.5 8.3 8.4 8.4 8.4 8.5 8.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	9.2998.77 8.8668.78 8.779 9.998.90 8.989.0 9.9999.9999.8999.8999	9.4 9.2 9.2 9.4 9.3 9.4 9.8 10.4 10.5 10.3 10.0 10.0 10.3 10.3 10.3 10.2 10.4 10.6 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.7 10.6	SEPTEMBE 8.3 8.3 8.3 8.4 8.4 8.5 9.4 9.6 9.3 9.2 9.1 9.1 9.1 9.1 9.8 9.2 9.3 9.4 9.6 9.4 9.6 9.4 9.6 9.4 9.6 9.4 9.6 9.4 9.6 9.4 9.7	8.8 8.7 8.7 8.9 8.9 9.1 9.6 10.0 9.9 9.7 9.5 9.2 9.6 9.7 9.9 10.0 9.8 10.0 9.8 10.0

06279795 CROW CREEK AT MOUTH, NEAR PAHASKA, WY--Continued

OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO	BER	NOVEMB	ER	DECEMB	ER	JANUAI	RY	FEBRUAI	RY	MARC	Н
1												
2												
3 4												
5												
6 7												
8												
9 10												
10												
11												
12 13												
14												
15												
16												
17 18												
19												
20											e2	e.00
21											e2	e.00
22											2	e.00
23 24											2 2	e.00 e.00
25											2	e.00
26											2	e.00
27											2	e.00
28											2	e.00
29 30											2 2	e.00 e.00
31											2	e.00
TOTA	L	0		0		0		0		0		0.00
	MEAN		MEAN		MEAN		MEAN		MEAN		MEAN	
DAY	CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
DAY	TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/	CONCEN- TRATION	(TONS/	CONCEN- TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/ DAY)
	TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L) JUNE	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L) SEPTEM	(TONS/ DAY) BER
DAY 1 2	TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/	CONCEN- TRATION (MG/L)	(TONS/	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)
1 2 3	TRATION (MG/L) APR. 2 2 1	(TONS/DAY) IL e.00 e.00 e.00	CONCEN- TRATION (MG/L) MAY 5 4 5	(TONS/DAY) 1.0 1.0 1.0	CONCEN- TRATION (MG/L) JUNE 5 9 7	(TONS/DAY) 2.0 3.0 2.0	CONCEN- TRATION (MG/L) JULY 5 5 6	(TONS/DAY)	CONCEN- TRATION (MG/L) AUGUS: 17 15 15	(TONS/DAY) 1.0 .00 .00	CONCEN- TRATION (MG/L) SEPTEM 8 9 9	(TONS/DAY) BER .00 .00 .00
1 2 3 4	TRATION (MG/L) APR. 2 2 1 1	(TONS/DAY) IL e.00 e.00 e.00 e.00	CONCEN- TRATION (MG/L) MAY	(TONS/ DAY)	CONCEN- TRATION (MG/L) JUNE 5 9 7 5	(TONS/DAY) 2.0 3.0 2.0 1.0	CONCEN- TRATION (MG/L) JULY 5 5	(TONS/ DAY) 1.0 1.0 1.0	CONCEN- TRATION (MG/L) AUGUST	(TONS/DAY) T 1.0 .00 .00 .00	CONCEN- TRATION (MG/L) SEPTEM 8 9 9	(TONS/DAY) BER .00 .00 .00 .00
1 2 3 4 5	TRATION (MG/L) APR: 2 2 1 1 1 2	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00	CONCENTRATION (MG/L) MAY 5 4 5 27 45	1.0 1.0 1.0 1.0 5.0	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 5	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0	CONCENTRATION (MG/L) JULY 5 5 6 5 4	(TONS/DAY) 1.0 1.0 1.0 0.00 .00	CONCENTRATION (MG/L) AUGUST 17 15 15 14 17	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00	CONCENTRATION (MG/L) SEPTEM 8 9 9 13	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .2.0
1 2 3 4 5	TRATION (MG/L) APR. 2 2 1 1 1 2 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 4	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0	CONCENTRATION (MG/L) JULY 5 5 6 5 4	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00	CONCENTRATION (MG/L) AUGUS' 17 15 15 14 17	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00	CONCENTRATION (MG/L) SEPTEM 8 9 9 13 91 35	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .10 .10
1 2 3 4 5	TRATION (MG/L) APR: 2 2 1 1 1 2	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00	CONCENTRATION (MG/L) MAY 5 4 5 27 45	1.0 1.0 1.0 1.0 5.0	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 5	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0	CONCENTRATION (MG/L) JULY 5 5 6 5 4	(TONS/DAY) 1.0 1.0 1.0 0.00 .00	CONCENTRATION (MG/L) AUGUST 17 15 15 14 17	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00	CONCENTRATION (MG/L) SEPTEM 8 9 9 13	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .2.0
1 2 3 4 5 6 7 8	TRATION (MG/L) APR: 2 2 1 1 1 1 2 2 1 1 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 5 4 4	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0	CONCENTRATION (MG/L) JULY 5 6 5 4 4 5 28	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0	CONCEN- TRATION (MG/L) AUGUST 17 15 15 14 17 13 12 13	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00	CONCENTRATION (MG/L) SEPTEM 8 9 9 13 91 35 12	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00
1 2 3 4 5 6 7 8 9	TRATION (MG/L) APR. 2 2 1 1 1 1 2 1 2 1 2	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 5 4 4 5	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0	CONCENTRATION (MG/L) JULY 5 5 6 5 4 4 5 28 135 180	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11	CONCENTRATION (MG/L) AUGUS: 17 15 15 14 17 13 12 13 12 13	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 13 91 35 12 9	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e54	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e21	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 4 4 5 7 8 6	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0	CONCENTRATION (MG/L) JULY 5 5 6 5 4 4 5 28 135 180 118 87	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11 15 8.0 5.0	CONCENTRATION (MG/L) AUGUST 17 15 15 14 17 13 12 13 11 14 e27	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 13 35 12 9 9 10 9	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 2 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32	CONCEN- TRATION (MG/L) JUNE 5 9 7 5 5 4 4 5 7 8 6 4 4	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0	CONCENTRATION (MG/L) JULY 5 5 6 5 4 4 5 28 135 180 118 87 76	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11 15 8.0 5.0	CONCENTRATION (MG/L) AUGUS: 17 15 15 14 17 13 12 13 11 14 e27 e29	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 13 91 35 12 9 9 10 10	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e54	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e21	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 4 4 5 7 8 6	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0	CONCENTRATION (MG/L) JULY 5 5 6 5 4 4 5 28 135 180 118 87	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11 15 8.0 5.0	CONCENTRATION (MG/L) AUGUST 17 15 15 14 17 13 12 13 11 14 e27	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 13 35 12 9 9 10 9	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 2 1 1 2 1 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18	CONCEN- TRATION (MG/L) JUNE 5 9 7 5 5 4 4 5 7 8 6 4 3 4	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) JULY 5 5 6 5 4 4 5 28 135 180 118 87 76 60 57	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11 15 8.0 5.0 4.0 3.0	CONCEN- TRATION (MG/L) AUGUS' 17 15 15 14 17 13 12 13 11 14 e27 e29 17 10	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 13 91 35 12 9 9 10 10 13 14	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24	1.0 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 4 4 5 7 8 6 4 3 4 4 5	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) JULY 5 5 6 5 4 4 5 28 135 180 118 87 76 60 57	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11 15 8.0 5.0 5.0 4.0 3.0 3.0 2.0	CONCEN- TRATION (MG/L) AUGUS: 17 15 15 14 17 13 12 13 11 14 e27 e29 17 10 11 13	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 13 35 12 9 10 9 10 13 14 13 6	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24 17	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18 e31 8.0 5.0	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 4 4 5 7 8 6 4 3 4 4 5 4 5 4	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) JULY 5 5 6 5 4 4 5 28 135 180 118 87 76 60 57 54 39 18	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11 15 8.0 5.0 4.0 3.0 3.0 2.0 1.0	CONCENTRATION (MG/L) AUGUS' 17 15 15 14 17 13 12 13 11 14 e27 e29 17 10 11 13 16	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 13 35 12 9 10 9 10 13 14 13 6 5	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24	1.0 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 4 4 5 7 8 6 4 3 4 4 5	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) JULY 5 5 6 5 4 4 5 28 135 180 118 87 76 60 57	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11 15 8.0 5.0 5.0 4.0 3.0 3.0 2.0	CONCEN- TRATION (MG/L) AUGUS: 17 15 15 14 17 13 12 13 11 14 e27 e29 17 10 11 13	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 13 35 12 9 10 9 10 13 14 13 6	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 2 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24 17 7 6	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18 e31 8.0 5.0 2.0	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 4 4 5 7 8 6 4 3 4 4 5 4 3 3	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) JULY 5 5 6 5 4 4 5 28 135 180 118 87 76 60 57 54 39 18 26 30	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11 15 8.0 5.0 4.0 3.0 3.0 2.0 1.0 1.0	CONCENTRATION (MG/L) AUGUST 17 15 15 14 17 13 12 13 13 11 14 e27 e29 17 10 11 13 16 12 11	(TONS/DAY) T 1.0 .00 .00 .00 .00 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 13 35 12 9 10 9 10 13 14 13 6 5 6 6	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24 17 7 6	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18 e31 8.0 5.0 2.0 2.0	CONCEN- TRATION (MG/L) JUNE 5 9 7 5 5 4 4 5 7 8 6 4 3 4 4 5 4 3	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) JULY 5 5 6 6 5 4 4 4 5 8 135 180 118 87 76 6 60 57 54 39 18 26 30 28	(TONS/DAY) 1.0 1.0 1.0 .00 .00 4.0 11 15 8.0 5.0 4.0 3.0 2.0 1.0 1.0 1.0 1.0	CONCENTRATION (MG/L) AUGUS: 17 15 15 14 17 13 12 13 11 14 e27 e29 17 10 11 13 16 12 11	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 13 35 12 9 9 10 9 10 10 13 14 13 66 56 66 66 66	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24 17 7 6 7 7 10	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18 e31 8.0 5.0 2.0 2.0 2.0 3.0	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 4 4 5 7 8 6 4 3 4 4 5 4 3 3 3	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) JULY 5 5 6 5 4 5 28 135 180 118 87 76 60 57 54 39 18 26 30 28 28 26 24	(TONS/DAY) 1.0 1.0 1.0 .00 .00 4.0 11 15 8.0 5.0 4.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0	CONCENTRATION (MG/L) AUGUST 17 15 15 14 17 13 12 13 13 11 14 e27 e29 17 10 11 13 16 12 11 11 11	(TONS/DAY) T 1.0 .00 .00 .00 .00 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 13 35 12 9 9 10 10 13 14 13 6 6 6 6 6 6	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24 17 7 6 7 7 10	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18 e31 8.0 5.0 2.0 2.0 2.0 2.0 3.0 2.0	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 4 4 5 7 8 6 4 3 3 4 4 4 5 3 3	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCEN- TRATION (MG/L) JULY 5 5 6 6 5 4 4 5 28 135 180 118 87 76 60 57 54 39 18 30 28 26 30 28 26 24 25	(TONS/DAY) 1.0 1.0 1.0 .00 .00 4.0 11 15 8.0 5.0 4.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	CONCEN- TRATION (MG/L) AUGUS: 17 15 15 14 17 13 12 13 11 14 e27 e29 17 10 11 13 16 12 11 11 11 11 11 11	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 13 355 12 9 9 10 9 10 13 14 13 66 56 66 66 66 66 66 66 66 66 66 66 66	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 5 5	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24 17 7 6 7 7 10 9 11	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18 e31 8.0 5.0 2.0 2.0 2.0 3.0 3.0	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 4 4 5 7 8 6 4 3 3 4 4 4 3 3 3 4	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) JULY 5 5 6 5 4 4 5 28 135 180 118 87 76 60 57 54 39 18 26 30 28 28 26 24 25 22	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11 15 8.0 5.0 4.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	CONCENTRATION (MG/L) AUGUST 17 15 15 14 17 13 12 13 13 11 14 e27 e29 17 10 11 13 16 12 11 11 11 10 9	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 13 35 12 9 9 10 10 13 14 13 6 6 6 6 6 6 6 6 6 6 6	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 2 1 1 2 1 1 1 2 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24 17 7 6 7 7 10 9 11	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18 e31 8.0 5.0 2.0 2.0 2.0 3.0 3.0	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 5 4 4 5 5 7 7 8 6 6 4 3 3 4 4 4 5 5 4 3 3 3 4 4 4 5 5 4 3 3 3 4 4 4 5 5 4 5 5 6 5 6 6 6 6 6 6 6 6 6 6	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCEN- TRATION (MG/L) JULY 5 5 6 6 5 4 4 5 28 135 180 118 87 76 60 57 54 39 18 26 30 28 26 24 25 22	(TONS/DAY) 1.0 1.0 1.0 .00 .00 4.0 11 15 8.0 5.0 4.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) AUGUS: 17 15 15 14 17 13 12 13 11 14 e27 e29 17 10 11 13 16 12 11 11 11 11 11 10 9	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 13 91 355 122 99 10 99 10 10 13 14 13 66 66 66 66 66 66 66 66 66 66 66 66 66	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24 17 7 6 7 7 10 9 11 11 11 9 8	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18 e31 8.0 5.0 2.0 2.0 2.0 3.0 3.0 3.0 2.0 2.0 2.0 3.0	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 4 4 4 5 7 8 6 4 3 4 4 5 4 3 3 4 4 4 2 2 4	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) JULY 5 5 6 5 4 4 5 28 135 180 118 87 76 60 57 54 39 18 26 30 28 28 26 24 25 22 20 19 18	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11 15 8.0 5.0 4.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCEN- TRATION (MG/L) AUGUS: 17 15 15 14 17 13 12 13 13 11 14 e27 e29 17 10 11 13 16 12 11 11 11 10 9 10 10 10 11	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 13 35 12 9 10 9 10 13 14 13 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24 17 7 6 7 7 10 9 11 11 9 8 7	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18 e31 8.0 2.0 2.0 2.0 2.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	CONCEN- TRATION (MG/L) JUNE 5 9 7 5 5 5 4 4 5 5 7 7 8 6 6 4 4 3 3 4 4 4 5 4 4 3 3 3 4 4 4 4 3 3 3 4 4 4 5 5 4 4 5 5 7 7 8 8 6 6 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCEN- TRATION (MG/L) JULY 5 5 6 6 5 4 4 4 5 8 135 180 118 87 76 60 57 54 39 18 26 30 28 26 24 25 22 20 19 18 17	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11 15 8.0 5.0 4.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) AUGUS: 17 15 15 14 17 13 12 13 11 14 e27 e29 17 10 11 13 16 16 12 11 11 11 11 11 10 9 10 10 10 11 10	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 13 91 355 122 9 9 10 9 10 10 13 14 13 66 66 66 66 66 66 66 66 66 66 66 66 66	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24 17 7 6 7 7 10 9 11 11 11 9 8	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18 e31 8.0 5.0 2.0 2.0 2.0 3.0 3.0 3.0 2.0 2.0 2.0 3.0	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 4 4 4 5 7 8 6 4 3 4 4 5 4 3 3 4 4 4 2 2 4	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) JULY 5 5 6 5 4 4 5 28 135 180 118 87 76 60 57 54 39 18 26 30 28 28 26 24 25 22 20 19 18	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11 15 8.0 5.0 4.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCEN- TRATION (MG/L) AUGUS: 17 15 15 14 17 13 12 13 13 11 14 e27 e29 17 10 11 13 16 12 11 11 11 10 9 10 10 10 11	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 13 35 12 9 10 9 10 13 14 13 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24 17 7 6 7 7 10 9 11 11 9 8 7 7 7	(TONS/DAY) 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18 e31 8.0 2.0 2.0 2.0 2.0 3.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	CONCEN- TRATION (MG/L) JUNE 5 9 7 7 5 5 5 4 4 5 5 7 7 8 6 6 4 3 3 3 4 4 4 4 3 3 3 3 4 4 4 5 5 6 6	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) JULY 5 5 6 6 5 4 4 4 5 8 135 180 118 87 76 6 60 57 54 39 18 26 30 28 26 24 25 22 20 19 18 17 17 24	(TONS/DAY) 1.0 1.0 1.0 .00 .00 .00 4.0 11 15 8.0 5.0 4.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) AUGUS: 17 15 15 14 17 13 12 13 13 11 14 e27 e29 17 10 11 13 16 12 11 11 11 11 11 11 10 9 10 10 10 8 8	(TONS/DAY) T 1.0 .00 .00 .00 .00 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 13 91 355 122 9 9 10 9 10 10 13 14 13 66 66 66 66 66 66 66 66 66 66 66 66 66	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	TRATION (MG/L) APR: 2 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1	(TONS/DAY) IL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.	CONCENTRATION (MG/L) MAY 5 4 5 27 45 23 25 41 e67 e64 e54 e61 e67 e68 e42 e63 24 17 7 6 7 10 9 11 11 9 8 7 7	(TONS/DAY) 1.0 1.0 1.0 1.0 5.0 6.0 15 e26 e24 e21 e24 e32 e31 e18 e31 e31 e.0 2.0 2.0 2.0 3.0 2.0 2.0 3.0 2.0 2.0 2.0 2.0 2.0	CONCENTRATION (MG/L) JUNE 5 9 7 5 5 4 4 5 7 8 6 4 3 3 4 4 4 5 4 3 3 3 4 4 5 6	(TONS/DAY) 2.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) JULY 5 5 6 6 5 4 4 5 28 135 180 118 87 76 60 57 54 39 18 26 30 28 26 24 25 22 20 19 18 17 17	(TONS/DAY) 1.0 1.0 1.0 .00 .00 4.0 11 15 8.0 5.0 4.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	CONCENTRATION (MG/L) AUGUS: 17 15 15 15 14 17 13 12 13 11 14 e27 e29 17 10 11 13 16 12 11 11 11 10 9 10 10 11 10 8	(TONS/DAY) T 1.0 .00 .00 .00 1.0 .00 .00 .00 .00 .0	CONCENTRATION (MG/L) SEPTEM 8 9 9 9 9 13 35 12 9 9 9 10 10 13 14 13 66 66 66 66 66 66 66 66 66 66 66 66 66	(TONS/DAY) BER .00 .00 .00 .00 .00 .00 .00 .00 .00 .

e Estimated.

06279940 NORTH FORK SHOSHONE RIVER AT WAPITI, WY

LOCATION.--Lat $44^{\circ}28^{\circ}10^{\circ}$, long $109^{\circ}25^{\circ}49^{\circ}$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec.19, T.52 N., R.104 W., Park County, Hydrologic Unit 10080012, on left bank 1,000 ft downstream from bridge on U.S. Highway 14-20, 0.3 mi upstream from Jim Creek, and 0.3 mi downstream from Wapiti.

DRAINAGE AREA. -- 699 mi².

PERIOD OF RECORD. -- October 1989 to current year.

(WY)

GAGE.--Water-stage recorder. Elevation of gage is 5,580 ft above sea level, from topographic map.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Diversion for irrigation of about 1,500 acres upstream from station. Bureau of Reclamation data collection platform with satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 9, 1981, at station 06280000 North Fork Shoshone River near Wapiti, 4.2 mi downstream, reached a discharge of 20,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY NOV DEC JAN FEB MAY AUG SEP e100 e90 e96 e100 e100 e100 e110 e100 e100 210 e100 e86 e94 e96 e150 e130 e96 13 211 178 261 e140 e110 e96 e130 e130 e98 e120 e140 e98 e135 e130 e98 e150 e120 e98 e150 e150 e130 e130 e96 e100 e100 1230 525 234 213 e160 e120 e110 e160 e110 e110 e150 e120 e100 e150 e150 122 173 e110 e100 e130 e100 e150 e100 e96 228 e160 e98 e96 e140 e96 e94 e130 e92 e150 e94 ___ TOTAL 98.6 MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1990 - 2001, BY WATER YEAR (WY) ME AN MAX (WY) MTN 98.6

06279940 NORTH FORK SHOSHONE RIVER AT WAPITI, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	JDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEARS	3 1990 - 2001
ANNUAL TOTAL	244340		183293			
ANNUAL MEAN	668		502		844	
HIGHEST ANNUAL MEAN					1324	1997
LOWEST ANNUAL MEAN					502	2001
HIGHEST DAILY MEAN	4600	May 28	3740	May 15	8940	Jun 10 1997
LOWEST DAILY MEAN	98	Dec 30	86	Feb 8	74	Dec 23 1996
ANNUAL SEVEN-DAY MINIMUM	112	Dec 24	95	Feb 8	81	Dec 19 1996
MAXIMUM PEAK FLOW			4510	May 14	11000 ^a h	Jun 9 1996
MAXIMUM PEAK STAGE			6.41	May 14	9.54	Jun 13 1991
ANNUAL RUNOFF (AC-FT)	484600		363600		611700	
10 PERCENT EXCEEDS	1970		1450		2600	
50 PERCENT EXCEEDS	216		201		266	
90 PERCENT EXCEEDS	135		100		135	

a Gage height, 8.63 ft, from floodmarks. b Discharge 9,460 ft $^3/\mathrm{s}$. e Estimated.

06280300 SOUTH FORK SHOSHONE RIVER NEAR VALLEY, WY

LOCATION.--Lat $44^{\circ}12^{\circ}30^{\circ}$, long $109^{\circ}33^{\circ}15^{\circ}$, in NE $^{1}/_{4}$ NE $^{1}/_{4}$ sec.24, T.49 N., R.106 W., Park County, Hydrologic Unit 10080013, Shoshone National Forest, on left bridge abutment of U.S. Forest Service bridge, 0.4 mi downstream from Boulder Creek, 3.2 mi northeast of Valley, and 34 mi southwest of Cody.

DRAINAGE AREA. -- 297 mi².

PERIOD OF RECORD. -- October 1956 to September 1958, October 1959 to current year.

REVISED RECORDS. -- WRD WY 1974: 1963.

GAGE.--Water-stage recorder. Elevation of gage is 6,200 ft above sea level, from topographic map. Prior to Nov. 22, 1961, at site 75 ft upstream at same datum.

REMARKS.--Records fair. Diversions for irrigation of about 450 acres upstream from station. Data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY AUG SEP 74 13 74 659 147 75 70 152 724 132 133 758 132 74 ___ TOTAL 74.0 66.5 73.1 MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1957 - 2001, BY WATER YEAR (WY) ME AN 83.5 76.9 73.2 80.1 MAX 93.8 (WY) MTN 92.5 70.6 56.2 55.2 54.8 59.8 69.6 (WY)

06280300 SOUTH FORK SHOSHONE RIVER NEAR VALLEY, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR:	S 1957 - 2001
ANNUAL TOTAL	123400		90403			
ANNUAL MEAN	337		248		412	
HIGHEST ANNUAL MEAN					609	1997
LOWEST ANNUAL MEAN					221	1977
HIGHEST DAILY MEAN	2270	Jun 7	1590	May 16	6100	Jun 9 1981
LOWEST DAILY MEAN	57	Jan 30,31	45	Feb 8	31	Dec 21 1998
ANNUAL SEVEN-DAY MINIMUM	63	Jan 27	60	Feb 25	40	Dec 18 1990
MAXIMUM PEAK FLOW			2070	May 16	10000 _	Jun 9 1981
MAXIMUM PEAK STAGE			6.74	May 16	9.24 ^a	Jun 9 1981
ANNUAL RUNOFF (AC-FT)	244800		179300	-	298400	
10 PERCENT EXCEEDS	1090		730		1250	
50 PERCENT EXCEEDS	140		109		139	
90 PERCENT EXCEEDS	74		66		68	

a From floodmarks.

06281000 SOUTH FORK SHOSHONE RIVER ABOVE BUFFALO BILL RESERVOIR, WY

LOCATION.--Lat $44^{\circ}25^{\circ}09^{\circ}$, long $109^{\circ}15^{\circ}26^{\circ}$, in lot 5, $SE^{1}/_{4}$ NE $^{1}/_{4}$ SE $^{1}/_{4}$ sec. 5, T.51 N., R.103 W., Park County, Hydrologic Unit 10080013, on right bank at old diversion structure 0.2 miles downstream from Cody Canal diversion, 1 mile upstream from normal pool of Buffalo Bill Reservoir at elevation 5,364 ft, and 12.5 miles southwest of Cody.

DRAINAGE AREA.--585 mi².

PERIOD OF RECORD.--May to November 1903, May 1905 to September 1908, January 1921 to September 1926, October 1973 to current year (gage heights only June to September 1908). No winter records 1906, 1908, 1922. Published as "at Marquette" 1903, 1905-8, and as Shoshone River above Shoshone Reservoir 1921-26.

REVISED RECORDS --WSP 1309: 1907

GAGE.--Water-stage recorder. Elevation of gage is 5,440 ft above sea level, from topographic map. Apr. 26 to Nov. 30, 1903, and May 1905 to May 30, 1908, nonrecording gages at sites within about 6.0 mi downstream at different datums. Prior to Oct. 3, 1989, recording gage at site 1.1 mile downstream at different datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Diversions for irrigation of about 11,000 acres upstream from station. Bureau of Reclamation data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY DEC OCT NOV JAN FEB APR MAY AUG SEP e86 e82 .76 .66 .75 e88 e86 .62 e90 e90 3.6 e98 .71 e96 2.8 .76 e100 7.7 .74 .71 e100 e100 .69 1.2 6.4 17 .67 1.6 e90 e70 e88 .75 1.0 e90 1.1 .86 .77 e90 .81 13 50 448 .74 e90 e90 .81 e94 e92 .80 e100 e92 e110 .97 .75 .70 e100 e94 4.1 21 574 4.7 1.6 .73 .71 .75 .75 e110 e96 e110 e96 e110 e96 1.1 .68 e100 e100 .93 .67 e98 .89 .80 .65 2.9 2.7 e98 .99 .77 .74 .56 .59 .92 e96 e100 e94 .89 .73 .39 .83 e98 e90 e2.7 .36 e94 e90 e3.0 .79 .71 .35 .73 .75 .74 e94 e90 e4 0 .35 e4.0 .32 e84 .37 e92 e1.0 .84 .74 ---e65 .78 .75 .46 .74 TOTAL 1587.1 15971.5 2469.41 22.91 21.60 MEAN 65.5 99.1 92.1 98.4 52.9 .74 MAX 1.1 1.6 1.0 MIN 2.8 .67 .62 .32 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY) MEAN 84.5 MAX (WY) MTN 18.0 71.2 54.5 51.9 72.9 76.8 52.9 18.9 .039(WY)

06281000 SOUTH FORK SHOSHONE RIVER ABOVE BUFFALO BILL RESERVOIR, WY--Continued

SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN	FOR 2000 CALENDAR 94040.8 257	YEAR	FOR 2001 WAT 53874.52	ER YEAR	WATER YEAR 378	S 1903 - 2001
HIGHEST ANNUAL MEAN					705	1907
LOWEST ANNUAL MEAN					148	2001
HIGHEST DAILY MEAN	2600 N	lay 29	1280	May 15,16	7370	Jun 9 1981
LOWEST DAILY MEAN	1.3 S	Sep 15-18	.32	Sep 28	.00	Several days, 1992-1993
ANNUAL SEVEN-DAY MINIMUM	1.6 8	Sep 13	.37	Sep 24	.00	Sep 15 1992
MAXIMUM PEAK FLOW			1850	May 16	9960	Jun 9 1981
MAXIMUM PEAK STAGE			6.78	May 16	9.41 ^a	Jun 9 1981
ANNUAL RUNOFF (AC-FT)	186500		106900		273900	
10 PERCENT EXCEEDS	783		434		1250	
50 PERCENT EXCEEDS	110		94		125	
90 PERCENT EXCEEDS	2.5		.74		29	

Site and datum then in use. Estimated.

06281500 BUFFALO BILL RESERVOIR NEAR CODY, WY

LOCATION.--Lat $44^{\circ}30^{\circ}05^{\circ}$, long $109^{\circ}11^{\circ}00^{\circ}$, in NE $^{1}/_{4}$ sec.12, T.52 N., R.103 W., Park County, Hydrologic Unit 10080013, at dam on Shoshone River, 5.0 mi upstream from Trail Creek, and 6.0 mi southwest of Cody.

DRAINAGE AREA. -- 1,498 mi².

PERIOD OF RECORD.--May to July 1909, January 1910 to current year. Monthend contents only prior to October 1938, published in WSP 1309. Prior to October 1944, published as Shoshone Reservoir near Cody.

GAGE.--Water-stage recorder. Datum of gage is sea level (Bureau of Reclamation datum). Prior to July 8, 1959, nonrecording gage at same datum.

REMARKS.--Reservoir is formed by masonry dam completed by Bureau of Reclamation in 1909. Height of dam was increased 25 ft, effective 1992, increasing capacity to 604,800 acre-ft, elevation 5,393.50 ft, from 424,000 acre-ft, elevation 5,360.00 ft. Crest of dam is at elevation 5,395.00 ft. Dead storage negligible. Figures given herein represent total contents. Water used for power generation and irrigation of lands east of Cody.

COOPERATION. -- Records provided by Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 647,000 acre-ft, July 30, 1996, elevation, 5,390.53 ft; minimum daily contents, 19,000 acre-ft, Jan 23-25, 1941, elevation, 5,225.3 ft.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 464,000 acre-ft, June 29, 30, maximum daily elevation, 5,369.46 ft, July 1; minimum daily contents, 267,000 acre-ft, Sept. 30, minimum daily elevation, 5,337.62 ft, Sept. 30.

Capacity table (elevation in feet, and contents, in acre-feet)

5,335 251,000 5,365 429,000 5,345 304,000 5,375 500,000 5,355 364,000

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	400000	390000	385000	379000	370000	362000	358000	353000	410000	464000	401000	320000
2	400000	391000	385000	378000	370000	362000	358000	352000	414000	463000	398000	318000
3	399000	390000	385000	378000	369000	362000	358000	351000	416000	463000	396000	313000
4	398000	390000	384000	378000	369000	361000	358000	349000	417000	461000	393000	313000
5	397000	390000	384000	378000	369000	361000	358000	348000	417000	460000	391000	310000
6	396000	390000	384000	378000	369000	361000	358000	347000	416000	459000	388000	308000
7	395000	390000	384000	377000	369000	361000	357000	346000	416000	457000	385000	306000
8	394000	390000	384000	377000	368000	361000	357000	346000	416000	455000	383000	304000
9	393000	390000	384000	377000	368000	360000	357000	346000	417000	454000	380000	302000
10	392000	389000	383000	376000	368000	360000	357000	345000	420000	453000	377000	300000
11	391000	389000	383000	376000	367000	360000	356000	346000	422000	451000	375000	299000
12	391000	389000	383000	376000	367000	360000	356000	348000	424000	451000	372000	297000
13	391000	389000	383000	376000	367000	360000	356000	351000	427000	449000	369000	295000
14	391000	388000	383000	375000	366000	360000	356000	357000	431000	447000	367000	294000
15	390000	388000	382000	375000	366000	359000	356000	363000	434000	445000	364000	292000
16 17 18 19 20	390000 390000 390000 390000 390000	388000 388000 387000 387000 387000	382000 382000 382000 381000 381000	375000 374000 374000 374000 374000	366000 366000 365000 365000	359000 359000 359000 358000 358000	355000 355000 355000 356000 356000	369000 372000 374000 375000 377000	438000 441000 444000 447000 449000	442000 440000 438000 435000 432000	362000 359000 357000 354000 352000	291000 289000 287000 286000 284000
21	390000	387000	381000	373000	364000	358000	355000	377000	451000	430000	349000	282000
22	390000	386000	381000	373000	364000	358000	354000	377000	454000	427000	347000	281000
23	390000	386000	380000	373000	364000	358000	353000	378000	456000	425000	344000	279000
24	390000	386000	380000	373000	364000	358000	352000	380000	459000	422000	341000	278000
25	390000	386000	380000	372000	363000	359000	350000	384000	461000	420000	339000	276000
26 27 28 29 30 31	390000 390000 390000 390000 390000	386000 386000 386000 386000 385000	380000 380000 380000 379000 379000 379000	372000 372000 371000 371000 371000 370000	363000 363000 362000 	358000 359000 358000 358000 358000 358000	349000 350000 351000 352000 352000	389000 393000 398000 401000 404000 407000	462000 463000 464000 464000 	417000 414000 412000 409000 406000 403000	336000 333000 330000 328000 325000 323000	274000 272000 271000 269000 267000
MAX MIN (#) (*)	400000 390000 5358.58 -10,000	391000 385000 5357.82 -5,000		379000 370000 5,355.50 -9,000			5,352.57	407000 345000 5,361.15 +55,000				

WTR YR 2001 MAX 464,000 MIN 267,000 (*) -227,000

^(#) Elevation, in feet, at end of month.

^(*) Change in contents, in acre-feet.

06281500 BUFFALO BILL RESERVOIR NEAR CODY, WY--Continued

06281700 SHOSHONE RIVER ABOVE DEMARIS SPRINGS, NEAR CODY, WY

LOCATION.--Lat $44^{\circ}30^{\circ}39^{\circ}$, long $109^{\circ}08^{\circ}47^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec.5, T.52 N., R.102 W, Park County, Hydrologic Unit 10080014, at bridge on State Highway 16, 1.9 mi downstream from Buffalo Bill Reservoir, and 3.8 mi west of Cody city limits.

PERIOD OF RECORD.--October 1987 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			WAIEK-	QUALITI L	AIA, WAIE	R IEAR OC	TOBER 200	O IO SEPI	EMBER 200	1			
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
DEC 20 FEB	1230	370	2.1	635	15.5	133		205	-6.0	1.5	60	17.6	3.98
28 MAY	1530	333	2.5		11.2		7.2	266	8.0	2.0	99	28.6	6.64
16	0930	1020	3.0	629	10.5	108	7.0	210	22.0	8.0	75	21.4	5.12
JUN 18	1540	450	12	615	10.8	122	7.0	175	18.0	11.0	48	13.8	3.33
JUL 31	1050	1030	6.7	632	10.9	124	7.1	169	24.5	12.5	57	16.1	3.98
AUG 08 29	1800 1045	1000 1010	7.9 7.9	638 636	9.5 10.0	108 119	7.1 6.9	177 171	26.0 19.5	13.0 15.0	59 58	16.7 16.6	4.17 4.04
SEP 19	1825	678	5.2	632	6.8	83		205	20.5	15.5	71	20.2	5.01
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
DEC 20	.92	.6	11.2	78	1.3	E.2	13.5	27.5	.17	123	123	<.041	.12
FEB 28	1.61	.8	17.6	97	1.8	.2	13.9	38.2	.23	150	167	<.041	.12
MAY 16	1.00	.8	15.5	78	1.6	E.1	12.4	27.9	.18	364	132	<.040	E.08
JUN 18	.89	.6	9.7	66	1.0	E.1	12.7	19.9	.14	123	101	<.040	.12
JUL 31	.97	.7	11.3	63	1.0	E.1	12.6	20.8	.14	290	104	<.040	.10
AUG 08 29	1.16 .98	.6 .7	10.9 11.8	65 63	1.1	E.1 E.1	12.8 12.3	22.9 21.6	.15 .14	294 289	109 106	E.035	.09
SEP 19	1.32	.7	14.0	74	1.5	.2	12.7	27.5	.17	232	127	<.040	.14
			DA	TE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)				
			DEC 2 FEB	0	<.047	E.004	<.060	E.016	<.060				
				8	<.047	<.006	<.060	E.016	E.045				
				6	<.050	<.006	<.060	.025	<.060				
				8	<.050	<.006	.094	E.012	.061				
				1	E.045	<.006	<.060	.020	E.053				
			0 2	8 9	.047 E.023	<.006 <.006	E.041 E.038	.023 E.033	E.049 E.046				
			SEP 1	9	E.030	<.006	E.031	.022	E.046				

 $^{{\}tt E}$ -- Estimated value.

06282000 SHOSHONE RIVER BELOW BUFFALO BILL RESERVOIR, WY

LOCATION.--Lat 44°31'00", long 109°05'50", in lot 71, NE¹/₄ sec.3, T.52 N., R.102 W., Park County, Hydrologic Unit 10080014, on left bank 0.5 mi downstream from Trail Creek, 1.0 mi west of Cody city limits, and 5.5 mi downstream from Buffalo Bill Reservoir

DRAINAGE AREA.--1,538 mi². Area at site prior to Oct. 1, 1949, 1,502 mi².

PERIOD OF RECORD.--January 1921 to current year. Prior to October 1944, published as "below Shoshone Reservoir".

GAGE.--Water-stage recorder. Elevation of gage is 4,900 ft above sea level, from topographic map. Prior to Oct. 1, 1949, at site 2.5 mi upstream at different datum.

REMARKS.--Records good. Flow completely regulated by Buffalo Bill Reservoir (station 06281500). Diversions upstream from station for irrigation of about 56,100 acres, of which about 37,900 acres are downstream from station. Diversion, 2.1 mi upstream, to Heart Mountain Canal began in 1943. Bureau of Reclamation data collection platform with satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum flood since construction of Buffalo Bill Reservoir in 1909, 18,700 $\rm ft^3/s$, June 15, 1918, by computation of flow over Corbett Dam, 10 mi downstream.

		DISCHARO	E, CUBI	C FEET PE		WATER YE Y MEAN VA	EAR OCTOBE	R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	727 737	423 432	431 433	425 432	402 402	383 379	377 378	1030 1040	1000 1000	1060 1070	1030 1040	1040 1060
3	672	429	435	430	401	377	386	1040	996	1060	1040	1060
4	636	427	438	436	401	378	386	1040	979	1110	1050	998
5	636	442	435	426	406	374	385	1120	949	1110	1070	971
6	623	443	438	426	405	376	383	1090	914	1130	1060	966
7	589	441	441	426	400	393	378	1100	898	1130	1040	929
8	589	444	440	425	394	393	387	1110	891	1130	1040	886
9	593	446	438	424	393	385	385	1090	887	1120	1090	851
10	521	454	438	422	394	383	378	1100	880	1090	1120	773
11	415 389	454	430	423	390	377	375	1100	924	1080	1100	770
12		454	431 426	425	396 400	382 389	377	1090	953 728	1080	1100 1110	758 769
13 14	392 396	455 469	426	424 428	389	389 379	376 377	1090 1090	728 358	1110 1100	1070	769 774
15	401	457	428	429	388	392	382	1080	352	1130	1070	772
16	403	459	434	426	394	394	384	1070	406	1130	1090	772
17	401	459	433	427	397	391	386	1070	437	1110	1100	771
18	399	459	437	408	390	392	384	1090	442	1070	1100	756
19	403	458	438	398	389	393	457	1080	445	1080	1090	740
20	403	462	434	411	392	386	559	1060	495	1080	1090	741
21	404	461	432	414	393	384	579	1070	736	1090	1040	723
22	414	461	434	403	416	382	577	1010	834	1090	1060	717
23	415	423	433	409	399	380	634	1010	946	1090	1070	718
24	418	414	433	418	386	392	795	1010	1070	1090	1050	717
25	410	420	433	413	389	382	815	1020	1070	1100	1050	718
26	411	414	430	409	388	375	888	1010	1170	1100	1050	718
27	423	414	429	407	389	378	937	1030	1160	1100	1060	720
28 29	423 423	415 440	426 427	407 407	382	380 382	970 1050	1080 1040	1110 1120	1100 1070	1060 1050	719 718
30	423	433	427	404		382	1070	1030	1120	1070	1050	710
31	424		426	402		386		1020		1060	1050	
TOTAL	14914	13262	13414	12964	11065	11899	16195	32910	25250	33950	33090	24344
MEAN	481	442	433	418	395	384	540	1062	842	1095	1067	811
MAX	737	469	441	436	416	394	1070	1120	1170	1130	1120	1060
MIN	389	414	426	398	382	374	375	1010	352	1060	1030	717
AC-FT	29580	26310	26610	25710	21950	23600	32120	65280	50080	67340	65630	48290
STATIST	TICS OF N	MONTHLY MEAN	N DATA F	OR WATER	YEARS 194	3 - 2001,	, BY WATER	YEAR (WY	() *			
MEAN	680	526	525	494	492	523	848	1452	2451	2570	1307	940
MAX	1198	966	944	894	904	1638	3013	3162	6440	6556	3397	2113
(WY)	1953	1952	1951	1952	1997	1997	1997	1997	1943	1943	1958	1958
MIN	187	128	111	115	65.4	72.5	113	827	807	1017	685	582
(WY)	1989	1989	1989	1989	1959	1959	1959	1995	1992	1993	1977	1988

06282000 SHOSHONE RIVER BELOW BUFFALO BILL RESERVOIR, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WA	TER YEAR	WATER YEAR	S 1943 - 2001*
ANNUAL TOTAL	279879		243257			
ANNUAL MEAN	765		666		1070 ^a	
HIGHEST ANNUAL MEAN					1764	1943
LOWEST ANNUAL MEAN					556	1988
HIGHEST DAILY MEAN	1270	May 17	1170	Jun 26	15100	Jun 9 1981
LOWEST DAILY MEAN	389	Oct 12	352	Jun 15	59	Nov 19 1933#
ANNUAL SEVEN-DAY MINIMUM	397	Oct 12	378	Feb 28	64	Jan 21 1959
MAXIMUM PEAK FLOW			3120	Jun 13	17300	Jun 9 1981#
MAXIMUM PEAK STAGE			6.63	Jun 13	11.57	Jun 9 1981
ANNUAL RUNOFF (AC-FT)	555100		482500		775400	
10 PERCENT EXCEEDS	1230		1090		1860	
50 PERCENT EXCEEDS	461		446		840	
90 PERCENT EXCEEDS	410		385		312	

- For period following Heart Mountain Diversion. See REMARKS. For period of record through 2001. Average discharge (water years 1922-1942) prior to Heart Mountain Diversion 1,256 $\rm ft^3/s$.

06284500 BITTER CREEK NEAR GARLAND, WY

LOCATION.--Lat $44^{\circ}45^{\circ}13^{\circ}$, long $108^{\circ}35^{\circ}29^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.7, T.55 N., R.97 W., Big Horn County, Hydrologic Unit 10080014, 100 ft downstream from bridge on county road, 1.0 mi upstream from mouth, 4.0 mi southeast of Garland, and 5.0 mi southwest of Byron.

DRAINAGE AREA. -- 80.5 mi².

PERIOD OF RECORD.--Water years 1951-53, 1958-61, 1969 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1969 to September 1983. WATER TEMPERATURES: July 1969 to September 1983.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE TIMI	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
DEC 21 1045	5 20	661	14.9	118	8.6	1260	-9.0	.00	.129	5.20	.031	.029
FEB												
28 1140	32	658	11.9	95	8.4	1240	-1.0	.00	.059	5.44	.049	.055
MAY												
16 0720	291	652	8.9	94	7.9	610	19.0	11.0	.081	2.23	.043	.128
JUL 31 1310	343	654	8.4	102	8.0	629	26.0	17.0	<.040	2.63	.007	.061

		COLI- FORM,
DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	
DEC 21	640	600
28	E15k	E14k
МАҮ 16	540	600
31	340	300

E -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

06285100 SHOSHONE RIVER NEAR LOVELL, WY

LOCATION.--Lat $44^{\circ}50^{\circ}19^{\circ}$, long $108^{\circ}26^{\circ}04^{\circ}$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.17, T.56 N., R.96 W., Big Horn County, Hydrologic Unit 10080014, on left bank 20 ft downstream from bridge on County Road 9 and 1.5 mi west of Lovell.

DRAINAGE AREA. -- 2,350 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1966 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 3,850 ft above sea level, from topographic map. Prior to Oct. 1, 1976, at site 500 ft downstream, at datum 2.00 ft higher. Oct. 1, 1976 to Sept. 30, 1980, at site 500 ft downstream, at datum 1.00 ft higher. Oct. 1, 1981 to Nov. 13, 1986, at site 500 ft downstream at same datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Flow regulated by Buffalo Bill Reservoir (station 06281500). Natural flow of stream affected by storage reservoirs, power development, diversions upstream from station for irrigation of about 143,000 acres, of which about 8,000 acres are downstream from station, and return flow from irrigated areas. Data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	628	590	621	579	547	518	545	e360	289	365	284	342
2	e760	604	616	580	553	511	532	e340	289	328	246	372
3	e690	591	619	e580	552	514	533	e350	366	247	240	427
4	e620	587	613	e570	547	509	534	e350	486	231	238	440
5	647	591	620	e580	559	514	533	e340	470	290	267	358
6	669	681	607	582	569	539	530	e340	419	213	293	444
7	612	719	621	577	520	592	523	e310	363	179	236	838
8	571	715	618	e560	e500	651	542	293	319	182	227	692
9	568	722	613	e540	e450	671	571	258	296	222	221	625
10	591	718	603	e560	e400	612	563	267	287	272	253	583
11	551	e700	494	569	e500	572	475	238	289	315	261	493
12	917	e640	319	577	e520	555	416	250	297	246	272	487
13	898	e600	328	573	e520	559	406	258	5080	235	308	439
14	696	e620	e360	572	e540	554	399	262	5710	245	317	431
15	636	e660	e430	577	e520	538	396	266	1240	284	295	476
16	612	e680	e470	579	e520	551	399	303	675	365	316	493
17	580	691	e540	e520	e500	550	402	288	540	320	327	505
18	551	694	e520	e540	e520	548	423	293	460	310	341	520
19	529	691	e620	554	e520	554	e360	311	412	292	384	541
20	513	686	e580	548	e580	566	e330	334	288	278	386	516
21	506	699	e550	564	e560	564	366	418	237	290	322	501
22	471	678	e500	562	e540	552	487	392	342	300	279	475
23	477	658	e540	533	e560	536	515	321	317	311	303	493
24	499	631	e560	554	e560	524	383	267	408	284	249	480
25	617	621	e580	563	e560	536	402	238	484	275	255	457
26 27 28 29 30 31	561 504 554 603 580 583	622 623 617 612 646	e580 e580 e580 582 589 582	556 550 e540 e540 e550 e560	e540 e520 e500 	530 540 532 532 537 537	e350 e340 e340 e340 e350	249 261 390 391 314 302	393 459 421 374 368	266 283 307 319 337 321	317 345 327 253 268 299	450 412 396 370 354
TOTAL	18794	19587	17035	17389	14777	17098	13285	9554	22378	8712	8929	14410
MEAN	606	653	550	561	528	552	443	308	746	281	288	480
MAX	917	722	621	582	580	671	571	418	5710	365	386	838
MIN	471	587	319	520	400	509	330	238	237	179	221	342
AC-FT	37280	38850	33790	34490	29310	33910	26350	18950	44390	17280	17710	28580
STATIST	TICS OF	MONTHLY N	MEAN DATA	FOR WATER	YEARS 19	67 - 2001,	, BY WATER	R YEAR (W)	()			
MEAN	773	723	655	588	610	683	818	897	1903	1784	742	779
MAX	1251	1146	1168	1065	1139	1951	3353	2925	4935	4686	1305	1354
(WY)	1972	1969	1969	1973	1973	1997	1997	1996	1981	1982	1982	1991
MIN	369	297	306	226	228	243	248	193	203	149	207	245
(WY)	1989	1986	1995	1991	1989	1995	1981	1977	1977	1977	1977	1977

06285100 SHOSHONE RIVER NEAR LOVELL, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENI	DAR YEAR	FOR 2001 WA	TER YEAR	WATER YEAR	S 1967 - 2001
ANNUAL TOTAL	234372		181948			
ANNUAL MEAN	640		498		914	
HIGHEST ANNUAL MEAN					1659	1997
LOWEST ANNUAL MEAN					359	1988
HIGHEST DAILY MEAN	1760	May 18	5710	Jun 14	15200	Jun 10 1981
LOWEST DAILY MEAN	218	Jul 14	179	Jul 7	27	May 31 1977
ANNUAL SEVEN-DAY MINIMUM	279	Jul 11	223	Jul 3	48_	May 30 1977
MAXIMUM PEAK FLOW			9680	Jun 13	16400 ^a	Jun 10 1981
MAXIMUM PEAK STAGE			11.27	Jun 13	11.27	Jun 13 2001
ANNUAL RUNOFF (AC-FT)	464900		360900		661800	
10 PERCENT EXCEEDS	857		624		1510	
50 PERCENT EXCEEDS	600		514		671	
90 PERCENT EXCEEDS	470		272		333	

a Gage height, 9.16 ft, site then in use, at present datum. e $\mbox{\footnote{stimated}}.$

06285100 SHOSHONE RIVER NEAR LOVELL, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1967-97, October 1999 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1966 to September 1983. WATER TEMPERATURES: October 1966 to September 1983.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
DEC 21	1405	549	666	14.9	117	8.4	834	-4.0	.00	<.041	.913	.008	<.018
FEB 28	0940	481	665	10.9	86	8.2	784	-2.5	.00	<.041	.530	E.005	<.018
MAY 15	1915	279	659	8.4	102	8.4	719	20.0	17.5	<.040	1.75	.038	.065
JUL	1730	300	658	9.5	128	8.5	737	21.5	22.5	<.040	1.53	.015	.029

DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	0.7 UM-MF (COLS. 100 MI
DEC 21 FEB 28 MAY 15 JUL	E8k E11k 350	E12k E11k 430
30	260	470

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

185

06286400 BIGHORN LAKE NEAR ST. XAVIER, MT

LOCATION.--Lat 45 18'27",long 107 57'26",in $SW^1/_4$ $SE^1/_4$ sec.18, T.6 S., R.30 E., Big Horn County, Hydrologic Unit 10080010, in block 13 of Yellowtail Dam on Bighorn River, 1.3 mi upstream from Grapevine Creek, 15.5 mi southwest of St. Xavier, and at river mile 86.6.

DRAINAGE AREA. -- 19,626 mi².

PERIOD OF RECORD.--November 1965 to current year (monthend contents only). Prior to October 1969, published as "Yellowtail Reservoir." Records of daily elevations and contents on file at the U. S. Geological Survey office in Helena, Montana.

GAGE.--Water-stage recorder in powerhouse control room. Datum of gage is referenced to sea level (levels by Bureau of Reclamation)

REMARKS.--Reservoir is formed by thin concrete-arch dam; construction began in 1961; completed in 1967. Storage began Nov. 3, 1965. Usable capacity, 1,312,000 acre-ft, between elevation 3,296.50 ft, river outlet invert, and 3,657.00 ft, top of flood control. Elevation of spillway crest, 3,593.00 ft. Normal maximum operating level, 1,097,000 acre-ft, elevation, 3,640.00 ft. Minimum operating level, 483,400 acre-ft, elevation, 3,547.00 ft. Dead storage, 16,010 acre-ft, below elevation 3,296.50 ft. Figures given herein represent usable contents. Water is used for power production, flood control, irrigation, and recreation.

COOPERATION.--Elevations and capacity table furnished by Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,346,000 acre-ft, July 6, 1967, elevation, 3,656.43 ft; minimum since first filling, 641,900 acre-ft, Apr. 14, 1989, elevation 3,583.30 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 900,000 acre-ft, Nov. 8-10, elevation, 3,625.21 ft; minimum, 739,300 acre-ft, Sept. 6, elevation, 3,601.92 ft.

MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	Date	Elevation (feet)	Contents (acre-feet)	Change in Contents (acre-feet)
Sept. 30		3,621.25	867,300	
Oct. 31		3,625.01	898,200	+30,900
Nov. 30		3,624.18	891,200	-7,000
Dec. 31		3,622.95	881,000	-10,200
CAL Y	R 2000			-79,300
Jan. 31		3,620.95	865,000	-16,000
Feb. 28		3,618.00	842,400	-22,600
Mar. 31		3,619.55	854,100	+11,700
Apr. 30		3,617.83	841,200	-12,900
May 31		3,617.63	839,700	-1,500
June 30		3,620.41	860,700	+21,000
July 31		3,612.59	804,100	-56,600
Aug. 31		3,602.86	744,600	-59,500
Sept. 30		3,602.82	744,400	-200
WTR Y	R 2001			-122,900

06287000 BIGHORN RIVER NEAR ST. XAVIER, MT

LOCATION.--Lat $45^{\circ}19^{\circ}00^{\circ}$, long $107^{\circ}55^{\circ}05^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec.16, T.6 S., R.31 E., Big Horn County, Hydrologic Unit 10080015, on right bank 800 ft downstream from Yellowtail afterbay dam, 1,500 ft downstream from Lime Kiln Creek, 14 mi southwest of St. Xavier, and at river mile 83.9.

DRAINAGE AREA.--19,667 mi^2 . Area at site used prior to Apr. 16, 1963, 19,626 mi^2 .

PERIOD OF RECORD. -- October 1934 to current year.

GAGE.--Water-stage recorder. Datum of gage is 3,158.38 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Apr. 16, 1963, and June 13, 1964, to Mar. 31, 1965, water-stage recorder at site 1.2 mi upstream at different datum. Apr. 1, 1965, to July 31, 1966, water-stage recorder at site 1,300 ft downstream at present datum.

REMARKS.--Records fair. Figures of discharge given herein are sum of river flow and flow of Bighorn Canal. Some regulation by 14 reservoirs in Wyoming with combined capacity of 1,400,000 acre-ft and complete regulation by Bighorn Lake (see station 06286400) since Nov. 3, 1965. Diversions for irrigation of about 375,000 acres upstream from station. Bureau of Reclamation satellite telemeter at station. Station operated and record provided by the Montana District.

		DISC	HARGE, CU	BIC FEET P		, WATER Y LY MEAN V		ER 2000 T	O SEPTEMB	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2270 2270 2240 2240 2220	2020 2030 2040 2030 2080	1960 1960 1940	2160 2150 2170 2180 2190	2310 2230 2190 2200 2210	2010 2010 2010 2010 2010	1980 1970 1980 1970 1980	2000 2010 1990 2000 2010	2330 2330 2330 2330 2310	2300 2310 2320 2310 2320	2370 2320 2280 2220 2220	1950 1910 1880 1860 1850
6 7 8 9 10	2220 2190 2190 2170 2210	2060 2070 2070 2080 2100	1960 1950 1960	2200 2210 2210 2190 2010	2210 2240 2250 2260 2280	2010 2010 2020 2020 2010	1980 1970 1980 1990 1990	2000 1990 2000 1920 2140	2330 2320 2320 2320 2320 2320	2320 2320 2330 2310 2310	2220 2230 2230 2240 2250	1850 1840 1790 1790 1780
11 12 13 14 15	2340 2310 2310 2290 2280	2120 2110 2120 2130 2130	1980 1980 1990	2010 2020 2040 2050 2070	2300 2300 2310 2330 2330	2020 2010 2010 2020 2020	1970 1970 1980 1990 1990	2240 2230 2240 2170 2200	2330 2320 2290 2200 2170	2320 2340 2340 2340 2340	2240 2230 2220 2120 2110	1770 1770 1760 1760 1760
16 17 18 19 20	2270 2240 2030 1220 2110	2130 2150 2160 2160 2170	2010 2040 2010	2090 2100 2110 2100 2090	2360 2360 2390 2400 2390	2010 2020 2010 2020 2050	1990 1970 1990 1990 1990	2190 2180 2280 2280 2290	2180 2160 2120 2070 2080	2350 2340 2340 2330 2340	2100 2110 2110 2100 2080	1760 1730 1690 1690 1640
21 22 23 24 25	1950 1940 1920 1900 1890	2190 2200 2200 2210 2210	2050 2070 2100	2100 2100 2120 2190 2210	2320 2320 2360 2360 2380	2020 2020 2020 2020 2020 2030	1980 1990 1980 1990 1990	2320 2370 2390 2390 2380	2070 2060 2050 2050 2120	2340 2340 2350 2370 2380	2070 2080 2070 2070 2070	1660 1720 1720 1680 1640
26 27 28 29 30 31	1880 1870 1850 1840 1880 2010	2230 2230 2230 2220 2150	2110 2100 2110 2120	2220 2240 2250 2240 2260 2300	2330 2150 2000 	2020 2010 1990 2000 1980 1990	1980 1970 1990 2020 2010	2370 2380 2370 2380 2350 2320	2270 2310 2320 2300 2320 	2390 2400 2390 2410 2420 2420	2060 2050 2040 2040 2030 1980	1650 1630 1620 1610 1590
TOTAL MEAN MAX MIN AC-FT	64550 2082 2340 1220 128000	64030 2134 2230 2020 127000	2021 2130 1940	66580 2148 2300 2010 132100	64070 2288 2400 2000 127100	62410 2013 2050 1980 123800	59520 1984 2020 1970 118100	68380 2206 2390 1920 135600	67030 2234 2330 2050 133000	72740 2346 2420 2300 144300	66560 2147 2370 1980 132000	52350 1745 1950 1590 103800
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	35 - 2001	, BY WATER	R YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	2980 5142 1972 1224 1978	2933 5151 1983 1085 1978	4999 1968 1095		2672 4384 1976 888 1936	2929 4809 1976 327 1966	2915 6675 1972 678 1966	3869 8744 1947 900 1966	7140 17900 1935 1078 1966	5577 18890 1967 1144 1960	2900 6784 1997 1260 1966	2744 4544 1973 1074 1966

06287000 BIGHORN RIVER NEAR ST. XAVIER, MT--Continued

SUMMARY STATISTICS	WATER YEARS	3 1935 - 1961*	WATER YEARS 196	7 - 2001**
ANNUAL MEAN	3426		3546	
HIGHEST ANNUAL MEAN	5059	1947	4839	1999
LOWEST ANNUAL MEAN	1706	1961	1868	1989
HIGHEST DAILY MEAN	37400	Jun 16 1935	24800 Ji	ul 6 1967
LOWEST DAILY MEAN	300	Dec 20 1951	112 Aj	pr 2 1967
ANNUAL SEVEN-DAY MINIMUM	656	Dec 25 1934	518 Ma	ar 25 1970
INSTANTANEOUS PEAK FLOW	37400	Jun 16 1935		ul 5 1967
INSTANTANEOUS LOW FLOW	228	Dec 9 1937	112 ^a A _l	pr 2 1967
ANNUAL RUNOFF (AC-FT)	2482000		2569000	
10 PERCENT EXCEEDS	6440		5550	
50 PERCENT EXCEEDS	2450		3170	
90 PERCENT EXCEEDS	1370		1920	

- * Prior to construction of Yellowtail Dam. ** After completion of Yellowtail Dam. a Result of discharge measurement.

06289000 LITTLE BIGHORN RIVER AT STATE LINE, NEAR WYOLA, MT

LOCATION.--Lat $45^{\circ}00^{\circ}25^{\circ}$, long $107^{\circ}36^{\circ}52^{\circ}$, in $SW^{1}/_{4}$ NW $^{1}/_{4}$ sec.36, T.9 S., R.33 E., Bighorn County, Hydrologic Unit 10080016, on right bank 20 ft downstream from county bridge, 0.5 mi north of Wyoming-Montana State line, 1 mi downstream from West Fork, 13 mi southwest of Wyola, and at river mile 115.2.

DRAINAGE AREA. -- 193 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1939 to current year. Prior to October 1940, published as Little Horn River at State Line, near Wyola. REVISED RECORDS.--WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,350 ft above sea level, from topographic map.

REMARKS.--Records good. Diversions for irrigation of 163 acres upstream from station. Station operated and record by the Montana District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 77 e102 e100 75 e44 e93 12 77 73 e39 e43 e46 e150 15 74 70 73 75 e160 e170 17 77 72 e60 e162 72 e160 e160 e150 72 e140 73 e58 ₽137 e135 e131 70 e125 e118 e113 77 71 ___ ------TOTAL 67.2 75 64.0 73 MEAN 77.4 68.0 66.5 62.0 68.6 94.9 71.3 63.6 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1940 - 2001, BY WATER YEAR (WY) 87.3 76.2 61.9 98.5 MEAN 68.4 63.2 62.0 85.4 MAX 91.2 84.9 88.0 86.4 (WY) 55.2 50.7 43.6 47.8 69.8 63.6 MIN 64.0 48.3 48.6 94.9 (WY)

06289000 LITTLE BIGHORN RIVER AT STATE LINE, NEAR WYOLA, MT--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEARS	3 1940 - 2001
ANNUAL TOTAL	50677		32615.0			
ANNUAL MEAN	138		89.4		150	
HIGHEST ANNUAL MEAN					253	1975
LOWEST ANNUAL MEAN					89.4	2001
HIGHEST DAILY MEAN	923	May 28	451	May 15	2340	Jun 4 1944
LOWEST DAILY MEAN	39	Dec 11	39	Dec 11	18	Feb 2 1989
ANNUAL SEVEN-DAY MINIMUM	53	Dec 10	53	Dec 10	27_	Dec 18 1983
MAXIMUM PEAK FLOW			555	May 14	2730 ^a h	Jun 3 1944
MAXIMUM PEAK STAGE			3.07	May 14	5.93 ^D	Jun 9 1944
ANNUAL RUNOFF (AC-FT)	100500		64690		108400	
10 PERCENT EXCEEDS	293		148		339	
50 PERCENT EXCEEDS	78		70		84	
90 PERCENT EXCEEDS	64		60		57	

a Gage height, 4.97 ft, from rating curve extended above 1,400 $\rm ft^3/s.$ b Result of log jam. e Estimated.

06289000 LITTLE BIGHORN RIVER AT STATE LINE, NEAR WYOLA, MT--Continued ${\tt WATER-QUALITY\ RECORDS}$

PERIOD OF RECORD.--May 1993 to August 2001, discontinued.

REMARKS.--Unpublished records of instantaneous water temperature and specific conductance are available in files of the Montana District office.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DA	TE	TIME	DIS- CHARCE, INST. CUBIC FEET PER SECOND (00061)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		ATUR WATE) (DEG	GI NO2- RE SOI RE (MC CR (MC	EN, +NO3 1 IS- LVED G/L N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	PHORUS ORTHO DIS-	, PHOS- PHORUS TOTAL (MG/L AS P)	
2	2000 9	0900	60	8.4	359	0.0	1.0	:	18	<.006	<.018	<.06	
	2001	0900	61	8.6	340	7.0	6.5		14	<.006	<.018	<.06	
APR 1	7	0900	59	8.2	343	8.0	2.5		090	<.006	<.018	<.06	
YAM 0	2	0940	98	8.3	310	7.0	5.0		101	<.006	<.018	<.06	
JUN 1	2	1000	141	8.5	293	12.0	6.0	E.	045	<.006	<.020	<.06	
AUG 0	7	0930	73	8.6	267	29.0	15.5		074	<.006	<.020	<.06	
			DATE	0.7 UM- (COI 100 (316	RM, STR CAL, KF 7 MF, -MF WAT LS./ (CO ML) 100	EP, STRP S ER %: L/	DIAM. FINER THAN 62 MM	SEDI- MENT, SUS- PENDED (MG/L) 80154)	SEDI- MENT DIS- CHARGH SUS- PENDH (T/DAY (80155	, - E , - ED ()			
			NOV 200 29		E1	E5	68	17	2.8				
			MAR 21	I	E4	<1	77	17	2.8				
			APR 17	<	<1 E	20	43	36	5.7				
			MAY 02	I	Ε1	E1	77	18	4.8				
			JUN 12	-			74	30	11				
			AUG 07	E	12	33	47	26	5.1				
DATE	TIME	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED S (MG/L (AS CA) A	SIUM, DIS- OLVED S MG/L (S MG) A	SIUM, DIS- SOLVED (MG/L AS K)	SORP- TION RATIO	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DI: FET LAB CACO3 (MG/L) (29801	CHI S RII DIS SOI (MO AS	DE, S- LVED G/L CL)	RIDE, DIS- SOLVED (MG/L AS F)	SOLVED (MG/L AS SIO2)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
MAR 2001 21	0900	180	44	17	.54	.0	1.3	185	. 9	9	E.1	5.8	9.5
AUG 07	0930	180	44	17	.66	.0	1.5	176		7	. 2	6.0	8.6
DATE	SOLIDS DIS- SOLVE (TONS PER AC-FT (70303	DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	CONSTI- TUENTS, DIS- SOLVED (MG/L)	ARSENIC TOTAL (UG/L AS AS) (01002)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	TOTAL RECOV ERABL (UG/L AS CR	- RECC E ERAE (UG/) AS C	L TO' 0V- REG BLE ERI (L (U) 2U) AS	ON, TAL COV- ABLE G/L FE) 045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)		SELE- NIUM, TOTAL (UG/L AS SE)	
MAR 2001 21	.26	31.4	191	<2	<.11	<1	<1.8	<	10	<1	<2	<2.6	<31
AUG 07	.25	36.3	184	<2	<.10	<1	<1.0) :	20	<1	<2	<3.0	<31

 ${\tt E--Estimated.}$

06289600 WEST PASS CREEK NEAR PARKMAN, WY

LOCATION.--Lat $44^\circ59^\circ16^\circ$, long $107^\circ28^\circ56^\circ$, in $\mathrm{NE}^1/_4$ $\mathrm{NE}^1/_4$ $\mathrm{SE}^1/_4$ sec.21, T.58 N., R.88 W., Sheridan County, Hydrologic Unit 10080016, on right bank, anchored to concrete headwall of culvert on county road and 7.6 mi northwest of Parkman.

DRAINAGE AREA.--15.4 mi².

PERIOD OF RECORD.--October 1982 to current year (no winter records water years 1985-87).

GAGE.--Water-stage recorder. Elevation of gage is 4,220 ft above sea level, from topographic map. Prior to Apr. 2, 1985, at site 100 ft north (on abandoned channel) at datum 4.28 ft lower. Apr. 2, 1985 to Mar. 27, 1986, at site 300 ft upstream at datum 0.95 ft higher. Apr. 2, 1985 to Sept. 30, 1998, at same site at datum 1.00 ft lower.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Natural flow of stream affected by diversions for irrigation upstream from station.

		DISC	HARGE, CUE	BIC FEET PI		, WATER LY MEAN	YEAR OCTOE VALUES	BER 2000 T	O SEPTEMBI	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.6 7.4 7.2 7.3 7.5	7.0 7.0 6.8 6.8	e6.6 e6.8 e6.8 e6.6	e5.6 e5.6 e5.8 e5.8	5.5 5.3 5.2 5.6	e5.2 e5.4 e5.6 e5.6	6.3 6.4 6.9	14 14 14 14 15	9.4 9.4 9.3 9.4 8.9	6.5 6.5 6.3 6.3	4.9 4.9 4.8 4.8	4.2 4.1 4.1 4.1 4.3
6 7 8 9 10	7.2 7.2 7.2 7.2 7.2	6.7 e6.4 e6.0 e6.2 e5.6	e6.4 e6.8 e6.4 e6.2 e6.0	e5.8 e5.6 e5.6 e5.6	5.3 4.9 e4.8 e4.6 e4.7	e5.8 e6.0 e6.0 e6.2 e6.0	6.8 9.0 7.7	17 15 15 16 16	8.6 8.4 8.4 8.1 7.8	6.3 6.2 6.2 6.3 6.5	4.7 4.8 4.6 4.6 4.7	5.0 5.7 5.3 4.7 4.7
11 12 13 14 15	7.1 7.2 7.0 7.2 7.0	e5.0 e6.0 e7.0 e8.0 8.2	e6.0 e5.4 e6.0 e6.2 e6.4	5.5 5.5 5.5 5.5	e4.9 e5.0 e5.0 e5.0 e5.0	e5.8 e5.8 e6.0 e6.0	6.3 6.2 6.2	15 15 15 16 17	7.4 7.5 7.9 8.8 8.2	6.0 5.9 5.9 5.8 5.9	4.7 4.7 4.7 4.7	4.6 4.7 4.8 5.0 4.9
16 17 18 19 20	7.0 7.0 7.0 7.0 7.0	3.8 4.2 6.0 6.6 7.0	e6.2 e6.0 e6.0 e6.0	5.3 5.3 5.3 5.3	e5.0 e5.0 e5.2 e5.2 e5.4	e5.8 e5.8 e6.0 e6.0	6.2 6.3 6.5	18 19 19 18 18	8.2 8.1 8.1 7.9 7.7	5.8 5.8 5.6 5.7 5.6	4.7 4.6 4.6 4.6 4.7	4.9 4.8 4.8 4.7 4.5
21 22 23 24 25	6.9 7.0 7.1 7.0 7.3	7.0 7.0 7.0 7.2 7.2	e5.8 e5.8 e5.8 e5.8	5.3 5.5 5.5 5.5 5.5	e5.6 e5.6 e5.6 e5.6	e6.2 e6.2 e6.0 e6.0 e5.8	8.1 7.6 7.4	16 16 15 14 13	7.5 7.4 7.3 7.6 7.5	5.6 5.4 5.5 5.4 5.2	4.7 4.6 4.6 4.4 4.3	4.6 4.5 4.5 4.5
26 27 28 29 30 31	7.1 7.0 7.0 7.0 7.0 7.0	7.2 7.2 7.2 e7.0 e6.8	e5.8 e5.8 e6.0 e5.8 e5.6	5.5 5.4 e5.2 e5.4 5.4	e5.4 e5.2 e5.2 	e6.2 6.3 5.9 5.9 6.1 6.0	8.8 9.6 11 11	12 12 11 11 11 9.9	7.1 7.0 7.0 6.8 6.6	5.3 5.1 5.0 4.9 5.0 5.0	4.3 4.1 4.1 4.1 4.2 4.3	4.5 4.5 4.5 4.5
TOTAL MEAN MAX MIN AC-FT	220.9 7.13 7.6 6.9 438	198.0 6.60 8.2 3.8 393	189.0 6.10 6.8 5.4 375	170.2 5.49 5.8 5.2 338	145.7 5.20 5.6 4.6 289	183.0 5.90 6.3 5.2 363	7.31 11 6.1	460.9 14.9 19 9.9 914	239.3 7.98 9.4 6.6 475	179.0 5.77 6.5 4.9 355	142.0 4.58 4.9 4.1 282	139.0 4.63 5.7 4.1 276
STATIST	rics of	MONTHLY I	MEAN DATA	FOR WATER	YEARS 19	83 - 200	1, BY WATE	ER YEAR (W	Y)*			
MEAN MAX (WY) MIN (WY)	7.89 9.95 1996 5.76 1990	7.56 9.30 1996 6.34 1990	6.65 9.02 1996 4.92 1991	6.45 8.10 1996 4.25 1988	6.23 7.98 1996 4.02 1989	7.47 10.5 1997 5.64 1991	25.2 1994 7.31	33.6 79.9 1995 13.0 1985	25.0 60.6 1995 7.82 1985	13.1 26.9 1995 5.21 1985	8.93 14.9 1995 4.58 2001	7.87 11.6 1995 4.63 2001

06289600 WEST PASS CREEK NEAR PARKMAN, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1983 - 2001*
ANNUAL TOTAL	3768.8	2486.2	
ANNUAL MEAN	10.3	6.81	12.6
HIGHEST ANNUAL MEAN			21.2 1995
LOWEST ANNUAL MEAN			6.81 2001
HIGHEST DAILY MEAN	138 May 17	19 May 17	291 May 9 1995
LOWEST DAILY MEAN	3.8 Nov 16	3.8 Nov 16	.00 ^a Dec 25 1998
ANNUAL SEVEN-DAY MINIMUM	5.3 Jan 29	4,2 Aug 27 19 May 6	.81 Feb 3 1989
MAXIMUM PEAK FLOW		19 ^D May 6	340 a May 9 1995
MAXIMUM PEAK STAGE		2.07 Nov 29	4.76 ^d Apr 28 1984
ANNUAL RUNOFF (AC-FT)	7480	4930	9140
10 PERCENT EXCEEDS	17	9.4	24
50 PERCENT EXCEEDS	7.0	6.0	8.2
90 PERCENT EXCEEDS	6.0	4.7	5.7

- For period of operation.
 Result of channel blockage or diversion upstream.
 Gage height, 1.92 ft.
 Backwater from ice, highest recorded gage height.
 Backwater from ice, site and datum then in use.
 Estimated. a b c d e

06289820 EAST PASS CREEK NEAR DAYTON, WY

LOCATION.--Lat $44^{\circ}59^{\circ}26^{\circ}$, long $107^{\circ}25^{\circ}20^{\circ}$, in $NE^{1}/_{4}$ $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec.24, T.58 N., R.88 W., Sheridan County, Hydrologic Unit 10080016, on right bank 0.4 mi downstream from bridge on Sheridan County Road 144, 5.0 mi northwest of Parkman, and 11.2 mi northwest of Dayton.

DRAINAGE AREA. -- 21.7 mi².

PERIOD OF RECORD. -- October 1982 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,405 ft above sea level, from topographic map. October 1982 to August 1995, at site 270 ft upstream at different datum. August 1995 to April 1996, at site 0.3 mi downstream at different datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Several small reservoirs upstream from station, combined capacity, 415 acre-ft, for irrigation. Diversions for irrigation of about 2,900 acres upstream from station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 7.2 6.7 6.7 7.4 7.3 7.4 7.6 7.3 8.8 8.7 9.3 4.1 8.4 2 8.0 8.5 9.6 17 9.8 4.8 4.0 6.9 8.5 8.0 9.4 9.8 3 4.0 8.1 15 3.8 6.8 7.2 8.9 8.0 9.0 10 7.0 5 8.7 10 8 2 9.5 9.7 13 12 6.4 4.0 4.1 7.2 7.7 7.4 6 6.2 10 8.1 10 12 14 12 5.2 6.3 8 2 9 1 7 6 12 11 14 12 6.7 6.7 4 1 6 1 6.2 8 8.0 8.8 10 3.9 6.6 e6.0 11 10 13 6.9 e7.0 10 7.9 6.6 5.6 10 10 9.0 7.7 4.4 8.7 e7.4 13 9.6 16 7.7 6.6 3.7 5.3 9.2 9.7 7.4 7.7 3.5 11 7.0 5.0 8 7 e7.8 14 9.2 16 6.4 5.0 12 11 7.8 5.6 8.4 e8.2 9.3 18 6.3 3.3 4.8 13 9.7 8.3 e6.6 8.4 e8.2 11 9.0 22 9.9 6.5 3.4 4.9 e8.0 8.1 14 9.7 e9.0 8.4 10 8.9 30 11 6.5 3.4 15 9.5 e8.0 8.3 e8.0 11 8.8 34 10 6.7 3.2 5.1 e6.4 16 17 7.4 7.6 31 29 8 7 e7 8 11 9.3 9.6 6 7 3.0 5.0 e7.8 12 10 8.4 e8.5 9.4 3.0 5.0 e8.0 6.4 7.4 25 9.2 6.2 18 8.4 e8.0 e8.5 e8.6 12 11 5.0 19 8.4 7.4 7.4 e7.8 8 2 e9.0 12 12 23 8.7 7.5 6.5 3.2 4 9 8.2 12 20 11 24 e7.8 9.2 3.8 5.0 7.2 7.1 7.5 7.2 21 8.4 e7.2 8 1 8.1 11 11 21 6.3 4 5 4 9 7.9 19 4.9 22 8.5 8.0 9.6 10 e7.4 6.4 4.4 9.0 e7.8 8.0 9.4 7.2 7.0 23 7.1 18 7.7 7.7 9.4 6.5 5.3 5.5 24 7.1 e7.8 8.3 e8.0 9.6 12 17 4 3 25 7.4 8.6 9.9 15 16 8.0 e7.8 4.2 7.4 7.5 7 7 $\frac{7.4}{7.4}$ 26 9 1 8 0 e7 6 9 4 18 13 6 3 4 3 5 3 27 9.0 7.9 9.4 5.0 8.0 e7.0 19 14 5.9 4.0 28 9.0 7.4 8.0 e7.8 9.5 18 13 7.1 5.8 3.8 5.0 7.7 7.7 6.7 9.0 8.7 7.2 7.5 8.9 5.5 5.2 29 9 2 19 12 3.9 5 1 30 8.5 9.4 9.8 5.0 18 31 8.8 7.7 8.5 ---9.4 9.3 5.2 4.2 TOTAL 259.5 233.0 227.6 261.0 222.6 321.0 349.7 562.1 263.5 197.7 120.4 149.4 7.34 MEAN 8.37 7.77 8.42 7.95 10.4 11.7 18.1 8.78 6.38 3.88 4.98 MAX 9.8 8.8 10 9.2 14 19 34 12 7.2 5.2 6.2 7.2 7.0 4.4 6.0 8.1 8.8 9.3 6.7 5.2 3.0 3.9 AC-FT 515 462 451 518 442 637 694 1110 523 392 239 296 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 2001, BY WATER YEAR (WY) 8.97 9.01 8.47 9.91 36.3 82.8 MEAN 8.64 8.59 16.8 44.2 13.3 7.41 7.38 MAX 13.9 11.4 10.5 10.5 10.6 14.2 32.4 90.8 32.9 14.8 14.8 (WY) 1996 1996 1996 1996 1996 1997 1994 1995 1995 1992 1993 1995 5.73 6.90 7.29 4.02 6.69 6.96 6.78 9.30 15.2 6.65 5.06 2.73 MIN (WY) 1991 1986 1988 1988 1989 1990 1992 1985 1985 1985 1988 1989

06289820 EAST PASS CREEK NEAR DAYTON, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1983 - 2001
ANNUAL TOTAL	4675.3	3167.5	
ANNUAL MEAN	12.8	8.68	14.9
HIGHEST ANNUAL MEAN			23.6 1984
LOWEST ANNUAL MEAN			8.57 1989
HIGHEST DAILY MEAN	180 May 18	34 May 15	304 May 9 1995
LOWEST DAILY MEAN	3.6 Jul 31, Aug 2,	3 3.0 Aug 16-17	1.6 Sep 1 1999
ANNUAL SEVEN-DAY MINIMUM	3.8 Jul 29	3.2 Aug 13	2.1 Aug 20 1988
MAXIMUM PEAK FLOW		37 May 15	2.1 Aug 20 1988 511 ^a _h May 9 1995
MAXIMUM PEAK STAGE		5.93 May 15	9.00 ^b Feb 6 1996
ANNUAL RUNOFF (AC-FT)	9270	6280	10810
10 PERCENT EXCEEDS	21	12	30
50 PERCENT EXCEEDS	8.0	8.0	9.3
90 PERCENT EXCEEDS	5.8	4.8	6.2

- Gage height, 4.47 ft, site and datum then in use, from rating curve extended above 221 $\rm ft^3/s$. Ice jam, site and datum then in use. Estimated. a b e

06298000 TONGUE RIVER NEAR DAYTON, WY

LOCATION.--Lat $44^{\circ}50^{\circ}58^{\circ}$, long $107^{\circ}18^{\circ}14^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.11, T.56 N., R.87 W., Sheridan County, Hydrologic Unit 10090101, on left bank 0.5 mi upstream from Crystal Draw, 0.6 mi downstream from intake of Highline Ditch, and 2.5 mi southwest of Dayton.

DRAINAGE AREA. -- 204 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1918 to September 1929, October 1940 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS. -- WSP 1309: 1921.

GAGE.--Water-stage recorder. Elevation of gage is 4,060 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Small diversion upstream from station for Dayton municipal supply. Figures of daily discharge do not include water diverted 0.6 mi upstream from station by Highline ditch for irrigation downstream from station. National Weather Service data collection platform with satellite telemetry at station. Water-quality data are published in the special studies section of this report.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 79 51 e44 e54 e58 e62 e56 e58 e52 79 ---___ ---TOTAL MEAN 68.7 54.4 68 56.8 54.8 53.8 50.9 78.8 68.1 45.5 51.3 73 MAX MIN AC-FT ADJUSTED FOR DIVERSION BY HIGHLINE DITCH MEAN 73.0 54.4 56.8 54 8 53 8 50 9 88.7 61.4 61.3 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 2001, BY WATER YEAR (WY)* MEAN 82.3 68.1 61.2 56.0 52.6 51.9 84.6 MAX 88.9 80.8 72.0 1978 (WY) MIN 49.6 41.1 39.6 36.1 34.1 38.1 44.2 68.1 45.5 (WY)

06298000 TONGUE RIVER NEAR DAYTON, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	ER YEAR	WATER YEAR	S 1919 - 2001
ANNUAL TOTAL	55997		29927			
ANNUAL MEAN	153		82.0		180	
HIGHEST ANNUAL MEAN					316	1924
LOWEST ANNUAL MEAN					82.0	2001
HIGHEST DAILY MEAN	1010	May 25	517	May 15	2590	Jun 5 1968
LOWEST DAILY MEAN	30	Nov 8	30	Nov 8	18	Nov 29 1919
ANNUAL SEVEN-DAY MINIMUM	42	Nov 7	40	Aug 30	31	Nov 9 1940
MAXIMUM PEAK FLOW			666	May 15	3400	Jun 3 1944
MAXIMUM PEAK STAGE			3.55	May 15	6.45	Jun 3 1944
ANNUAL RUNOFF (AC-FT)	111100		59360		130100	
10 PERCENT EXCEEDS	413		173		479	
50 PERCENT EXCEEDS	62		56		73	
90 PERCENT EXCEEDS	48		46		48	

- + Diversion, in acre-feet, upstream from station by Highline Ditch.
 * Unadjusted for diversion by Highline Ditch.
 e Estimated.

ADJUSTED FOR DIVERSION BY HIGHLINE DITCH

	2000 Calendar Year 2001 Water Year	Annual Total 56130 32557	Annual Mean 154 89.2	Annnual Runoff 111400 117700	(ac-ft)
GE, PER SECOND	10,000		Λ		-
DISCHARGE, IN CUBIC FEET PER SECOND	200 -	N D J F		JJ	A S
	O	N D J J F	M A M 2001	J J	А 5

06299500 WOLF CREEK AT WOLF, WY

197

LOCATION.--Lat 44°46'21", long 107°14'01", in $\mathrm{NE}^1/_4$ $\mathrm{SW}^1/_4$ $\mathrm{sec.4}$, T.55 N., R.86 W., Sheridan County, Hydrologic Unit 10090101, on left bank at Wolf and 0.5 mi downstream from Red Canyon Creek.

DRAINAGE AREA. -- 37.8 mi².

PERIOD OF RECORD.--January 1945 to current year (no winter records since 1971). Monthly discharge for January to March 1945, published in WSP 1309.

GAGE.--Water-stage recorder. Elevation of gage is 4,525 ft above sea level, from topographic map. Prior to May 26, 1945, nonrecording gage at same site and datum.

REMARKS.--Records good. No diversion upstream from station. Result of discharge measurement, in cubic feet per second, made during the period when station was not in operation is given below:

Oct. 4 . . . 8.00

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by the Geological Survey.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY DEC FEB MAY OCT NOV AUG SEP 4.7 23 22 14 7.0 4.5 2 ------------------4.7 22 13 4.5 18 3 16 23 13 6.0 4.4 23 13 6.0 4.3 14 5 4.7 17 23 12 6.0 4.4 6 4.9 19 22 12 5.8 4.9 ------------------5.0 17 20 12 5.8 8.3 8 20 11 5.6 18 5.6 8.3 5.0 22 19 11 5.8 7.0 10 ___ ___ ___ ---4.9 23 19 12 6.0 7.0 4.9 21 13 6.0 11 18 6.0 12 13 4.7 13 12 5.6 5.4 ___ ___ ___ ___ ___ ___ 25 19 5.8 ___ ---------------29 23 5.8 4.6 34 11 5.8 5.6 15 ___ ---___ ___ ___ ---4.6 35 23 11 5.8 6.3 4.7 37 11 16 6.0 4.7 5.8 9.6 9.2 6.3 5.4 5.4 17 ___ ___ ___ ___ ___ ___ 35 19 18 ------31 19 5.0 29 18 20 ___ ___ ___ ___ ___ ___ 8.9 29 18 8.9 5.4 4.9 21 7.2 27 8.1 5.0 4.7 4.7 22 ___ ___ ___ ___ ___ ___ 6.3 6.0 26 16 8.1 5.0 5.0 23 26 16 8.1 24 ---25 11 9.2 25 ___ ___ ___ ___ ___ ___ 8 1 25 16 4.9 4.6 26 12 25 15 8.3 4.5 ___ ___ ___ ___ ___ ---8.1 7.8 4.6 4.7 4.5 4.5 27 16 29 15 28 ------------------18 26 15 29 ------20 27 14 7.2 4.7 30 ------------------20 27 14 7.0 4.7 4.5 ___ ___ ___ 24 TOTAL 779 223.9 568 320.8 171.6 158.8 ---------------MEAN ------------------7.46 25.1 10.3 5.54 5.29 MAX ---------------20 37 23 14 7.0 8.3 7.0 4.6 14 14 4.6 4.3 MIN 1550 1130 340 315 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1946 - 2001, BY WATER YEAR (WY)* MEAN 8.77 6.98 5.69 4.73 4.48 4.96 14.2 131 37.0 14.9 10.0 14.2 9.97 7.46 6.07 9.27 37.4 1994 179 287 95.2 23.0 MAX 5.64 30.8 1969 (WY) 1952 1969 1962 1962 1972 1978 1975 1975 1951 1968 MTN 6.46 5.73 3.83 2.80 3.15 3.65 6.39 25.118.9 10.3 5.54 5.29 (WY) 1957 1961 1950 1950 1957 1957 1958 2001 2001 2001 2001 2001

06299500 WOLF CREEK AT WOLF, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1946 - 2001*
ANNUAL MEAN		29.3
HIGHEST ANNUAL MEAN		45.0 1964
LOWEST ANNUAL MEAN		13.8 1960
HIGHEST DAILY MEAN	37 May 16	601 Jun 9 1964
LOWEST DAILY MEAN	4.3 Sep 4	1,8 Feb 26 1947
MAXIMUM PEAK FLOW	41 May 15	1.8 Feb 26 1947 1130 Jun 15 1963
MAXIMUM PEAK STAGE	1.57 May 15	4.60 Jun 15 1963
ANNUAL RUNOFF (AC-FT)		21220

- * For period of operation. a From rating curve extended above 500 ${\rm ft}^3/{\rm s}.$

06300500 EAST FORK BIG GOOSE CREEK NEAR BIG HORN, WY

LOCATION.--Lat $44^{\circ}32^{\circ}18^{\circ}$, long $107^{\circ}13^{\circ}33^{\circ}$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ NW $^{1}/_{4}$ sec.28, T.53 N., R.86 W., Johnson County, Hydrologic Unit 10090101, Bighorn National Forest, on right bank 0.7 mi upstream from Park Reservoir and 16 mi southwest of Big Horn.

DRAINAGE AREA. -- 20.1 mi².

PERIOD OF RECORD.--October 1953 to current year (no winter records since 1973). Prior to October 1960, published as East Goose Creek near Big Horn.

GAGE.--Water-stage recorder. Elevation of gage is 8,320 ft above sea level, from topographic map. Prior to June 28, 1960, water-stage recorder at site 1.1 mi downstream at different datum. June 28, 1960, to July 14, 1970, water-stage recorder at site 0.9 mi downstream at different datums and July 15 to Oct. 7, 1970, nonrecording gage at present site and datum.

REMARKS.--Records fair, except for estimated daily discharges, which are poor. No diversion upstream from station. Result of discharge measurement, in cubic feet per second, made when station was not in operation, is given below:

Oct. 9 . . . 9.17

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 27 2.9 6.8 ___ ___ 2 ---___ ---------___ 92 25 6 2 2.6 2.4 3 85 6.0 22 ------------------------61 21 5.8 5 44 20 5.8 2.2 6 7 37 18 5.6 3.8 ------------------------38 17 5.4 6.2 8 58 16 5.6 7.6 ---------77 82 ___ ___ 16 5.8 7.4 ------------10 20 5.8 7.6 11 ___ ___ ___ ___ ___ ___ 74 18 5.6 7.0 12 ------------------------17 64 5.4 6.3 13 62 5.0 5.8 14 ___ ___ ___ ---___ ___ ___ 47 15 4 9 8.0 12 15 165 39 15 4.9 16 ___ ___ ___ ___ ___ ___ ___ 212 34 16 4.7 11 ___ 17 124 36 14 5.2 9.7 9.0 18 40 12 4.9 8.3 19 ___ ___ ___ ___ ___ ___ ___ 82 35 11 4.4 20 30 11 3.9 88 7 4 21 ___ ___ ___ ___ ___ ___ ___ 48 32 10 3 5 22 36 9.9 3.5 6.8 36 9.7 6.6 23 ------36 41 3.5 ___ 24 ___ ___ ___ ___ ___ ___ 68 41 12 3 4 6.2 25 3.1 5.8 92 46 11 26 ___ ---___ ___ ___ ---124 42 10 5.6 ___ 3 1 27 ---------42 9.7 3.0 5.1 144 28 ---------------------113 37 9.0 2.8 4.9 29 ---------------------121 32 8.3 2.7 4.6 30 ------___ ___ ___ ___ ___ 28 2.7 ---31 ------------------78 7.2 2.9 TOTAL ___ 1492 452.4 141.9 187.7 MEAN ------------------------49.7 92 14.6 27 4.58 6.26 ------___ ___ ------___ ---6.8 12 MAX MIN ___ ---___ ---___ ---___ ---28 7.2 2.7 2.2 AC-FT ---------------------2960 897 281 372 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1954 - 2001, BY WATER YEAR (WY)* MEAN 8.61 5.47 3.65 3.04 2.60 2.52 4.78 84.1 173 57.8 17.2 11.5 177 MAX 16.9 8.43 5.32 4.16 3.30 3.52 18.6 152 372 46.5 37.0 (WY) 1968 1969 1958 1962 1959 1962 1962 1958 1995 1975 1968 1968 49.7 4.48 2.85 2.23 1.87 1.63 1.15 1.76 28.0 3.67 5.22 MIN (WY) 1971 1963 1963 1971 1971 1971 1971 1983 2001 1988 1988 1954

06300500 EAST FORK BIG GOOSE CREEK NEAR BIG HORN, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1954 - 2001*
ANNUAL MEAN		32.6
HIGHEST ANNUAL MEAN		41.8 1963
LOWEST ANNUAL MEAN		21.4 1966
HIGHEST DAILY MEAN	212 May 16	775 Jun 15 1963
LOWEST DAILY MEAN	2.2 Sep 5	1,0 Dec 11 1963
MAXIMUM PEAK FLOW	251 May 16	1.0 Dec 11 1963 1230
MAXIMUM PEAK STAGE	4.60 May 16	4.59 ^D Jun 15 1963
ANNUAL RUNOFF (AC-FT)		23600

- For period of operation. From rating curve extended above 250 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement. Site and datum then in use.

06301480 CONEY CREEK ABOVE TWIN LAKES, NEAR BIG HORN, WY

LOCATION.--Lat 44°36'05", long 107°19'01", unsurveyed, Sheridan County, Hydrologic Unit 10090101, Bighorn National Forest, 0.2 mi upstream from Twin Lakes, and 17.0 mi southwest of Big Horn.

DRAINAGE AREA.--3.41 mi².

PERIOD OF RECORD.--October 1990 to current year (no winter records 1993 to 1996, 1998-2001).

GAGE.--Water-stage recorder. Elevation of gage is 8,690 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. No diversion upstream from station. U.S. Geological Survey data collection platform with satellite telemetry at station. Result of discharge measurement, in cubic feet per second, made when station was not in operation, is given below:

Oct. 10 . . . 0.11

		DISCHARG	E, CUBI	C FEET PER		WATER Y	YEAR OCTOBEI VALUES	R 2000 TC	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								e9.0	11	2.7	.10	.02
2								e8.0	11	2.4	.09	.01
3								e7.0	12	2.2	.08	.01
4								e6.0	11	2.1	.07	.00
5								e5.5	9.2	1.8	.07	.00
6								e5.2	7.4	1.7	.06	.06
7								e5.0	6.4	1.5	.06	.08
8								e5.5	6.3	1.4	.07	.10
9								e7.0	7.4	1.4	.07	.10
10								e10	8.7	1.4	.07	.10
11								e14	8.5	1.3	.07	.09
12								18	7.8	1.2	.07	.09
13								30	8.4	1.1	.07	.09
14 15								38 40	7.8	1.1	.06	.14
15								40	7.3	1.0	.07	.18
16								45	6.4	.94	.14	.18
17								31	5.6	.84	.17	.19
18								20	5.2	.75	.14	.19
19								17	5.0	.65	.12	.19
20								18	4.7	.57	.10	.18
21								12	4.2	.46	.08	.15
22								9.6	3.9	.38	.08	.13
23								8.7	3.7	.34	.06	.12
24								12	3.8	.43	.06	.11
25								15	3.8	.36	.05	.11
26								18	3.7	.33	.04	.11
27								21	3.7	. 27	.04	.10
28								18	3.6	.23	.03	.10
29								17	3.3	.17	.03	.09
30								15	3.0	.13	.03	.09
31								12		.12	.02	
TOTAL								497.5	193.8	31.27	2.27	3.11
MEAN								16.0	6.46	1.01	.073	.10
MAX								_45	12	2.7	.17	.19
MIN								5.0	3.0	.12	.02	.00
AC-FT								987	384	62	4.5	6.2
STATIST	TICS OF	MONTHLY MEAN	I DATA F	OR WATER Y	EARS 1991	- 2001	, BY WATER	YEAR (WY	() *			
MEAN	.57	.50	.27	.16	.13	.14	.58	18.7	26.4	6.47	1.41	.63
MAX	.71	.61	.36	.22	.20	.21	1.59	27.4	50.9	14.1	3.50	1.26
(WY)	1993	1993	1993	1992	1992	1992	1992	1992	1995	1995	1993	1998
MIN	.52	.43	.17	.12	.089	.055	.15	8.58	6.46	1.01	.073	.10
(WY)	1992	1997	1991	1997	1997	1997	1997	1995	2001	2001	2001	2001

06301480 CONEY CREEK ABOVE TWIN LAKES, NEAR BIG HORN, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1991 - 2001*
ANNUAL MEAN		5.43
HIGHEST ANNUAL MEAN		5.84 1992
LOWEST ANNUAL MEAN		4.83 1991
HIGHEST DAILY MEAN	45 May 16	105 Jun 16 1995
LOWEST DAILY MEAN	.00 Sep 4,5	,00 Sep 4,5 2001
MAXIMUM PEAK FLOW	50 May 15	135 ^a _h Jun 15 1995
MAXIMUM PEAK STAGE	3.37 May 15	5.05 ^D May 14 1991
ANNUAL RUNOFF (AC-FT)		3940

- For period of operation. Gage height, 4.35 ft. Backwater from snow and ice. Estimated.

06301495 CONEY CREEK BELOW TWIN LAKES, NEAR BIG HORN, WY

LOCATION.--Lat 44°36'33", long 107°18'32", unsurveyed, Sheridan County, Hydrologic Unit 10090101, Bighorn National Forest, 30 ft downstream from Twin Lakes Reservoir, 0.4 mi upstream from mouth, and 16.2 mi southwest of Big Horn.

DRAINAGE AREA. -- 8.07 mi².

(WY)

1992

1993

1997

1997

1997

1997

1993

1999

2000

1994

1996

1996

PERIOD OF RECORD. --October 1990 to September 1994, October 1995 to current year (no winter records 1993, 1994, 1996, 1998-2001.

GAGE.--Water-stage recorder and concrete weir. Elevation of gage is 8,560 ft above sea level, from topographic map. October 1990 to September 1998, at site 0.2 mi downstream at different datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Flow regulated by Twin Lakes Reservoir, capacity, 3,400 acre-ft. Seasonal records collected by State of Wyoming at site 0.2 mi downstream, at different datum, 1971-90.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 13 8.0 9.1 2 ___ ___ ___ ---___ ___ ___ e.50 9.1 13 8.8 8.0 9.2 3 --------e.50 8.0 ------------12 6.2 --e.50 ___ ---___ ___ ---___ 5 e.50 9.2 12 4.6 8.0 6 --------e.50 9.2 12 8.0 ___ ---___ ___ e.50 9.3 12 4 6 8.2 9.2 8.2 8 --e.50 12 4.6 e.50 ------------------9.3 11 8.2 ---10 e.50 9.2 10 4.5 8.1 e6.0 11 ------3.9 10 4.5 8.1 ---------------12 .03 e15 10 4.5 7.3 13 e25 .03 10 4.5 6.5 ---------14 e35 .03 10 4.5 6.5 ---------15 e45 .03 10 4.5 6.6 16 17 ___ ___ ___ ___ e25 03 10 4 5 6.4 ___ ------------------5.0 e.50 .03 11 4.5 .03 9.6 4.3 18 e.50 4.5 19 ___ ---___ ---___ ___ ___ e.50 03 10 4 5 3.0 20 .03 10 4.5 e.502.3 21 ___ ___ ___ ___ ___ ___ ___ e.50 03 10 4.5 22 ___ e.50 4.9 10 4.5 23 12 2.4 e.50 24 ___ ___ ___ ___ ___ ___ ___ e.50 12 10 4 5 2.4 25 12 4.5 2.4 e.50 10 26 ___ ___ ___ ___ ___ ___ ___ e6 0 12 11 4 5 2 4 27 12 2.4 e9.0 10 6.3 3.1 28 -----------e9.0 12 10 7.5 ___ ___ ---___ 7.5 7.8 3 9 29 ___ ___ ___ e9.0 12 10 30 e9.0 3.9 9.6 31 -----------------e9.0 8.8 7.9 TOTAL 211.50 197.00 329.0 164.2 MEAN ---------------------6.82 6.57 10.6 5.32 5.47 ---___ ___ ------MAX ------45 12 13 8.8 8.2 ___ ___ ___ ___ ___ ___ ___ .03 8.8 2.3 MIN 326 AC-FT ---------------------420 391 653 327 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1991 - 2001, BY WATER YEAR (WY)* .17 MEAN 1.68 .38 .20 .14 .23 .52 28.1 44.0 13.7 8.60 6.16 MAX 4.50 .56 .32 .26 .32 .51 1.32 54.4 81.3 27.1 18.7 12.7 (WY) 1991 1997 1992 1992 1992 1992 1992 1993 1997 1992 1998 1999 .50 .20 5.58 5.08 .14 .045 .040 .041 1.45 2.03 .78 MIN .13

06301495 CONEY CREEK BELOW TWIN LAKES, NEAR BIG HORN, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1991 - 2001*
ANNUAL MEAN		12.0
HIGHEST ANNUAL MEAN		12.6 1992
LOWEST ANNUAL MEAN		11.2 1991
HIGHEST DAILY MEAN	45 May 15	172 May 29 1993
LOWEST DAILY MEAN	.03 Many days	.03 Many days
MAXIMUM PEAK FLOW	101 Jul 17	03 Many days 223 h May 29 1993
MAXIMUM PEAK STAGE	2.51 Jul 17	4.32 ^D May 1 1997
ANNUAL RUNOFF (AC-FT)		8710

- For period of operation. Gage height, 3.16 ft, site and datum then in use. Backwater from snow and ise, site and datum then in use. Estimated.

06301500 WEST FORK BIG GOOSE CREEK NEAR BIG HORN, WY

LOCATION.--Lat $44^\circ36^\circ47^\circ$, long $107^\circ17^\circ49^\circ$, in $\mathrm{NE}^1/_4$ $\mathrm{SE}^1/_4$ $\mathrm{NE}^1/_4$ sec.35, T.54 N., R.87 W., Sheridan County, Hydrologic Unit 10090101, Bighorn National Forest, on left bank 0.3 mi downstream from Twin Lakes Branch and 16 mi west of Big Horn.

DRAINAGE AREA. -- 24.4 mi².

PERIOD OF RECORD.--October 1953 to current year (no winter records since 1971). Prior to October 1960, published as West Goose Creek near Big Horn.

GAGE.--Water-stage recorder. Elevation of gage is 8,420 ft above sea level, from topographic map.

REMARKS.--Records fair. Some regulation by Twin Lakes, capacity, 1,520 acre-ft, and Dome Lake, capacity, 1,800 acre-ft. No diversion upstream from station. Result of discharge measurement, in cubic feet per second, made during period when station was not in operation, is given below:

Oct. 10 . . . 6.95

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY DEC FEB OCT NOV MAY AUG SEP 15 64 42 16 2 ---------------------69 41 16 16 ___ 3 86 39 13 16 80 38 11 16 5 37 11 16 6 54 37 16 11 ------------------------47 37 11 15 8 50 33 11 15 51 28 15 11 10 ___ ___ 60 26 11 15 70 17 11 26 11 12 13 26 26 11 11 19 17 ___ ___ ___ ___ ___ ___ ___ ___ 68 ___ ___ ------------------66 14 26 11 61 15 ___ ---___ ---------___ 110 55 26 11 16 185 48 13 16 26 11 44 43 12 13 17 ___ ___ ___ ___ ___ ___ ___ 152 26 12 18 ---___ 23 12 103 13 20 ___ ___ ___ ___ ___ ___ ___ 85 40 24 13 11 21 64 39 24 11 22 ___ ___ ___ ___ ___ ___ ___ 47 41 22 13 11 23 39 43 21 13 11 24 ---49 21 13 11 25 ___ ___ ___ ___ ___ ___ ---65 42 21 13 10 26 90 42 21 13 9.7 ___ ---___ ___ ___ ___ 9.7 9.7 27 ___ 126 42 21 14 28 ------------------42 15 9.4 29 ---------100 42 19 15 30 ---------------------94 42 17 15 9.4 ___ ___ ___ 1579 TOTAL 835 391 401.9 ------------------MEAN ------------------___ ---52.6 26.9 12.6 13.4 MAX ------------------------86 42 16 19 16 11 9.4 MIN 39 3130 1660 776 797 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1954 - 2001, BY WATER YEAR (WY)* MEAN 8.54 6.16 4.82 3.79 3.09 2.98 4.90 68.0 190 64.0 31.0 57.3 22.8 18.0 6.55 5.96 5.40 15.5 141 161 48.9 MAX 10.3 9.61 311 (WY) 1963 1969 1969 1965 1963 1963 1962 1994 1995 1975 1968 1968 MTN 2.67 1.22 1.03 1.05 1.06 1.46 1.71 5.23 52.6 26.9 12.6 4.48 1957 (WY) 1964 1964 1964 1964 1964 1964 1995 2001 2001 2001 1988

06301500 WEST FORK BIG GOOSE CREEK NEAR BIG HORN, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR *	WATER YEARS 1954 - 2001*
ANNUAL MEAN		34.3
HIGHEST ANNUAL MEAN		45.7 1965
LOWEST ANNUAL MEAN		21.7 1960
HIGHEST DAILY MEAN	185 May 16	674 Jun 16 1995
LOWEST DAILY MEAN	9.4 Sep 29,30	.80 Several days
		1963,1964
MAXIMUM PEAK FLOW	222 May 16	1030 ^a Jun 15 1963
MAXIMUM PEAK STAGE	3.08 May 16	5.37 Jun 15 1963
ANNUAL RUNOFF (AC-FT)		24880

- For period of operation. From rating curve extended above 410 ${\rm ft}^3/{\rm s}$ on basis of velocity-area study.

06301850 BIG GOOSE CREEK ABOVE PK DITCH, IN CANYON, NEAR SHERIDAN, WY

LOCATION.--Lat $44^{\circ}41'45"$, long $107^{\circ}11'27"$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$ sec.35, T.55 N., R.86 W, Sheridan County, Hydrologic Unit 10090101, on left bank 515 ft above the headgate of PK ditch, 0.4 mi above Red Canyon, and 13.5 mi southwest of Sheridan.

DRAINAGE AREA.--124 mi².

PERIOD OF RECORD. -- April to September 2001.

GAGE.--Water-stage recorder. Elevation of gage is 4,678 ft above sea level, from topographic map.

REMARKS.--Records fair except for those estimated daily discharges, which are poor. Natural flow affected by transbasin diversions and storage reservoirs. Result of discharge measurement, in cubic feet per second, made when station was not in operation, is given below:

Oct. 4. . . 25.5

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

		DISCHAR	GE, CUBIC	FEET PER		WATER YEA	AR OCTOBEF LUES	R 2000 TO	SEPTEMBER	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							18	68	98	59	46	e54
2							18	45	94	59	51	e54
3							18	39	115	56	60	e56
4							19	36	113	55	60	e56
5							20	42	101	54	59	e54
J							20	72	101	24	39	634
6							20	45	83	54	60	56
7							20	40	71	54	61	60
8							19	42	72	52	62	59
9							18	51	72	47	62	56
10							17	49	75	64	63	55
10							±,	47	73	01	03	33
11							18	46	92	65	63	50
12							18	57	90	65	63	55
13							18	52	98	64	61	58
14							18	55	90	63	59	61
15							19	86	83	64	59	69
16							19	205	74	65	61	63
17							18	183	68	68	60	60
18							23	131	66	67	61	54
19							28	111	63	68	61	51
20							28	114	63	68	61	48
21							23	97	60	67	60	48
22							24	79	59	65	59	47
23							24	68	63	61	56	46
24							24	73	61	59	55	41
25							28	91	61	55	54	24
26							38	115	60	55	54	23
27							54	153	61	55	e54	24
28							65	142	61	55	e54	23
29							68	131	60	54	e54	23
30							59	126	59	48	e54	24
31								111		47	e54	
TOTAL							801	2683	2286	1832	1801	1452
MEAN							26.7	86.5	76.2	59.1	58.1	48.4
MAX							68	205	115	68	63	69
MIN							17	36	59	47	46	23
AC-FT							1590	5320	4530	3630	3570	2880
STATIST	ICS OF MO	NTHLY MEA	N DATA FO	R WATER Y	EARS 2001	- 2001,	BY WATER	YEAR (WY)	1			
MEAN							26.7	86.5	76.2	59.1	58.1	48.4
MAX							26.7	86.5	76.2	59.1	58.1	48.4
(WY)							2001	2001	2001	2001	2001	2001
MIN							26.7	86.5	76.2	59.1	58.1	48.4
(WY)							2001	2001	2001	2001	2001	2001

06301850 BIG GOOSE CREEK ABOVE PK DITCH, IN CANYON, NEAR SHERIDAN, WY--Continued

SUMMARY STATISTICS	FOR	2001	WATER YEAR
HIGHEST DAILY MEAN		205	May 16
LOWEST DAILY MEAN		17	Apr 10
ANNUAL SEVEN-DAY MINIMUM		18	Apr 8
MAXIMUM PEAK FLOW		241	May 16
MAXIMUM PEAK STAGE		2.3	4 May 16

e Estimated.

06303500 LITTLE GOOSE CREEK IN CANYON, NEAR BIG HORN, WY

LOCATION.--Lat $44^{\circ}35^{\circ}46^{\circ}$, long $107^{\circ}02^{\circ}22^{\circ}$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$ sec.1, T.53 N., R.85 W., Sheridan County, Hydrologic Unit 10090101, on left bank 100 ft upstream from headgate of Lower Peralta ditch and 6.5 mi southwest of Big Horn.

DRAINAGE AREA. -- 51.6 mi².

PERIOD OF RECORD.--April 1941 to current year (no winter records since 1971).

REVISED RECORDS. -- WDR WY-76-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,860 ft above sea level, from topographic map.

REMARKS.--Records good. Three small reservoirs upstream from station, combined capacity, 860 acre-ft, two of which store some imported water. Water imported into drainage basin upstream from station from East Goose Creek basin is diverted downstream from station for irrigation. Result of discharge measurement, in cubic feet per second, made when station was not in operation, is given below:

Oct. 2 . . . 15.9

COOPERATION. -- Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

		DISCHARG	E, CUBIC	C FEET PEI		WATER YE Y MEAN VA	AR OCTOBEI LUES	R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							6.9	52	86	47	64	44
2							6.6	43	88	48	64	43
3							6.6	39	93	52	62	42
4							6.9	37	87	52	61	39
5							6.9	40	73	51	60	38
6							7.8	45	63	52	60	43
7							8.4	40	54	54	60	47
8							8.4	41	51	53	60	38
9							8.1	48	50	59	56	34
10							7.5	50	45	67	55	33
11							8.1	49	42	72	52	30
12							7.5	56	41	79	52	29
13							7.5	81	54	78	52	27
14							7.2	112	54	77	50	27
15							7.4	112	51	79	52	26
16							7.8	100	48	80	51	23
17							8.0	85	45	85	49	22
18							12	67	43	86	48	27
19							16	63	41	88	48	26
20							17	66	39	87	49	26
21							14	51	38	86	54	25
22							13	49	36	86	52	25
23							12	50	36	83	50	23
24							13	54	36	84	48	21
25							18	64	35	75	47	13
26							26	81	34	72	47	12
27							39	89	34	71	45	11
28							47	74	33	69	45	11
29							50	92	36	68	45	11
30							49	93	48	67	45	11
31								90		64	45	
TOTAL							453.6	2013	1514	2171	1628	827
MEAN							15.1	64.9	50.5	70.0	52.5	27.6
MAX							50	112	93	88	64	47
MIN							6.6	37	33	47	45	11
AC-FT							900	3990	3000	4310	3230	1640
STATIST	CICS OF M	ONTHLY MEAN	DATA FO	OR WATER	YEARS 194	1 - 2001,	BY WATER	YEAR (WY	*			
MEAN	23.6	13.1	10.4	8.58	8.11	8.48	34.8	177	237	104	80.9	51.8
MAX	46.0	26.5	17.5	12.3	13.9	14.1	106	339	502	209	124	90.0
(WY)	1959	1962	1942	1942	1962	1962	1943	1944	1995	1975	1968	1978
MIN	12.7	8.51	6.49	4.99	5.38	5.76	9.46	64.9	50.5	66.6	41.1	20.4
(WY)	1954	1955	1950	1950	1950	1950	1970	2001	2001	1981	1981	1960

06303500 LITTLE GOOSE CREEK IN CANYON, NEAR BIG HORN, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1941 - 2001*
ANNUAL MEAN		63.4
HIGHEST ANNUAL MEAN		83.9 1970
LOWEST ANNUAL MEAN		40.6 1960
HIGHEST DAILY MEAN	112 May 14,15	837 Jun 15 1963
LOWEST DAILY MEAN	6.6 Apr 2,3	3,0 Jan 3 1950
MAXIMUM PEAK FLOW	177 May 14	1350 ^a Jun 15 1963
MAXIMUM PEAK STAGE	2.87 May 14	6.78 Jun 15 1963
ANNUAL RUNOFF (AC-FT)		45900

- * For period of operation. a From rating curve extended above 900 ${\rm ft}^3/{\rm s}.$

06304500 LITTLE GOOSE CREEK AT SHERIDAN, WY

LOCATION.--Lat $44^\circ48^\circ10^\circ$, long $106^\circ57^\circ10^\circ$, in $\mathrm{NE}^{1}/_4$ $\mathrm{NW}^{1}/_4$ $\mathrm{SW}^{1}/_4$ sec.26, T.56 N., R.84 W., Sheridan County, Hydrologic Unit 10090101, at bridge on Sheridan Avenue in Sheridan and 0.6 mi upstream from mouth.

PERIOD OF RECORD.--March 1979 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	
OCT 23	1245	34	673	13.3	128	8.4	656	12.0	8.0	<.041	<.047	<.006	E.011	
FEB														
13	1345	12				7.8	643	-6.0	.00	E.026	.422	E.003	<.018	
MAY														
30	0715	6.8	672	6.4	71	7.7	984	12.0	14.5	<.040	<.050	<.006	<.020	
JUL														
18	1755	3.2	665	10	149	8.2	911	31.0	28.5	E.021	<.050	<.006	<.020	

DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	0.7 UM-MF (COLS., 100 ML
OCT 23 FEB	52	82
13	<1	E2k
MAY 30	E1300k	E1200k
18	160	240

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

06305500 GOOSE CREEK BELOW SHERIDAN, WY

LOCATION.--Lat $44^{\circ}49^{\circ}25^{\circ}$, long $106^{\circ}57^{\circ}40^{\circ}$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec.15, T.56 N., R.84 W., Sheridan County, Hydrologic Unit 10090101, 700 ft north of Sheridan city limits and 0.2 mi downstream from Soldier Creek.

DRAINAGE AREA.--392 mi².

PERIOD OF RECORD.--Water years 1959-65, 1968 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	
OCT														
23	1400	79	672	14.8	146	8.4	660	15.0	9.0	<.041	.414	<.006	.112	
FEB														
13	1515	46				7.9	624	-6.5	.00	E.024	.324	E.004	.137	
MAY														
29	1630	55	665	8.7	110	8.5	395	16.0	20.0	<.040	E.045	<.006	.148	
JUL														
18	1645	4.5	666	11.8	167	8.4	853	32.5	25.5	E.021	.186	.007	.402	

DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	
OCT 23	120	69
FEB 13	E10k	100
MAY 29	>800	E3300k
JUL 18	160	140

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

06305700 GOOSE CREEK NEAR ACME, WY

LOCATION.--Lat $44^{\circ}53'11"$, long $106^{\circ}59'18"$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec.28, T.57 N., R.84 W., Sheridan County, Hydrologic Unit 10090101, on right bank 0.2 mi north of county road, 1.6 mi south of Acme, and 3.4 mi upstream from mouth.

DRAINAGE AREA. -- 411 mi².

PERIOD OF RECORD. -- May 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 3,620 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation by many small reservoirs, combined capacity, about 15,000 acre-ft. Natural flow of stream affected by transbasin diversions, storage reservoirs, diversions for irrigation, and return flow from irrigated areas.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY AUG SEP 89 e65 e64 e68 e50 e85 103 43 23 6.5 12 1 7.2 9.5 32 25 86 78 e60 e64 e79 e52 e86 92 11 3 89 73 e68 e76 e72 e64 e82 71 35 21 10 9.1 74 4 80 70 e68 e72 e62 e56 e86 61 16 12 92 11 6.9 e69 e67 e76 e62 13 6 78 e70 e71 e90 58 69 7.9 7.4 86 e66 e80 11 85 71 e70 e68 e58 e70 e92 57 47 9.6 12 17 26 8 81 e50 e70 e60 e40 e71 e90 48 33 11 58 e54 9.1 83 e50 e55 e38 e76 e78 39 24 20 40 10 85 e50 e42 38 21 9.3 27 35 e49 11 82 e45 e38 e64 e47 e72 e88 38 18 5.0 42 31 e39 12 80 e45 e68 e45 e84 e90 30 25 4.4 52 31 13 79 e49 e42 e78 e51 e80 e78 29 53 9.8 64 35 14 76 e54 e51 e74 e43 e80 e76 22 79 80 33 e45 15 78 e58 e70 e48 e60 e77 23 76 7.6 80 42 58 16 78 e54 e39 e60 e42 e64 e78 64 7.1 88 54 75 73 e66 e78 53 45 8.3 17 e56 e58 e54 e48 e72 132 108 48 18 e54 e50 e62 e54 e88 108 41 95 74 e60 e52 e58 e68 e76 e105 65 38 6.3 38 20 73 e54 e43 e62 e74 e82 e108 53 33 6.5 159 35 21 74 59 29 e60 e40 e62 e80 33 5.4 103 77 77 5.1 e4.0 22 e65 e54 e66 e64 e76 e94 39 27 4.3 27 23 e52 18 26 e58 e69 e80 e88 26 4.6 e66 80 e54 28 e98 18 e3.0 7.5 25 84 e66 e54 e62 e62 e68 e94 13 19 e3.3 28 26 86 e68 e52 e54 e78 e100 12 18 6.4 24 27 84 e66 e67 e52 e50 e73 e72 e100 32 73 18 6.2 5.3 e5.0 e6.0 21 19 e50 28 23 80 e62 e75 e110 e45 77 75 e58 29 e62 e52 e86 64 25 5.9 e6.2 18 30 e69 e72 e62 ___ e84 e100 66 23 4.9 e7 0 18 76 5.3 31 e57 e72 e60 57 e8.5 TOTAL. 2487 1851 1733 1951 1596 2226 2697 1625 1176 294 8 1197 2 841 4 80.2 61.7 62.9 71.8 39.2 28.0 MEAN 55.9 89.9 52.4 9.51 38.6 MAX 89 78 75 78 79 86 110 132 92 25 159 58 6.9 MIN 73 45 38 50 38 50 72 12 18 4.3 3.0 4930 3440 3870 3170 5350 3220 2330 2370 1670 AC-FT 4420 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1984 - 2001, BY WATER YEAR (WY) MEAN 106 97.0 80.7 71.3 87.4 101 136 396 593 153 63.2 87.9 156 144 107 109 137 195 891 1592 547 157 158 MAX 185 (WY) 1985 1999 1996 1990 1996 1994 1994 1984 1995 1995 1998 1998 72.0 1989 MTN 49.9 59.4 54.2 48.4 36 7 70 3 52 4 39 2 9 51 15 6 28 0 1986 1989 1989 2001 2001 1989 1989 1992 1988 (WY) 2001 2001

06305700 GOOSE CREEK NEAR ACME, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALE	NDAR YEAR	FOR 2001 WATER YEAR	WATER YEAR	S 1984 - 2001
ANNUAL TOTAL	46891		19675.4		
ANNUAL MEAN	128		53.9	158	
HIGHEST ANNUAL MEAN				303	1995
LOWEST ANNUAL MEAN				53.9	2001
HIGHEST DAILY MEAN	1660	May 18	159 Aug 20	3040	Jun 17 1995
LOWEST DAILY MEAN	23	Jul 27-29	3.0 Aug 24	3.0	Aug 24 2001
		Aug 2,3			
ANNUAL SEVEN-DAY MINIMUM	24	Jul 27	4.3 Aug 22 151 ^a _h May 16	4.3	Aug 22 2001
MAXIMUM PEAK FLOW			151 ^a _h May 16	3330	Jun 17 1995
MAXIMUM PEAK STAGE			151 May 16 3.31b Jan 9	7.65 ^C	Feb 25 1986
ANNUAL RUNOFF (AC-FT)	93010		39030	114700	
10 PERCENT EXCEEDS	243		86	351	
50 PERCENT EXCEEDS	73		58	93	
90 PERCENT EXCEEDS	36		9.2	42	

Gage height, 3.03 ft.
Backwater from ice.
From floodmarks, backwater from ice.
Estimated. a b c e

06306250 PRAIRIE DOG CREEK NEAR ACME, WY

LOCATION.--Lat $44^{\circ}59'02"$, long $106^{\circ}50'21"$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ SW $^{1}/_{4}$ sec. 23, T.58 N., R.83 W., Sheridan County, Hydrologic Unit 10090101, on right bank 600 ft upstream from county bridge, 0.9 mi upstream from mouth, 2.8 mi downstream from Coutant Creek, and 7.6 mi northeast of Acme.

WATER-DISCHARGE RECORDS

DRAINAGE AREA. -- 358 mi².

PERIOD OF RECORD.--October 1970 to September 1979, June 2000 to current year. Records for May 1965 to September 1970 in files of Office of Wyoming State Engineer.

GAGE.--Water-stage recorder. Elevation of gage is 3,450 ft, from topographic map.

REMARKS.--Records fair except those for Mar. 15 to May 9, and those for estimated daily discharges, which are poor. Diversions for irrigation of about 13,600 acres above station, of which about 60 acres are below station. Flow supplemented by 3 transbasin diversions from North Piney Creek and South Piney Creek via Prairie Dog Creek ditch, Piney and Cruse ditch, and Mead-Coffeen ditch.

		DISCHA	RGE, CUBIO	C FEET PEF		WATER YEA		R 2000 TO) SEPTEMBE	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	56 46 45 44 40	19 21 24 24 22	e15 e14 e15 e16 e17	e16 e17 e20 e19 e21	e18 e19 e18 e18 e18	e19 e22 e23 e24 e27	39 36 34 34 32	27 25 26 22 20	.71 .79 .92 1.5 1.3	9.6 4.8 1.8 1.4	3.2 2.9 3.1 2.8 2.3	1.4 3.8 4.0 2.8 2.3
6 7 8 9 10	40 42 42 44 52	21 e16 e14 e13 e13	e19 e18 e15 e13 e11	e19 e17 e16 e17 e18	e17 e14 e12 e13 e14	e36 e43 e47 e62 e100	29 29 28 26 24	17 16 9.2 9.2	2.8 2.6 1.7 1.8	.63 .48 .55 .58	2.8 2.7 3.2 3.1 2.3	2.1 5.0 13 20 18
11 12 13 14 15	46 36 32 29 27	e12 e13 e15 e15 e15	e10 e9.0 e10 e11 e10	e17 e17 e17 e17 e16	e15 e16 e16 e14 e15	e200 e130 e60 e66 56	20 18 17 16 16	12 7.9 11 7.8 2.6	1.8 2.0 4.8 17	.98 .77 .75 8.1	1.3 1.9 2.3 3.2 2.7	15 14 15 16 16
16 17 18 19 20	27 27 26 25 25	e15 e15 e16 e15 e16	e9.6 e11 e12 e13 e12	e16 e15 e16 e16 e16	e14 e15 e17 e16 e16	42 45 45 42 42	15 14 14 14 14	1.6 1.2 1.0 .71	44 46 47 45	8.7 7.2 6.9 5.3 4.5	4.3 3.9 3.1 3.4 4.4	16 19 20 19 17
21 22 23 24 25	25 24 24 25 25	e17 e18 e18 e17 e16	e11 e13 e12 e12 e13	e15 e16 e15 e14 e16	e15 e17 e16 e15 e15	43 43 44 46 42	19 20 23 23 21	.94 .75 .80 .85	34 30 27 27 24	5.4 3.9 4.8 5.7 6.5	3.8 3.3 3.0 2.2 4.1	17 17 19 19
26 27 28 29 30 31	24 24 21 20 20 19	e16 e15 e15 e13 e14	e15 e18 e17 e15 e16 e15	e16 e15 e14 e16 e15 e16	e14 e13 e12 	40 40 41 40 35 38	17 15 13 14 20	.94 1.1 .86 1.2 .99	19 16 13 11 8.9	5.9 6.2 5.8 6.3 3.9 3.9	4.0 3.7 3.6 2.6 1.7 2.0	18 16 14 13 13
TOTAL MEAN MAX MIN AC-FT	1002 32.3 56 19 1990	493 16.4 24 12 978	417.6 13.5 19 9.0 828	511 16.5 21 14 1010	432 15.4 19 12 857	1583 51.1 200 19 3140	654 21.8 39 13	242.35 7.82 27 .71 481	503.42 16.8 47 .71 999	136.02 4.39 13 .48 270	92.9 3.00 4.4 1.3 184	403.4 13.4 20 1.4 800
STATIST	CICS OF MO	ONTHLY ME	AN DATA FO	OR WATER Y	EARS 1971	1 - 2001,	BY WATER	YEAR (W	Y)*			
MEAN MAX (WY) MIN (WY)	40.1 59.5 1974 22.3 1976	31.4 43.6 1974 16.4 2001	25.3 32.3 1976 13.5 2001	19.7 26.7 1974 13.5 1975	38.1 82.7 1974 15.4 2001	82.6 167 1972 36.5 1977	64.1 101 1971 21.8 2001	92.1 384 1978 7.82 2001	38.6 86.2 1978 16.8 2001	20.3 45.0 1975 4.39 2001	26.2 45.7 1978 3.00 2001	38.0 79.0 1973 13.4 2001

06306250 PRAIRIE DOG CREEK NEAR ACME, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEA	FOR 2001 WATER YEAR	WATER YEARS 1971 - 2001
ANNUAL TOTAL		6470.69	
ANNUAL MEAN		17.7	43.3
HIGHEST ANNUAL MEAN			72.8 1978
LOWEST ANNUAL MEAN			17.7 2001
HIGHEST DAILY MEAN	81 Sep 2	27 200 Mar 11	3090 May 19 1978
LOWEST DAILY MEAN	2.2 Jul 1	.3 .48 Jul 7	.48 Jul 7 2001
ANNUAL SEVEN-DAY MINIMUM		.70 Jul 5	70 Jul 5 2001
MAXIMUM PEAK FLOW	88 Sep 2	27 260 ^d Mar 11	
MAXIMUM PEAK STAGE	274 Sep 2	7 4.71 Mar 11	12.60 May 18 1978
ANNUAL RUNOFF (AC-FT)		12830	31380
10 PERCENT EXCEEDS		40	70
50 PERCENT EXCEEDS		15	31
90 PERCENT EXCEEDS		1.8	13

For period of operation. About. From rating curve extended above 760 ${\rm ft^3/s}$ on basis of slope-area determination of peak flow. Backwater from ice. Estimated. a b c e

06306250 PRAIRIE DOG CREEK NEAR ACME, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1976-1992, April 2000 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 24	0805	27	675	10.4	96		1390	4.0	6.5	670	131	84.4	7.46
NOV 28	1030	15	678	11.1	86	8.3	1430	1.5	.00	730	147	88.3	7.04
DEC 14	0815	11	666	9.6	76	7.9	1640	-15.0	.00	870	172	106	8.13
JAN 11	1650	E17		10.7		7.9	1490	-5.0	.00	720	143	88.6	7.52
FEB 13	0945	16				8.0	1600	-5.0	.00	770	150	95.5	6.92
MAR 13	0940	63	670	10.7	83	7.9	993	9.5	.00	430	80.6	54.6	12.4
APR 11 MAY	1415	20	670	10.8	105	8.1	1470	8.5	8.5	730	140	92.5	8.51
09 JUN	1615	28	670	10.4	127	8.3	1410	21.0	18.5	610	111	79.7	7.69
08 JUL	1900	1.8	675	8.6	115	8.1	1560	26.0	23.5	670	121	88.6	8.45
19 AUG	0750	5.1	674	7.7	91	7.7	1870	18.5	17.0	810	152	105	9.09
15 SEP	1150	3.3	677	10.3	129	7.9	2180	28.5	20.0	920	157	127	11.9
12	1200	15				7.9	1330	24.0	15.0	610	118	75.4	7.08
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB)
OCT 24 NOV	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	INUM, DIS- SOLVED (UG/L AS AL)	MONY, DIS- SOLVED (UG/L AS SB)
OCT 24 NOV 28 DEC	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 351 390	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945) 466	DIS- SOLVED (TONS PER AC-FT) (70303) 1.36	DIS- SOLVED (TONS PER DAY) (70302) 72.9	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 978 1040	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 28	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 28 DEC 14 JAN	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 63.6 64.3	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 351 390 440	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.6 4.8	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 11.0 13.4	DIS- SOLVED (MG/L AS SO4) (00945) 466 476 594	DIS- SOLVED (TONS PER AC-FT) (70303) 1.36 1.53	DIS- SOLVED (TONS PER DAY) (70302) 72.9 45.4 38.7	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1000 1120 1300	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 978 1040	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 28 DEC 14 JAN 11 FEB 13 MAR 13	AD- SORP- TION RATIO (00931) 1 1	DIS- SOLVED (MG/L AS NA) (00930) 63.6 64.3 80.0 72.3	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 351 390 440 398	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.6 4.8 5.5	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 11.0 13.4 15.1 13.6	DIS- SOLVED (MG/L AS SO4) (00945) 466 476 594	DIS- SOLVED (TONS PER AC-FT) (70303) 1.36 1.53 1.77	DIS- SOLVED (TONS PER DAY) (70302) 72.9 45.4 38.7	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1000 1120 1300 1160	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 978 1040 1250	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 28 DEC 14 JAN 11 FEB 13 MAR 13 APR 11	AD-SORP-TION RATIO (00931) 1 1 1 1	DIS- SOLVED (MG/L AS NA) (00930) 63.6 64.3 80.0 72.3	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 351 390 440 398 407	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.6 4.8 5.5 4.2	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 11.0 13.4 15.1 13.6	DIS- SOLVED (MG/L AS SO4) (00945) 466 476 594 502	DIS- SOLVED (TONS PER AC-FT) (70303) 1.36 1.53 1.77 1.58	DIS- SOLVED (TONS PER DAY) (70302) 72.9 45.4 38.7	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1000 1120 1300 1160 1250	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 978 1040 1250 1070 1130	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 28 DEC 14 JAN 11 FEB 13 MAR 13 APR 11 APR 09	AD- SORP- TION RATIO (00931) 1 1 1 1 1	DIS- SOLVED (MG/L AS NA) (00930) 63.6 64.3 80.0 72.3 79.0	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 351 390 440 398 407 227	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.6 4.8 5.5 4.2 5.3	RIDE, DIS- SOLVED (MG/L AS F) (00950) .3 .3 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 11.0 13.4 15.1 13.6 13.7	DIS- SOLVED (MG/L AS SO4) (00945) 466 476 594 502 532 325	DIS- SOLVED (TONS PER AC-FT) (70303) 1.36 1.53 1.77 1.58 1.70	DIS- SOLVED (TONS PER DAY) (70302) 72.9 45.4 38.7 54.1	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1000 1120 1300 1160 1250 746	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 978 1040 1250 1070 1130 671	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 28 DEC 14 JAN 11 FEB 13 MAR 13 APR 11 MAY 09 JUNN 08	AD- SORP- TION RATIO (00931) 1 1 1 1 1 1	DIS- SOLVED (MG/L AS NA) (00930) 63.6 64.3 80.0 72.3 79.0 47.4	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 351 390 440 398 407 227 330	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.6 4.8 5.5 4.2 5.3 5.7 6.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .3 .3 .3 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 11.0 13.4 15.1 13.6 13.7 8.6	DIS- SOLVED (MG/L AS SO4) (00945) 466 476 594 502 532 325 525	DIS- SOLVED (TONS PER AC-FT) (70303) 1.36 1.53 1.77 1.58 1.70	DIS- SOLVED (TONS PER DAY) (70302) 72.9 45.4 38.7 54.1 127 61.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1000 1120 1300 1160 1250 746 1150	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 978 1040 1250 1070 1130 671 1060	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 28 DEC 14 JAN 11 FEB 13 MAR 13 MAR 11 MAY 09 JUN 08 JUL 19	AD- SORP- TION RATIO (00931) 1 1 1 1 1 1 1 2	DIS- SOLVED (MG/L AS NA) (00930) 63.6 64.3 80.0 72.3 79.0 47.4 79.3 88.1	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 351 390 440 398 407 227 330 275	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.6 4.8 5.5 4.2 5.3 5.7 6.0 4.3	RIDE, DIS- SOLVED (MG/L AS F) (00950) .3 .3 .3 .3 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 11.0 13.4 15.1 13.6 13.7 8.6 8.1	DIS- SOLVED (MG/L AS SO4) (00945) 466 476 594 502 532 325 525 510	DIS- SOLVED (TONS PER AC-FT) (70303) 1.36 1.53 1.77 1.58 1.70 1.01 1.56	DIS- SOLVED (TONS PER DAY) (70302) 72.9 45.4 38.7 54.1 127 61.6 81.2	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1000 1120 1300 1160 1250 746 1150	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 978 1040 1250 1070 1130 671 1060 978	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 28 DEC 14 JAN 11 FEB 13 MAR 11 APR 11 MAY 09 JUN 08 JUL 19 AUG 15	AD- SORP- TION RATIO (00931) 1 1 1 1 1 1 2 2	DIS- SOLVED (MG/L AS NA) (00930) 63.6 64.3 80.0 72.3 79.0 47.4 79.3 88.1	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 351 390 440 398 407 227 330 275 279	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.6 4.8 5.5 4.2 5.3 5.7 6.0 4.3	RIDE, DIS- SOLVED (MG/L AS F) (00950) .3 .3 .3 .3 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 11.0 13.4 15.1 13.6 13.7 8.6 8.1	DIS- SOLVED (MG/L AS SO4) (00945) 466 476 594 502 532 325 525 510 606	DIS- SOLVED (TONS PER AC-FT) (70303) 1.36 1.53 1.77 1.58 1.70 1.01 1.56 1.46	DIS- SOLVED (TONS PER DAY) (70302) 72.9 45.4 38.7 54.1 127 61.6 81.2 5.81	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1000 1120 1300 1160 1250 746 1150 1070	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 978 1040 1250 1070 1130 671 1060 978 1110	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 28 DEC 14 JAN 11 FEB 13 MAR 13 MAR 09 JUN 08 JUL 19 AUG	AD- SORP- TION RATIO (00931) 1 1 1 1 1 1 2 2	DIS- SOLVED (MG/L AS NA) (00930) 63.6 64.3 80.0 72.3 79.0 47.4 79.3 88.1	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 351 390 440 398 407 227 330 275 279 352	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 4.6 4.8 5.5 4.2 5.3 5.7 6.0 4.3 4.3 3.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) .3 .3 .3 .3 .3 .4 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 11.0 13.4 15.1 13.6 13.7 8.6 8.1 10.4 9.9	DIS- SOLVED (MG/L AS SO4) (00945) 466 476 594 502 532 325 525 510 606 720	DIS- SOLVED (TONS PER AC-FT) (70303) 1.36 1.53 1.77 1.58 1.70 1.01 1.56 1.46	DIS- SOLVED (TONS PER DAY) (70302) 72.9 45.4 38.7 54.1 127 61.6 81.2 5.81 19.7	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1000 1120 1300 1160 1250 746 1150 1070 1180	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 978 1040 1250 1070 1130 671 1060 978 1110 1340	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)

06306250 PRAIRIE DOG CREEK NEAR ACME, WY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
OCT 24	<2.0		55.0							М			49.2
NOV 28	<2.0		48.8							<10			50.4
DEC 14	<2.0		54.4							<10			68.6
JAN 11	<2.0		49.5							<10			50.7
FEB 13	<2.0		48.6							<10			53.3
MAR 13	<2.0		116							50			35.7
APR 11	<2.0		47.0							<10			49.4
MAY 09 JUN	<2.0	43.4	50.9	<.06	110	E.02	<.8	.43	2.8	<10	<.08	33.4	87.3
08 JUL	<2.0		41.8							<10			106
19 AUG	E1.4	64.5	62.1	<.06	159	<.04	<.8	.68	4.8	10	<.08	51.3	343
15 SEP	E1.2	47.6	48.1	<.06	185	.04	<.8	.51	6.8	E20	E.05	57.2	195
12	E1.1	39.5	46.0	<.06	118	.10	<.8	.41	4.9	<10	<.08	30.2	113
	DA	TE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)		
	OCT		DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	LIUM, DIS- SOLVED (UG/L AS TL)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)	NATURAL DIS- SOLVED (UG/L AS U)		
	OCT 2 NOV 2	8	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 2 DEC 1	8 4	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 2 DEC 1 JAN 1	4 8 4	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 2 DEC 1 JAN 1 FEB	4 4 4	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 2 DEC 1 JANN 1 FEB 1 MAR	4	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 2 DEC 1 JAN 1 FEB 1 MAR 1 APR	4 8 1 3	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 2 DEC 1 JAN 1 FEB 1 MAR 1 APR 1 MAY 0	4 8 1 3 1	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 2 DEC 1 JAN 1 FEB 1 MAR 1 APR APR 1 MAY 0 JUN 0	4 8 1 3 1 9	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 2 DEC 1 JAN 1 FEB 1 MAR 1 APR APR 1 MAY 0 JUN 0 JUL 1	4 8 1 3 1 9	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.6	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1630	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 2 DEC 1 JAN 1 MAR 1 APR 1 MAY 0 JUN 0 JUL 1	4 8 1 3 1 9 88	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.6	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1630	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703) 7.20		

E -- Estimated value. M -- Presence verified, not quantified.

06306300 TONGUE RIVER AT STATE LINE, NEAR DECKER, MT

LOCATION.--Lat $45^{\circ}00'32"$, long $106^{\circ}50'08"$, in $NW^{1}/_{4}NW^{1}/_{4}NE^{1}/_{4}$ sec.33, T.9 S., R.40 E., Big Horn County, Hydrologic Unit 10090101, on left bank 1 mi north of Wyoming-Montana State line, 1.4 mi southeast of Decker, 1.6 mi upstream from Badger Creek, and at river mile 200.9.

DRAINAGE AREA. -- 1,477 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August 1960 to current year. Records published as "near Decker" May 1928 to September 1938, not equivalent owing to intervening drainage area.

GAGE.--Water-stage recorder. Datum of gage is 3,429.14 ft above sea level (levels by U.S. Army Corps of Engineers).

REMARKS.--Water-discharge records good except those for estimated daily discharges, which are poor. Flow regulated by many small reservoirs in Wyoming, combined capacity, about 15,000 acre-ft. Diversions for irrigation of about 64,300 acres upstream from station. U.S. Geological Survey satellite telemeter at station. Station operated and record provided by the Montana District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e165 e190 e210 9.6 e125 e165 e130 e190 e220 e170 e200 e230 e135 e160 e190 e240 e160 e150 e200 e240 e250 e170 e160 e190 e160 e160 e180 e260 e160 e160 e170 e250 e170 e165 e150 e160 e160 e250 e170 e140 e170 e170 e280 e130 e165 e180 e180 e300 e175 e125 e170 e180 e280 9.3 e180 e130 e180 e190 e270 e185 e260 e135 e190 e180 e180 e140 e185 e190 e240 e175 e125 e185 e185 e230 e180 e145 e180 e200 e230 e190 e140 e180 e210 e230 e135 e220 e185 e180 e220 e230 e130 e190 e230 e180 e190 e125 e180 e240 e220 e130 e230 e220 e185 e190 e195 e130 e180 e240 e220 e200 e130 e190 e230 e210 9 6 e220 8.3 e190 e135 e180 e195 e180 e130 e210 8 7 e180 e210 e170 e130 e175 6.9 e170 e130 e170 e200 8.1 e165 e125 e180 8.6 e130 e160 e200 e125 e190 8.4 TOTAL 405.0 2199.6 170 200 MEAN 54.7 13.1 73.3 MAX MIN 9.6 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1961 - 2001, BY WATER YEAR (WY) MEAN MAX (WY) 95.9 84.5 54.7 73.3 MIN 13.1 (WY)

06306300 TONGUE RIVER AT STATE LINE, NEAR DECKER, MT--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR	YEAR	FOR 2001 WAT	TER YEAR	WATER YEARS	1961 - 2001
ANNUAL TOTAL	127504		59484.6			
ANNUAL MEAN	348		163		453	
HIGHEST ANNUAL MEAN					862	1978
LOWEST ANNUAL MEAN					163	2001
HIGHEST DAILY MEAN	3210 May	y 18	540	May 17	15400	May 19 1978
LOWEST DAILY MEAN	75 Jar	n 3	6.9	Aug 27	5.4	Aug 24 1961
ANNUAL SEVEN-DAY MINIMUM	93 Ser	2 3	8.0	Aug 25	7.2	Aug 22 1961
MAXIMUM PEAK FLOW			8.0 645 ^a ,	May 15	17500	May 12 1978
MAXIMUM PEAK STAGE			5.07 ^k	Mar 11	14.25	May 12 1978
ANNUAL RUNOFF (AC-FT)	252900		118000		328200	
10 PERCENT EXCEEDS	780		250		1080	
50 PERCENT EXCEEDS	184		180		238	
90 PERCENT EXCEEDS	104		24		120	

Gage height 3.66 ft. Backwater from ice. Estimated. a b e

06306300 TONGUE RIVER AT STATE LINE, NEAR DECKER, MT--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1966 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: October 1965 to September 1976, November 1980 to December 1986, August 2000 to current year. WATER TEMPERATURE: October 1965 to September 1976.

INSTRUMENTATION.--Specific conductance probe installed August 21, 2000.

REMARKS.--Unpublished records for many days of instantaneous water temperature and specific conductance are available in files of the Montana District office.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum daily, 1,490 microsiemens/cm August 12, 1966; minimum daily, 192 microsiemens/cm, June 7, 1976. WATER TEMPERATURE: Maximum, 30.5°C, July 16, 1966; minimum, 0.0°C on many days during winter.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 1,420 microsiemens/cm, Aug. 29, 30; minimum daily, 243 microsiemens/cm, May 16.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 30 NOV	1540	188	673	7.8	77	8.8	695	10.0	9.0	310	62.7	37.6	2.92
28	1215	E170	678	13.1	101	8.6	680	3.5	.00	330	68.3	37.9	2.55
DEC 28	1030	E130				8.3	568	.00	.00	250	55.2	28.4	1.90
JAN 16	1615	E185	677	13.6	105	8.3	586	.00	.00	250	52.6	28.6	1.98
FEB 12	1230	E180	673	10.9	85	8.0	622	-5.0	.00	280	57.8	32.0	2.15
MAR 12	1215	E280	664	9.2	78	8.2	497	10.0	2.5	200	40.4	23.1	8.36
APR 11	0750	185	670	7.8	72	8.4	812	8.0	6.5	370	74.7	44.2	3.46
MAY 15	1000	420	668	6.7	82	8.1	256	19.0	18.5	120	28.8	10.9	1.34
JUN 19	1115	212	679	8.4	98	8.4	570	17.5	17.0	250	50.6	29.9	2.87
JUL 12	1000	48	674	7.5	103	8.4	752	32.0	25.0	300	57.0	39.2	4.01
AUG 24	1030	10	673	7.0	89	8.3	1280	28.0	20.5	420	62.8	63.2	6.58
SEP 04	1030	18	673	5.2	66	8.2	1280	25.0	20.5	380	56.2	58.3	6.21
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
OCT	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
OCT 30 NOV	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
OCT 30 NOV 28 DEC	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 31.5	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 220 261	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 410 438	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001
OCT 30 NOV 28 DEC 28 JAN	AD-SORP-TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 31.5 33.9 22.1	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 220 261 233	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.8 4.2 3.9	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 4.1 6.8 9.4	DIS- SOLVED (MG/L AS SO4) (00945) 135 127 77.4	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 410 438 340	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .009 .152	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .009
OCT 30 NOV 28 DEC 28 JAN 16	AD- SORP- TION RATIO (00931) .8 .8 .6	DIS- SOLVED (MG/L AS NA) (00930) 31.5 33.9 22.1	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 220 261 233 239	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.8 4.2 3.9	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 4.1 6.8 9.4 7.6	DIS- SOLVED (MG/L AS SO4) (00945) 135 127 77.4 75.4	DIS- SOLVED (TONS PER AC-FT) (70303) .56 .60 .46	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 410 438 340	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .77 .18 .26	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .009 .152 .301	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .009 .006 .003
OCT 30 NOV 28 DEC 28 JAN 16 FEB 12	AD- SORP- TION RATIO (00931) .8 .8 .6 .7	DIS- SOLVED (MG/L AS NA) (00930) 31.5 33.9 22.1 25.9 26.4	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 220 261 233 239 254	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.8 4.2 3.9 3.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) .3 .4 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 4.1 6.8 9.4 7.6 8.9	DIS- SOLVED (MG/L AS SO4) (00945) 135 127 77.4 75.4 94.3	DIS- SOLVED (TONS PER AC-FT) (70303) .56 .60 .46 .46	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (70301) 410 438 340 340 381	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .77 .18 .26 .14 .18	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .009 .152 .301 .202 .270	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .009 .006 .003
OCT 30 NOV 28 DEC 28 JAN 16 FEB 12	AD- SORP- TION RATIO (00931) .8 .8 .6	DIS- SOLVED (MG/L AS NA) (00930) 31.5 33.9 22.1	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 220 261 233 239 254 177	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.8 4.2 3.9	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 4.1 6.8 9.4 7.6	DIS- SOLVED (MG/L AS SO4) (00945) 135 127 77.4 75.4 94.3 73.8	DIS- SOLVED (TONS PER AC-FT) (70303) .56 .60 .46	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 410 438 340	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .77 .18 .26	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .009 .152 .301	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .009 .006 .003
OCT 30 NOV 28 DEC 28 JAN 16 FEB 12 MAR 12	AD- SORP- TION RATIO (00931) .8 .8 .6 .7	DIS- SOLVED (MG/L AS NA) (00930) 31.5 33.9 22.1 25.9 26.4	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 220 261 233 239 254	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.8 4.2 3.9 3.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) .3 .4 .3 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 4.1 6.8 9.4 7.6 8.9	DIS- SOLVED (MG/L AS SO4) (00945) 135 127 77.4 75.4 94.3	DIS- SOLVED (TONS PER AC-FT) (70303) .56 .60 .46 .46	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (70301) 410 438 340 340 381	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .77 .18 .26 .14 .18	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .009 .152 .301 .202 .270	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .009 .006 .003
OCT 30 NOV 28 DEC 28 JAN 16 FEB 12 MAR 12 APR 11	AD- SORP- TION RATIO (00931) .8 .8 .6 .7 .7	DIS- SOLVED (MG/L AS NA) (00930) 31.5 33.9 22.1 25.9 26.4 22.8	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 220 261 233 239 254 177	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.8 4.2 3.9 3.1 5.2 5.7	RIDE, DIS- SOLVED (MG/L AS F) (00950) .3 .4 .3 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 4.1 6.8 9.4 7.6 8.9 7.1	DIS- SOLVED (MG/L AS SO4) (00945) 135 127 77.4 75.4 94.3 73.8	DIS- SOLVED (TONS PER AC-FT) (70303) .56 .60 .46 .46 .52	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 410 438 340 340 381 290	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .77 .18 .26 .14 .18	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .009 .152 .301 .202 .270 .379	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .009 .006 .003 .006 .015
OCT 30 NOV 28 DEC 28 JAN 16 FEB 12 MAR 12 APR 11 MAY 15	AD- SORP- TION RATIO (00931) .8 .8 .6 .7 .7	DIS- SOLVED (MG/L AS NA) (00930) 31.5 33.9 22.1 25.9 26.4 22.8 42.2	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 220 261 233 239 254 177 250	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.8 4.2 3.9 3.1 5.2 5.7	RIDE, DIS- SOLVED (MG/L AS F) (00950) .3 .4 .3 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 4.1 6.8 9.4 7.6 8.9 7.1	DIS- SOLVED (MG/L AS SO4) (00945) 135 127 77.4 75.4 94.3 73.8	DIS- SOLVED (TONS PER AC-FT) (70303) .56 .60 .46 .46 .52 .39	DIS- SOLVED (TONS PER DAY) (70302) 208 260	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 410 438 340 340 381 290 521	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .77 .18 .26 .14 .18 2.0 .40	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .009 .152 .301 .202 .270 .379	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .009 .006 .003 .006 .015
OCT 30 NOV 28 DEC 28 JAN 16 FEB 12 MAR 12 APR 11 MAY 15 JUN 19	AD- SORP- TION RATIO (00931) .8 .8 .6 .7 .7 .7	DIS- SOLVED (MG/L AS NA) (00930) 31.5 33.9 22.1 25.9 26.4 22.8 42.2 8.5	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 220 261 233 239 254 177 250 106	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.8 4.2 3.9 3.1 5.2 5.7	RIDE, DIS- SOLVED (MG/L AS F) (00950) .3 .4 .3 .3 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 4.1 6.8 9.4 7.6 8.9 7.1 3.4 6.0	DIS- SOLVED (MG/L AS SO4) (00945) 135 127 77.4 94.3 73.8 198	DIS- SOLVED (TONS PER AC-FT) (70303) .56 .60 .46 .46 .52 .39 .71	DIS- SOLVED (TONS PER DAY) (70302) 208 260	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 410 438 340 340 381 290 521 148	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .77 .18 .26 .14 .18 2.0 .40 .81	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .009 .152 .301 .202 .270 .379 .021 <.005	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .009 .006 .003 .006 .015 .001
OCT 30 NOV 28 DEC 28 JAN 16 FEB 12 MAR 12 MAR 11 MAY 15 JUN 19 JUL 12	AD-SORP-TION RATIO (00931) .8 .8 .6 .7 .7 .7 .7 .7 .7	DIS- SOLVED (MG/L AS NA) (00930) 31.5 33.9 22.1 25.9 26.4 22.8 42.2 8.5 25.9	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 220 261 233 239 254 177 250 106 197	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.8 4.2 3.9 3.1 5.2 5.7 5.6 1.2 2.3	RIDE, DIS- SOLVED (MG/L AS F) (00950) .3 .4 .3 .3 .2 .2	DIS- SOLVED (MG/L AS SIO2) (00955) 4.1 6.8 9.4 7.6 8.9 7.1 3.4 6.0 5.2	DIS- SOLVED (MG/L AS SO4) (00945) 135 127 77.4 75.4 94.3 73.8 198 27.3	DIS- SOLVED (TONS PER AC-FT) (70303) .56 .60 .46 .46 .52 .39 .71 .20	DIS- SOLVED (TONS PER DAY) (70302) 208 260 168 195	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 410 438 340 340 381 290 521 148 340	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .77 .18 .26 .14 .18 2.0 .40 .81 .46	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .009 .152 .301 .202 .270 .379 .021 <.005	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .009 .006 .003 .006 .015 .001 .001 <.001

06306300 TONGUE RIVER AT STATE LINE, NEAR DECKER, MT--Continued

DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
OCT 30	.007	.023											
NOV 28	<.007	.016											
DEC 28	.029	.050											
JAN 16	.027	.045											
FEB 12	.026	.049											
MAR 12	.175	.278											
APR 11	.009	.054											
MAY 15 JUN	<.007	.160	2	E.04	. 4	32.4	<.06	28	<.04	<.8	.13	.5	E.07
19 JUL	<.007	.080	1	.08	.7	43.2	<.06	61	<.04	<.8	.27	1.4	.12
12 AUG	.007	.071	1	.11	1.3	67.4	<.06	94	<.04	<.8	.34	1.7	<.08
24 SEP	<.007	.062	<1	.11	1.2	73.7	<.06	128	.04	<.8	.31	3.2	.08
04	<.007	.050	1	.10	1.1	74.9	<.06	133	<.04	<.8	.27	3.2	E.07
DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	LIUM, DIS- SOLVED (UG/L AS TL)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)	NATURAL DIS- SOLVED (UG/L AS U) (22703)	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 30 NOV	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U)	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
OCT 30 NOV 28 DEC	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 30 NOV 28	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 30 NOV 28 DEC 28 JAN	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 30 NOV 28 DEC 28 JAN 16 FEB	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)	MENT, SUS- PENDED (MG/L) (80154) 128 67 37	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 65
OCT 30 NOV 28 DEC 28 JAN 16 FEB 12 MAR 12 APR 11	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)	MENT, SUS- PENDED (MG/L) (80154) 128 67 37 3	MENT, DIS- CHARGE, SUS- PENDED(T/DAY)(80155) 65
OCT 30 NOV 28 DEC 28 JAN 16 FEB 12 MAR 12 APR 11 MAY	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)	MENT, SUS- PENDED (MG/L) (80154) 128 67 37 3 36 39	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 65
OCT 30 NOV 28 DEC 28 JAN 16 FEB 12 MAR 12 APR 11 MAY 15 JUN 19	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)	MENT, SUS- PENDED (MG/L) (80154) 128 67 37 3 36 39	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 65 62
OCT 30 NOV 28 DEC 28 JAN 16 FEB 12 MAR 12 APR 11 MAY 15 JUN 19 JUL 12	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 116	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703)	MENT, SUS- PENDED (MG/L) (80154) 128 67 37 3 36 39 124	MENT, DIS- CHARGE, SUS- PENDED((17/DAY)(80155)) 65 62 130
OCT 30 NOV 28 DEC 28 JAN 16 FEB 12 MAR 12 APR 11 MAY 15 JUN 19	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 116 407	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	NATURAL DIS- SOLVED (UG/L AS U) (22703) 69 3.08	MENT, SUS- PENDED (MG/L) (80154) 128 67 37 3 36 39 124 115	MENT, DIS- DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 65 62 130 97

E -- Estimated value.

06306300 TONGUE RIVER AT STATE LINE, NEAR DECKER, MT--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

					DAILY	MEAN VAL	UES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	578	730	653	569	497	610	802	414	438	746	1360	1410
2	585	728	663	566	475	629	795	380	457	747	1330	1370
3	599	733	665	571	459	636	802	401	473	721	1320	1360
4	600	733	648	572	460	624	805	427	471	713	1320	1270
5	617	737	643	576	458	602	797	465	491	728	1320	1210
6	625	729	643	568	446	595	789	479	514	725	1320	1170
7	636	732	634	565	443	577	780	450	520	709	1330	1140
8	642	756	624	573	448	563	772	441	507	714	1330	1160
9	652	784	622	593	468	548	766	456	524	719	1330	962
10	655	772	642	630	485	536	762	411	537	735	1330	918
11	643	830	676	632	497	514	782	364	544	760	1340	855
12	646	851	714	620	502	524	781	351	556	764	1340	844
13	661	843	744	597	505	573	782	346	568	776	1360	850
14	673	811	727	585	488	575	778	313	583	781	1360	848
15	683	804	711	579	498	570	780	260	586	812	1360	859
16	685	771	681	578	509	623	775	243	584	900	1350	859
17	696	744	652	591	513	687	770	286	568	908	1320	834
18	701	721	625	628	516	711	758	304	553	913	1310	832
19	705	691	609	627	519	728	766	287	572	925	1310	837
20	703	679	587	593	514	717	736	310	585	926	1300	828
21	712	672	578	569	517	739	727	329	593	956	1300	826
22	714	664	581	546	530	731	709	350	613	982	1310	828
23	706	658	586	552	531	745	701	379	638	936	1290	836
24	700	661	583	538	540	789	727	396	673	896	1240	845
25	708	659	572	534	543	816	741	418	684	1020	1230	839
26 27 28 29 30 31	702 694 692 696 710 739	653 651 653 662 662	569 568 567 567 560 570	543 533 540 554 549 532	546 577 592 	834 831 817 814 793 785	743 712 622 533 467	414 414 403 418 455 410	694 709 713 709 710	1210 1300 1350 1380 1390 1400	1290 1390 1380 1420 1420 1390	840 843 858 862 861
MEAN	670	726	628	574	503	672	742	380	579	921	1330	962
MAX	739	851	744	632	592	834	805	479	713	1400	1420	1410
MIN	578	651	560	532	443	514	467	243	438	709	1230	826

06309200 MIDDLE FORK POWDER RIVER NEAR BARNUM, WY

LOCATION.--Lat $43^{\circ}34^{\circ}40^{\circ}$, long $107^{\circ}08^{\circ}16^{\circ}$, in $\text{SE}^{1}/_{4}$ $\text{SW}^{1}/_{4}$ $\text{NE}^{1}/_{4}$ sec.26, T.42 N., R.86 W., Washakie County, Hydrologic Unit 10090201, on left bank 1,100 ft downstream from Rock Creek and 13 mi southwest of Barnum.

DRAINAGE AREA. -- 45.2 mi².

PERIOD OF RECORD. -- September 1961 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 7,220 ft above sea level, from topographic map. Prior to Oct. 1, 1970, at site 1,000 ft upstream at different datum. Oct. 1, 1970 to Aug. 17, 1987, at site 100 ft upstream at datum 6.78 ft higher (gage operated concurrently with present site Sept. 15, 1983 to Aug. 17, 1987).

REMARKS.--Records good except those for estimated daily discharges, which are poor. No diversion upstream from station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV JAN FEB JUL AUG 6.6 e5.6 e5.0 4.8 e5.2 e4.7 7.3 e160 2.0 6.5 5.0 4.8 1 7.6 7.7 4.7 e5.2 19 6.3 4.7 6.6 e5.2 e5.8 e4.8 e140 5.0 3 6.6 e5.6 e5.6 4.6 e5.2 e5.0 e110 21 6.1 5 0 4.5 8.9 20 e5.0 6.0 4.5 4 6.6 e5.8 e5.6 4.6 5.1 e90 5.0 5 4.8 5.0 10 19 4.5 6.6 e6.2 e5.0 e80 6.3 6 4.8 5.7 6.6 e5.6 5.5 4.9 e5.0 12 e66 16 5.0 4.5 6.5 e5.0 5.3 4.8 e4.6 e5.4 12 15 5.8 4.8 4.8 e54 8 e5.2 5 3 e4 6 e4 1 e5 6 11 63 14 5.6 4 8 5 1 6.7 77 4.8 e5.4 5.3 e4.8 e4.5 e6.2 11 13 54 4.8 10 6.6 e5.2 5.2 e5.0 e4.6 e5.4 10 76 13 13 5.0 4.8 11 6.8 e4.8 e5.0 4.9 e4.7 e5.6 9.9 71 13 9.0 4.9 4.9 e5.0 6.2 12 6.7 e5.0 4.8 e4.9 e5.8 9.1 68 13 4.8 5.0 13 e7.0 9.3 15 6.6 e5.2 e5.0 4.7 e4.6 67 4.8 4.8 14 6.6 e5.6 e5.0 e4.4 e5.2 8.5 70 6.4 4.8 5.4 15 6.3 e5.8 e5.2 e4.6 e4.4 7.2 10 66 19 5.6 4.8 6.9 16 6.3 e5.8 e5.0 e4.6 e4.4 8.2 8.7 68 16 5.6 4.8 4.8 6.3 6.0 e4.3 e4.2 8.1 54 45 13 12 5.4 17 e4.9 e4.4 11 4.8 4.8 18 18 e5.0 e4.5 4.8 4.8 5.9 19 6.0 e5.2 e4.7 e4.2 6.0 40 11 5.3 4.8 20 5.6 6.0 e5.4 e5.0 e4.1 6.6 21 40 1.0 5.3 4.8 4.5 21 6.0 41 9.7 4.5 5.6 e5.0 e4.0 16 5.3 4.8 5.6 5.6 e5.0 e5.0 e4.8 4.7 e4.2 e4.1 7.9 9.0 9.0 8.7 5.3 5.3 4.5 4.5 22 6.0 14 37 4.8 23 6.0 13 33 4.8 8.0 29 25 8.0 5.6 e5.0 5.0 e4.0 7.7 22 27 8.4 5.0 4.8 4.8 26 5.6 5.0 5.1 e3.9 33 26 7.9 5.0 4.8 4.8 27 6.9 6.3 5.6 5.6 5.0 5.3 5.3 e3 8 6.5 9.9 46 33 7.7 7.3 5.0 4.8 4.8 28 5.0 27 4.8 69 5.0 4.8 e4.3 29 6.2 5.6 5.0 e5.2 7.2 103 24 6.9 5.0 4.8 4.8 e5.2 e5.2 30 6.0 5.2 5 1 ___ 6 6 137 22 6.8 5.0 4 8 4.8 21 4.8 31 e6.0 4.8 7.8 5.0 TOTAL. 198 8 167 9 159 9 149 8 124 9 204 4 693 N 1825 390 1 231 8 150 3 144 7 5.60 5.16 6.59 13.0 4.85 4.82 MEAN 6.41 4.83 4.46 23.1 58.9 137 7.3 MAX 8.0 6.2 5.8 5.3 5.2 9.9 160 21 54 5.0 6.9 MIN 5.6 4.8 4.8 4.4 3.8 4.7 21 6.8 5.0 4.8 4.5 AC-FT 405 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1962 - 2001, BY WATER YEAR (WY) ME AN 7.16 6.65 5.76 5.22 7.78 5.37 6.78 34.3 160 91.9 299 18.3 8.71 7.34 15.1 22.9 10.3 10.1 14.2 106 18.3 17.0 MAX 326 39.9 (WY) 1999 1999 1999 1983 1969 1972 1987 1999 1975 1975 1968 1968 MTN 2 45 2 00 2 75 2.48 3 74 4.05 8.00 56 2 13 N 7 26 4.34 4.16 1962 1962 1992 1974 1963 1989 1970 1966 1969 (WY) 1963 1965 2001

06309200 MIDDLE FORK POWDER RIVER NEAR BARNUM, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1962 - 2001
ANNUAL TOTAL	8801.6	4440.6	
ANNUAL MEAN	24.0	12.2	30.0
HIGHEST ANNUAL MEAN			51.4 1999
LOWEST ANNUAL MEAN			12.2 2001
HIGHEST DAILY MEAN	281 May 5	160 May 1	954 Apr 29 1999
LOWEST DAILY MEAN	4.8 Nov 11	3.8 Feb 27	1.0 Dec 15 1964
ANNUAL SEVEN-DAY MINIMUM	5.0 Dec 25	4.0 Feb 21	1,2 Jan 22 1966
MAXIMUM PEAK FLOW		1040 Jul 9	7110 ^a _h Jun 15 1963
MAXIMUM PEAK STAGE		9.40 Jul 9	12.60 Jun 15 1963
ANNUAL RUNOFF (AC-FT)	17460	8810	21700
10 PERCENT EXCEEDS	58	22	75
50 PERCENT EXCEEDS	7.9	5.6	7.2
90 PERCENT EXCEEDS	5.5	4.7	4.6

a On basis of slope-area measurement of peak flow.b From floodmarks, site and datum then in use.e Estimated.

06311000 NORTH FORK POWDER RIVER NEAR HAZELTON, WY

LOCATION.--Lat $44^{\circ}01^{\circ}40^{\circ}$, long $107^{\circ}04^{\circ}49^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec.21, T.47 N., R.85 W., Johnson County, Hydrologic Unit 10090201, on left bank 0.5 mi upstream from Dullknife Reservoir, 0.6 mi downstream from Twin Creek, 7.2 mi southwest of Hazelton, and 19 mi northwest of Mayoworth.

DRAINAGE AREA. -- 24.5 mi².

PERIOD OF RECORD.--September 1946 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.--WSP 1279: 1947-48(M), 1949, 1950-51(M), 1952. WDR WY-98: 1997.

GAGE.--Water-stage recorder. Elevation of gage is 8,180 ft above sea level, from topographic map. Prior to Oct. 1, 1966, at site 0.7 mi downstream at different datum. Oct. 1, 1966 to Aug. 26, 1986, at site 0.1 mi upstream at different datum.

REMARKS.--Records good except those for May 7 to June 18, which are fair, and those for estimated daily discharges, which are poor. No diversion upstream from station.

		DISCHA	RGE, CUBIC	C FEET PE		WATER YE MEAN VA	AR OCTOBEI LUES	R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e3.6 e3.6 e3.6 e3.6	3.5 3.6 3.3 3.8 3.4	2.3 2.4 2.5 2.5 2.5	2.2 2.2 2.3 2.3 2.4	e1.3 e1.4 e1.4 e1.5 e1.4	e1.3 e1.4 e1.4 e1.5 e1.4	1.7 1.6 1.7 1.7	e50 38 18 17 28	10 10 15 15	5.1 4.8 4.5 4.4 4.7	2.8 2.7 2.7 2.7 2.7	2.0 1.9 1.9 1.8 1.9
6 7 8 9 10	e3.6 e3.5 e3.5 e3.5 e3.5	3.2 3.1 3.0 3.5 3.3	2.5 2.5 2.6 2.6 2.6	2.2 e2.1 e2.1 e2.1 e2.0	e1.4 e1.3 e1.3 e1.2 e1.2	e1.4 e1.5 e1.5 e1.5 e1.4	1.8 1.7 1.7 1.6 1.6	33 19 22 36 32	11 10 9.1 8.6 8.2	4.4 4.3 4.2 5.6 8.0	2.5 2.4 2.7 3.3 4.4	3.0 4.1 4.4 4.2 4.4
11 12 13 14 15	e3.6 e3.4 e3.4 e3.4	2.8 2.6 2.5 2.4 2.5	2.5 e2.3 e2.4 e2.5 e2.4	e2.0 e2.1 e2.0 e1.9 e1.8	e1.2 e1.3 e1.4 e1.3	e1.4 e1.5 e1.6 e1.5 e1.4	1.7 1.7 1.7 1.8 1.8	26 25 23 22 20	7.9 8.8 13 14 13	18 7.6 6.8 6.4 9.8	3.0 2.7 2.7 2.7 4.0	3.0 2.5 2.4 3.3 8.2
16 17 18 19 20	e3.4 e3.4 3.4 3.3	2.5 2.4 2.4 2.6 2.6	e2.3 e2.3 e2.3 e2.4 e2.3	e1.7 e1.7 e1.7 e1.8 e1.7	1.3 1.3 1.3 1.3	e1.4 e1.5 e1.5 e1.4 e1.5	1.8 2.1 e2.5 e5.0 e9.0	24 17 13 13	11 9.0 8.5 8.2 8.1	7.6 5.2 4.5 4.3	3.5 3.2 2.7 2.5 2.5	3.9 3.0 2.9 2.7 2.5
21 22 23 24 25	3.4 3.5 3.3 3.5 3.6	2.5 2.5 2.5 2.4 2.3	2.3 2.2 2.3 2.2 2.2	e1.6 e1.5 1.5 1.4	1.4 e1.4 e1.5 e1.5	1.5 1.6 1.6 1.6	e8.0 e7.0 e6.0 e5.0 e7.0	13 13 12 11	7.4 6.9 6.5 6.3	3.8 3.8 3.8 4.2 3.8	2.6 2.5 2.5 2.3 2.2	2.5 2.4 2.4 2.4 2.1
26 27 28 29 30 31	3.6 3.4 3.5 3.3 3.3	2.3 2.4 2.4 2.3 2.3	2.2 2.3 2.3 2.2 2.4 2.2	e1.4 e1.3 e1.3 e1.4 e1.3	e1.4 e1.4 e1.4 	1.6 1.6 1.6 1.6 1.6	e10 e15 e20 e30 e40	11 15 18 23 14 12	5.7 5.7 5.4 5.1 5.1	3.7 4.1 3.5 3.3 3.0 2.9	2.1 2.0 2.0 2.0 2.0 2.0	2.1 2.1 2.1 2.1 2.2
TOTAL MEAN MAX MIN AC-FT	107.6 3.47 3.6 3.3 213	82.9 2.76 3.8 2.3 164	73.5 2.37 2.6 2.2 146	55.9 1.80 2.4 1.3 111	37.9 1.35 1.5 1.2 75	46.5 1.50 1.6 1.3 92	193.9 6.46 40 1.6 385	641 20.7 50 10 1270	272.5 9.08 15 5.1 541	164.1 5.29 18 2.9 325	82.6 2.66 4.4 2.0 164	86.4 2.88 8.2 1.8 171
STATIS	TICS OF M	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 1946	5 - 2001,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	4.37 10.4 1983 2.03 1961	3.52 10.1 1983 1.70 1981	2.82 6.96 1983 1.41 1967	2.31 4.50 1958 .80 1949	2.14 4.00 1958 1.00 1959	2.25 4.99 1960 1.19 1967	9.11 35.7 1987 1.09 1961	60.4 119 1947 20.7 2001	64.0 178 1967 9.08 2001	17.1 46.8 1975 4.88 1960	7.02 13.3 1997 2.66 2001	5.01 9.74 1982 2.47 1960

06311000 NORTH FORK POWDER RIVER NEAR HAZELTON, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1946 - 2001
ANNUAL TOTAL	4883.2	1844.8	
ANNUAL MEAN	13.3	5.05	15.0
HIGHEST ANNUAL MEAN			26.7 1967
LOWEST ANNUAL MEAN			5.05 2001
HIGHEST DAILY MEAN	142 May 17	50 May 1	354 Jun 15 1953
LOWEST DAILY MEAN	1.6 Feb 29	1.2 Feb 9	.60 ^a Oct 30 1960
ANNUAL SEVEN-DAY MINIMUM	1.6 Feb 29	1 _k 3 Feb 6	.64 Apr 12 1961 886 _f Jun 15 1953
MAXIMUM PEAK FLOW		1200 3 20	886 ^C ₌ Jun 15 1953
MAXIMUM PEAK STAGE		4.38 ^d Apr 29	6.21 May 14 1984
ANNUAL RUNOFF (AC-FT)	9690	3660	10900
10 PERCENT EXCEEDS	43	13	43
50 PERCENT EXCEEDS	3.3	2.5	3.9
90 PERCENT EXCEEDS	1.8	1.4	1.9

- May have been less during winter months of water years 1947 and 1948.

 About.

 Gage height, 4.34 ft, site and datum then in use, from rating curve extended above 110 ft³/s, on basis of slope-area measurement of peak flow.

 Backwater from ice.

 Estimated. a b c
- d
- Backwater from ice, site and datum then in use.

06311400 NORTH FORK POWDER RIVER BELOW PASS CREEK, NEAR MAYOWORTH, WY

LOCATION.--Lat $43^{\circ}54^{\circ}41^{\circ}$, long $106^{\circ}53^{\circ}20^{\circ}$, in NW $^{1}/_{4}$ NE $^{1}/_{4}$ sec.36, T.46 N., R.84 W., Johnson County, Hydrologic Unit 10090201, on left bank 0.8 mi downstream from Pass Creek, 1.2 mi upstream from Hat Ranch, 7.2 mi northwest of Mayoworth, and 13 mi downstream from Dullknife Reservoir.

DRAINAGE AREA. -- 100 mi².

PERIOD OF RECORD. -- October 1973 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 5,700 ft above sea level, from topographic map. Prior to Sept. 15, 1983, at site 60 ft downstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation for irrigation by Dullknife Reservoir 13 mi upstream, capacity, 4,350 acre-ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2.0 ₽19 e15 e14 e17 e17 e15 e15 e15 e17 e17 e16 e16 e17 e17 23 20 e19 e16 1 a e21 e17 17 22 27 e21 و19 e17 1 a e21 e17 e18 e21 e19 e18 23 e21 e20 e21 17 e19 17 ---TOTAL 21.4 29.7 MEAN 23.2 20.3 20.5 18.1 19.9 20.1 21.3 32.5 27.9 18.2 MAX AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1974 - 2001, BY WATER YEAR (WY) MEAN 22.0 19.6 19.0 18.5 18.1 18.1 27.0 77.4 89.9 46.2 39.1 32.1 MAX 31.5 25.3 23.1 21.0 22.0 21.1 47.9 80.5 52.4 53.8 29.7 (WY) 16.9 18.2 14.9 21.3 16.1 15.8 15.1 14.2 14.6 30.8 26.1 MIN (WY)

06311400 NORTH FORK POWDER RIVER BELOW PASS CREEK, NEAR MAYOWORTH, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1974 - 2001
ANNUAL TOTAL	11124	8320	
ANNUAL MEAN	30.4	22.8	35.7
HIGHEST ANNUAL MEAN			51.6 1978
LOWEST ANNUAL MEAN			22.8 2001
HIGHEST DAILY MEAN	93 May 24	44 Jul 23	379 Jun 5 1995
LOWEST DAILY MEAN	15 Nov 11	14 Feb 9	9.5 Feb 6 1991
ANNUAL SEVEN-DAY MINIMUM	18 Dec 8	16 Feb 8	11_ Feb 5 1991
MAXIMUM PEAK FLOW		124 Jul 10	1590 ^a h Aug 1 1984
MAXIMUM PEAK STAGE		4.42 Jul 10	8.89 ^b Aug 1 1984
ANNUAL RUNOFF (AC-FT)	22060	16500	25830
10 PERCENT EXCEEDS	53	33	63
50 PERCENT EXCEEDS	23	21	21
90 PERCENT EXCEEDS	21	18	17

From rating curve extended above $400~{\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. From floodmarks. Estimated. a b e

06313400 SALT CREEK NEAR SUSSEX, WY

LOCATION.--Lat $43^{\circ}37^{\circ}19^{\circ}$, long $106^{\circ}22^{\circ}04^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ Sec.8, T.42 N., R.79 W., Johnson County, Hydrologic Unit 10090204, on left bank 200 ft upstream from bridge on West Sussex Dugout oil field road, 6.3 mi southwest of Sussex, and 12.6 mi upstream from mouth.

DRAINAGE AREA. -- 769 mi².

NOV 24...

JUN

MAR 07...

21... AUG 20... 19

12

18

19

1060

705

1100

1000

390

226

250

201

1110

273

935

958

PERIOD OF RECORD.--Water years 1949, 1952, 1968 to 1981, October 1982 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
NOV 24	1145	12	651	11.2	92	8.0	6240	2.5	.00	600	149	56.0	29.9
MAR 07	0930	67	654			8.0	4210	4.0	.00	700	134	89.1	15.3
JUN 21	0830	13	656	9.4	114	7.8	6220	17.0	16.5	700	151	79.8	34.9
AUG 20	0945	13	648	12.3	156	8.2	5490	27.5	18.0	520	114	57.1	6.48
	DATE	SOD A SOR TI RAT (009	D- SODI P- DIS ON SOLV IO (MG AS	FE FE LA FL CAC NA) (MG/	TY CHLO DIS RID T DIS B SOL 03 (MG L) AS 0	E, RID - DI VED SOL /L (MG CL) AS	PE, DIS S- SOI VED (MC S/L AS F) SIC	S- SULE LVED DIS G/L SOI G (MO	S- SOL LVED (TO G/L PE GO4) AC-	S- DI VED SOI NS (TO R PE FT) D	IS- CONS LVED TUEN DNS DI ER SOL AY) (MG	OF TI- TS, S- VED /L)	

2.4

1.1

2.5

2.9

34.8

10.3

23.3

26.1

1190

1580

1610

1170

5.25

4.00

5.56

4.71

125

533

144

117

3860

2940

4090

3460

06313500 POWDER RIVER AT SUSSEX, WY

LOCATION.--Lat $43^{\circ}41^{\circ}44^{\circ}$, long $106^{\circ}18^{\circ}24^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.13, T.43 N., R.79 W., Johnson County, Hydrologic Unit 10090202, 0.5 mi upstream from bridge on State Highway 192, 0.6 mi west of Sussex, and 2.7 mi downstream from Salt Creek.

DRAINAGE AREA.--3,090 \mbox{mi}^2 .

PERIOD OF RECORD.--Water years 1949-53, 1967-68, 1976 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: January 1983 to September 1984. WATER TEMPERATURE: October 1982 to September 1984. SUSPENDED-SEDIMENT DISCHARGE: May 1983 to September 1984.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
NOV 24	1355	122	653	12.2	98	8.2	1720	5.5	.00	480	119	44.1	5.95
MAR 07	1140	341	655	9.5	76	7.9	2270	17.0	.00	510	118	51.2	7.45
JUN 21	1000	31	656	10.0	125	7.8	4400	21.0	18.0	810	180	87.7	19.1
AUG 20	1130	11	650	9.7	131	8.2	4960	29.5	21.5	730	151	83.8	4.61
20	1130		030		131	0.2	1300	25.0	21.0	,50	131	03.0	1.01
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)
NOV 24 MAR	4	196	250	156	.6	12.1	439	1.53	371	1130	3	.08	.8
07	6	301	162	112	.7	8.5	865	2.13	1440	1570	786	.11	1.7
JUN 21	11	713	267	530	1.3	14.4	1320	4.12	253	3030	2	.21	1.1
AUG 20	14	894	214	734	1.9	16.6	1260	4.46	93.9	3280	3	.57	2.7
DATE	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)
NOV 24 MAR	41.0	<.06	242	.06	<.8	.26	2.4	<10	<.08	88.0	7.2	<.23	1.2
07	50.5	.11	211	.07	3.8	1.10	4.8	870	1.28	118	66.4	<.23	1.6
JUN 21	57.1	<.10	791	<.07	E.5	.47	6.1	<30	<.20	241	85.0	<.23	2.5
AUG 20	139	<.10	1190	.20	<.8	.52	20.4	<30	E.08	403	75.6	<.01	5.5
		DA	TE	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)			
		NOV 2 MAR	4	1.10	2.0	<1.0	1570	<8.0	3	5.30			
		0	7	2.67	7.2	<1.0	1590	<30.0	9	5.42			
			1	1.35	2.6	<2.0	3390	<24.0	5	9.34			
		AUG 2	0	<.10	5.5	<2.0	3640	<24.0	15	13.5			

E -- Estimated value.

06313605 POWDER RIVER BELOW BURGER DRAW, NEAR BUFFALO, WY

LOCATION.--Lat $44^\circ08^\circ50^\circ$, long $106^\circ08^\circ34^\circ$, in $\mathrm{NE}^1/_4$ $\mathrm{NE}^1/_4$ $\mathrm{SW}^1/_4$ sec.8, T.48 N., R.77 W., Johnson County, Hydrologic Unit 10090202, 20 ft downstream of Burger Draw, 0.4 mi downstream of bridge on county road 204, and 24 mi southeast of Buffalo.

PERIOD OF RECORD.--November 2000 to September 2001.

DATE NOV 16 JAN 10	TIME 0845 0855	DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO-METRIC PRES-SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300) 12.4	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
MAY 08		181	663		1.01		1640			400	94.5	39.9	6.09
JUN	1140		663	8.7	101	8.1		25.5	15.5				
06 JUL	1515	63	662	6.4	82	8.1	3180	20.5	20.0	730	168	73.6	12.2
12 AUG	1630	1030	660	4.8	66	7.6	2630	29.0	24.0	650	162	59.9	12.4
14	0930	4.2	661	10.3	134	8.1	4850	27.5	20.5	950	199	108	22.9
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)
NOV 16	5	325	169	208	.6	10.5	797	2.55	369	1870	1690		
JAN 10	4	219	254	168	.7	10.9	528	1.83	480	1350	1270		
MAY 08	4	197	178	119	.6	8.0	493	1.57	563	1150	1070	2	.16
JUN													
06 JUL	7	447	222	216	.8	7.8	1170	3.18	396	2340	2230	3	.30
12 AUG	7	382	103	65.2	. 7	8.3	1210	2.83	5800	2080	1970	4	.38
14	11	795	399	475	.8	7.6	1670	4.96	41.3	3640	3520	2	.30
DATE	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
NOV 16	DIS- SOLVED (UG/L AS AS)	DIS- SOLVED (UG/L AS BA)	TOTAL RECOV- ERABLE (UG/L AS BA)	LIUM, DIS- SOLVED (UG/L AS BE)	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS CD)	MIUM, DIS- SOLVED (UG/L AS CR)	DIS- SOLVED (UG/L AS CO)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE)	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)
NOV 16 JAN 10	DIS- SOLVED (UG/L AS AS) (01000)	DIS- SOLVED (UG/L AS BA) (01005)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)
NOV 16 JAN 10 MAY 08	DIS- SOLVED (UG/L AS AS) (01000)	DIS- SOLVED (UG/L AS BA) (01005)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)
NOV 16 JAN 10 MAY 08 JUN 06	DIS- SOLVED (UG/L AS AS) (01000) <2.0	DIS- SOLVED (UG/L AS BA) (01005)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 70.1 46.7	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046) <30	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)
NOV 16 JAN 10 MAY 08 JUN 06 JUL 12	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 E1.0	DIS- SOLVED (UG/L AS BA) (01005)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 70.1 46.7 92.5	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046) <30 <10	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056) 3.8 3.4
NOV 16 JAN 10 MAY 08 JUN 06 JUL	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 E1.0	DIS- SOLVED (UG/L AS BA) (01005)	TOTAL RECOVERABLE (UG/L AS BA) (01007) 70.1 46.7 92.5	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046) <30 <10 <30	DIS- SOLVED (UG/L AS PB) (01049) E.04 <.20	DIS- SOLVED (UG/L AS LI) (01130) -71.6	NESE, DIS- SOLVED (UG/L AS MN) (01056) 3.8 3.4 1.9
NOV 16 JAN 10 MAY 08 JUN 06 JUL 12 AUG	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 E1.0 E1.2 <2.0 E1.7	DIS- SOLVED (UG/L AS BA) (01005) 31.8 65.2 68.2	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 70.1 46.7 92.5 168 642	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.10	DIS- SOLVED (UG/L AS B) (01020) 201 322 264	DIS- SOLVED (UG/L AS CD) (01025) E.03 .11	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 E.5	DIS- SOLVED (UG/L AS CO) (01035) 22 .42 .38	DIS- SOLVED (UG/L AS CU) (01040) 3.2 7.3 6.9	DIS- SOLVED (UG/L AS FE) (01046) <30 <10 <30 <10	DIS- SOLVED (UG/L AS PB) (01049) E.04 <.20 <.08	DIS- SOLVED (UG/L AS LI) (01130) 71.6 126 97.0	NESE, DIS- SOLVED (UG/L AS MN) (01056) 3.8 3.4 1.9 4.8
NOV 16 JAN 10 MAY 08 JUN 06 JUL 12 AUG	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 E1.0 E1.2 <2.0 E1.7	DIS- SOLVED (UG/L AS BA) (01005) 31.8 65.2 68.2 165	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 70.1 46.7 92.5 168 642 196 MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.10 <.06 <.06 NICKEL, DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS B) (01020) 201 322 264 536 SELE- NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS CD) (01025) E.03 .11 .04 E.02 SILVER, DIS- SOLVED (UG/L AS AG)	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 E.5 <.8 STRON- TIUM, DIS- SOLVED (UG/L AS SR)	DIS- SOLVED (UG/L AS CO) (01035) 22 .42 .38 .38 THAL- LIUM, DIS- SOLVED (UG/L AS TL)	DIS- SOLVED (UG/L AS CU) (01040) 3.2 7.3 6.9 12.6 VANA- DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS FE) (01046) <30 <10 <30 <10 <30 <10 <30 UG/L AS ZINC, DIS- SOLVED (UG/L AS ZN)	DIS-SOLVED (UG/L AS PB) (01049) E.04 <.20 <.08 E.05 URANIUM NATURAL DIS-SOLVED (UG/L AS U)	DIS- SOLVED (UG/L AS LI) (01130) 71.6 126 97.0	NESE, DIS- SOLVED (UG/L AS MN) (01056) 3.8 3.4 1.9 4.8
NOV 16 JAN 10 MAY 08 JUN 06 JUL 12 AUG	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 E1.0 E1.2 <2.0 E1.7	DIS- SOLVED (UG/L AS BA) (01005) 31.8 65.2 68.2 165	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 70.1 46.7 92.5 168 642 196 MOLYB-DENUM, DIS-SOLVED (UG/L AS MO) (01060)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.10 <.06 <.06 NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	DIS- SOLVED (UG/L AS B) (01020) 201 322 264 536 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS CD) (01025) E.03 .11 .04 E.02 SILVER, DIS- SOLVED (UG/L AS AG) (01075)	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 E.5 <.8 STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS CO) (01035) 22 .42 .38 .38 THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIS- SOLVED (UG/L AS CU) (01040) 3.2 7.3 6.9 12.6 VANA- DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS FE) (01046) <30 <10 <30 <10 <30 <zinc, DIS- SOLVED (UG/L AS ZN) (01090)</zinc, 	DIS- SOLVED (UG/L AS PB) (01049) E.04 <.20 <.08 E.05 URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	DIS- SOLVED (UG/L AS LI) (01130) 71.6 126 97.0	NESE, DIS- SOLVED (UG/L AS MN) (01056) 3.8 3.4 1.9 4.8
NOV 16 JAN 10 MAY 08 JUN 06 JUL 12 AUG	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 E1.0 E1.2 <2.0 E1.7	DIS- SOLVED (UG/L AS BA) (01005) 31.8 65.2 68.2 165	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 70.1 46.7 92.5 168 642 196 MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	DIS- SOLVED (UG/L AS B) (01020) 201 322 264 536 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS CD) (01025) E.03 .11 .04 E.02 SILVER, DIS- SOLVED (UG/L AS AG) (01075)	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 E.5 <.8 STRON- TIUM, TIUM, OUG/L AS SR) (01080)	DIS- SOLVED (UG/L AS CO) (01035) 22 .42 .38 .38 THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIS- SOLVED (UG/L AS CU) (01040) 3.2 7.3 6.9 12.6 VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS FE) (01046) <30 <10 <10 <30 <10 <30 <10 <30 CINC, DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS PB) (01049) E.04 <.20 <.08 E.05 URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	DIS- SOLVED (UG/L AS LI) (01130) 71.6 126 97.0	NESE, DIS- SOLVED (UG/L AS MN) (01056) 3.8 3.4 1.9 4.8
NOV 16 JAN 10 MAY 08 JUN 06 JUL 12 AUG	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 E1.0 E1.2 <2.0 E1.7	DIS- SOLVED (UG/L AS BA) (01005) 31.8 65.2 68.2 165	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 70.1 46.7 92.5 168 642 196 MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.10 <.06 <.06 NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 13	DIS- SOLVED (UG/L AS B) (01020) 201 322 264 536 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS CD) (01025) E.03 .11 .04 E.02 SILVER, DIS- SOLVED (UG/L AS AG) (01075)	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 E.5 <.8 STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1380	DIS- SOLVED (UG/L AS CO) (01035) 22 .42 .38 .38 THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057) 06	DIS- SOLVED (UG/L AS CU) (01040) 3.2 7.3 6.9 12.6 VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085) 7	DIS- SOLVED (UG/L AS FE) (01046) <30 <10 <10 <30 <10 <30 <10 <30 ZINC, DIS- SOLVED (UG/L AS ZN) (01090) 2	DIS- SOLVED (UG/L AS PB) (01049) E.04 <.20 <.08 E.05 URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703) 5.18	DIS- SOLVED (UG/L AS LI) (01130) 71.6 126 97.0	NESE, DIS- SOLVED (UG/L AS MN) (01056) 3.8 3.4 1.9 4.8
NOV 16 JAN 10 MAY 08 JUN 06 JUL 12 AUG	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 E1.0 E1.2 <2.0 E1.7	DIS- SOLVED (UG/L AS BA) (01005) 31.8 65.2 68.2 165	TOTAL RECOV- REABLE (UG/L AS BA) (01007) 70.1 46.7 92.5 168 642 196 MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) 2.1 3.8	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.10 <.06 <.06 NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 13 2.65	DIS- SOLVED (UG/L AS B) (01020) 201 322 264 536 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS CD) (01025) E.03 .11 .04 E.02 SILVER, DIS- SOLVED (UG/L AS AG) (01075)	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 E.5 <.8 STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1380 2450	DIS- SOLVED (UG/L AS CO) (01035) 22 .42 .38 .38 THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057) 06 .23	DIS- SOLVED (UG/L AS CU) (01040) 3.2 7.3 6.9 12.6 VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085) 7	DIS- SOLVED (UG/L AS FE) (01046) <30 <10 <30 <10 <30 <10 <30 <10 <30 <10 <30 < UG/L AS ZN) (01090) 2 5	DIS- SOLVED (UG/L AS PB) (01049) E.04 <.20 <.08 E.05 URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703) 5.18 10.1	DIS- SOLVED (UG/L AS LI) (01130) 71.6 126 97.0	NESE, DIS- SOLVED (UG/L AS MN) (01056) 3.8 3.4 1.9 4.8
NOV 16 JAN 10 MAY 08 JUN 06 JUL 12 AUG	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 E1.0 E1.2 <2.0 E1.7	DIS- SOLVED (UG/L AS BA) (01005) 31.8 65.2 68.2 165	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 70.1 46.7 92.5 168 642 196 MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.10 <.06 <.06 NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 13	DIS- SOLVED (UG/L AS B) (01020) 201 322 264 536 SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS CD) (01025) E.03 .11 .04 E.02 SILVER, DIS- SOLVED (UG/L AS AG) (01075)	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 E.5 <.8 STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1380	DIS- SOLVED (UG/L AS CO) (01035) 22 .42 .38 .38 THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057) 06	DIS- SOLVED (UG/L AS CU) (01040) 3.2 7.3 6.9 12.6 VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085) 7	DIS- SOLVED (UG/L AS FE) (01046) <30 <10 <10 <30 <10 <30 <10 <30 ZINC, DIS- SOLVED (UG/L AS ZN) (01090) 2	DIS- SOLVED (UG/L AS PB) (01049) E.04 <.20 <.08 E.05 URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703) 5.18	DIS- SOLVED (UG/L AS LI) (01130) 71.6 126 97.0	NESE, DIS- SOLVED (UG/L AS MN) (01056) 3.8 3.4 1.9 4.8

 $^{{\}tt E}$ -- Estimated value.

06313700 DEAD HORSE CREEK NEAR BUFFALO, WY

LOCATION.--Lat $44^{\circ}12^{\circ}54^{\circ}$, long $106^{\circ}06^{\circ}41^{\circ}$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 15, T.49 N., R.77 W., Johnson County, Hydrologic Unit 10090202, on left bank 250 ft downstream from bridge on dirt road, 0.80 mi upstream from Interstate Highway 90, 5.3 mi upstream from mouth, and 31 mi east of Buffalo.

DRAINAGE AREA.--151 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Annual maximum, water years 1958-71, October 1971 to September 1990, April 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 3,970 ft above sea level, from topographic map. Oct. 1, 1958 to Sept. 30, 1971, crest-stage at site 250 ft upstream at present datum. Nov. 24, 1971 to July 15, 1976, water-stage recorder at site 0.3 mi upstream at different datum. July 16, 1976 to July 18, 1984, at site 250 ft upstream at present datum.

REMARKS.--Records excellent except those for discharges greater than .00 ${\rm ft}^3/{\rm s}$ and those for estimated daily discharges, which are poor. Natural flow of stream affected by numerous small reservoirs and diversions for irrigation and coalbed methane production water.

		DISCHAF	RGE, CUBIC	FEET PE		WATER YE Y MEAN VA	AR OCTOBEI	R 2000 TO) SEPTEMBI	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 1.4 .02 12	e.01 e.01 e.01 e.01 e.02	e.00 e.00 .00 .00	.00 .00 .00 24	e.40 e.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9 10	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	3.0 2.7 .94 .30	e.02 e.03 .04 .02 e.00	.00 .00 .00 .00	.31 .00 .00 2.9 .31	.00 .00 .00 68 76	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.01 .02 .01 .00	e.00 e.02 .01 .01 e.00	.00 .00 .00 .00	.01 .00 .65 28 4.2	9.9 .30 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 2.3 5.4 .00	.00 .00 .00 .00	e.00 e.00 .00 .00	.00 .00 .00 .00	.25 .05 .02 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 e.00 e.00	.00 e.00 e.00 e.00	.00 .00 .00 .00	.00 .00 .00 .00	e.00 e.00 e.00 e.00	.00 .00 1.7 131	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	e.00 .00 .00 	e.00 e.00 e.00 e.00 e.00	.00 .00 e.00 e.00 e.00	.00 .00 .00 .00	e.00 e.00 e.00 e.00	2.5 .73 .16 .03 .00	.00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	8.40 .30 5.4 .00 17	35.47 1.14 15 .00 70	0.21 .007 .04 .00	0.00 .000 .00 .00	92.70 3.09 28 .00 184	303.72 9.80 131 .00 602	0.00 .000 .00 .00	0.00 .000 .00 .00
STATIST	CICS OF M	ONTHLY MEA	AN DATA FO	R WATER	YEARS 197	2 - 2001,	BY WATER	YEAR (W	")			
MEAN MAX (WY) MIN (WY)	.11 1.11 1981 .000 1972	.044 .28 1985 .000 1973	.016 .12 1983 .000 1973	.10 1.81 1983 .000 1972	3.83 58.3 1972 .000 1973	2.65 44.4 1978 .000 1976	.16 2.13 1973 .005 1972	4.92 71.3 1978 .000 2001	5.43 32.4 1979 .000 1990	4.58 29.1 1982 .000 1976	2.05 12.6 1990 .000 1989	1.00 13.4 1986 .000 1972

06313700 DEAD HORSE CREEK NEAR BUFFALO, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR Y	EAR* FOR 2001 WAT	ER YEAR	WATER YEARS	1972 - 2001
ANNUAL TOTAL		440.50			
ANNUAL MEAN		1.21		2.03	
HIGHEST ANNUAL MEAN				10.6	1978
LOWEST ANNUAL MEAN				.027	1988
HIGHEST DAILY MEAN	82 May	17 131	Jul 24	819	May 18 1978
LOWEST DAILY MEAN	.00 Man	y days .00	Many days	.00	Many days, most years
ANNUAL SEVEN-DAY MINIMUM	.00 Jun	.00	Oct 1	3460 ^å b	Most years
MAXIMUM PEAK FLOW	390 May	16 373	Jul 24	3460° h	Sep 18 1986
MAXIMUM PEAK STAGE	9.45 May	16 10.92	Jul 24	10.95 ^b	Sep 18 1986
ANNUAL RUNOFF (AC-FT)		874		1470	
10 PERCENT EXCEEDS					
50 PERCENT EXCEEDS					
90 PERCENT EXCEEDS					

b e

For period of operation. From rating curve extended above $640~{\rm ft}^3/{\rm s}$ on basis of contracted opening and flow-over-road measurement of peak flow. From floodmarks. Estimated. а

06313700 DEAD HORSE CREEK NEAR BUFFALO, WY--Continued

WATER QUALITY RECORDS

PERIOD OF RECORD.--Water years 1987-1989, April 2000 to current year.

 ${\tt REMARKS.--No}$ flow observed on August 14 and September 11.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
JUN													
06 JUL	1650	.03				7.6	2420	24.5	26.0	1400	405	88.6	12.7
12	1450	.03	664	7.4	115	7.8	1220	28.0	31.0	500	159	25.5	10.4
AUG 14	1030	.00											
SEP 11	1605	.00											
11	1005	.00											
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
JUN 06	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT.DIS FET LAB CACO3 (MG/L)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)
JUN 06 JUL 12	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
JUN 06 JUL	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)

DATE	IRON, DIS- SOLVED (UG/L AS FE) (01046)	
JUN		
06	<30	153
JUL 12	<10	34.0
14 SEP		
11		

06316400 CRAZY WOMAN CREEK AT UPPER STATION, NEAR ARVADA, WY

LOCATION.--Lat $44^{\circ}29^{\circ}28^{\circ}$, long $106^{\circ}10^{\circ}38^{\circ}$, in NE $^{1}/_{4}$ SW $^{1}/_{4}$ Sec.7, T.52 N., R.77 W., Johnson County, Hydrologic Unit 10090205, on left bank 1.1 mi upstream from Jewell Draw, 5.0 mi upstream from mouth, and 11 mi south of Arvada.

DRAINAGE AREA. -- 945 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1963 to September 1970, October 1977 to September 1981, October 2000 to September 2001.

GAGE.--Water-stage recorder. Elevation of gage is 3,765 ft, from topographic map.

REMARKS.--Records fair except those for Oct. 1 to Nov. 8 and those for estimated daily discharges, which are poor. Diversions for irrigation of about 12,000 acres above station. U.S. Geological Survey data collection platform with satellite telemetry at station.

		DISCHA	RGE, CUE	SIC FEET P		, WATER YE. LY MEAN VA		R 2000 TO	SEPTEMB	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.1 6.4 6.3 6.2 6.4	12 12 13 13	e15 e16 e16 e15 e14	e19 e23 e26 e22 e19	e15 e16 e17 e17 e15	e14 e16 e15 e14 e19	17 16 14 14 14	26 28 24 18 16	15 9.0 7.0 7.0 7.0	e20 e10 e4.0 e2.3 e1.3	1.4 1.1 .94 .79	.08 .08 .08 .08
6 7 8 9 10	6.5 6.1 e4.7 4.4 4.2	8.8 5.1 6.0 e4.7 e3.8	e13 e16 e18 e17 e12	e17 e15 e14 e14 e15	e13 e11 e8.8 e7.6 e8.0	e22 e29 e42 e55 e35	14 13 13 12 12	15 12 9.7 8.2 8.9	7.0 8.5 12 11 e8.0	e.80 e.80 e28 e170 e800	.55 .42 .30 .23	.08 .08 .08 .05
11 12 13 14 15	3.9 3.8 4.7 5.5 6.4	e3.0 e3.3 e3.6 e4.3 e5.4	e8.2 e10 e15 e19 e20	e17 e16 e15 e17 e16	e8.8 e8.2 e8.8 e8.2 e8.8	e30 e41 e54 55 49	12 11 10 9.9	8.2 8.1 8.1 8.8 7.2	e5.6 e5.0 e9.0 e5.0 e5.4	e600 e230 e140 e90 e50	.16 .13 .12 .12	.04 .04 .04 .04
16 17 18 19 20	7.0 8.1 9.5 10 11	e6.9 e8.4 e12 e11 e14	e15 e16 e15 e17 e15	e14 e15 e15 e16 e18	e10 e13 e16 e18 e17	55 61 48 50 52	10 10 9.2 8.7 9.8	6.5 5.7 4.7 4.0 3.9	e4.8 e4.0 e3.6 e3.4 e3.2	e32 e23 e17 e14 e8.0	.12 .12 .12 .12	.08 .08 .07 .04
21 22 23 24 25	11 11 11 12 11	e16 e17 e17 e16 e15	e13 e17 e16 e15 e16	e20 e18 e16 e18 e19	e17 e14 e15 e13 e12	54 53 49 37 41	11 11 12 16 13	4.2 3.4 3.1 3.8 3.2	e3.0 e2.6 e2.2 e2.0 e1.9	e4.0 e20 e6.0 e5.0 e4.3	.12 .12 .12 .12	.04 .05 .08 .08
26 27 28 29 30 31	12 12 12 12 12 12	e13 e11 e13 e12 e13	e20 e23 e21 e18 e19 e21	e17 e16 e19 e17 e15 e14	e11 e10 e12 	30 29 28 26 20 18	11 11 10 11 29	2.9 3.2 2.9 2.7 2.4 2.8	e1.7 e1.5 e1.1 e11 e30	e3.7 e3.2 2.6 2.2 1.8 1.6	.12 .12 .10 .08 .08	.08 .07 .04 .04
TOTAL MEAN MAX MIN AC-FT	254.2 8.20 12 3.8 504	305.3 10.2 17 3.0 606	501.2 16.2 23 8.2 994	532 17.2 26 14 1060	349.2 12.5 18 7.6 693	1141 36.8 61 14 2260	374.6 12.5 29 8.7 743	265.6 8.57 28 2.4 527	197.5 6.58 30 1.1 392	2295.60 74.1 800 .80 4550	9.09 .29 1.4 .08 18	1.90 .063 .08 .04 3.8
STATIST	TICS OF	MONTHLY ME	AN DATA	FOR WATER	YEARS 19	63 - 2001,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	17.4 39.5 1969 .68 1967	19.5 42.1 1979 6.43 1967	17.6 39.7 1979 8.83 1967	14.4 26.3 1980 4.14 1970	18.6 41.3 1968 7.55 1966	47.2 101 1978 11.5 1981	33.3 71.6 1980 7.29 1967	111 629 1978 8.57 2001	217 590 1967 3.26 1966	59.9 183 1967 .13 1966	17.1 68.6 1968 .000 1966	13.9 54.9 1968 .063 2001

06316400 CRAZY WOMAN CREEK AT UPPER STATION, NEAR ARVADA, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR	WATER YEARS 1963 - 2001
ANNUAL TOTAL	6227.19	
ANNUAL MEAN	17.1	47.4
HIGHEST ANNUAL MEAN		119 1978
LOWEST ANNUAL MEAN		14.5 1966
HIGHEST DAILY MEAN	800 Jul 10	2030 May 20 1978
LOWEST DAILY MEAN	.04 Several days	.00 Several days,
		some years
ANNUAL SEVEN-DAY MINIMUM	.05 Sep 9	00 Some years 15800 ^a
MAXIMUM PEAK FLOW	1530 _b Jul 10	15800° _h Jun 15 1965
MAXIMUM PEAK STAGE	8.10 ^b Jul 10	16.02 ^b Jun 15 1965
ANNUAL RUNOFF (AC-FT)	12350	34370
10 PERCENT EXCEEDS	26	103
50 PERCENT EXCEEDS	11	17
90 PERCENT EXCEEDS	.12	2.6

- From rating curve extended above 1,300 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. From floodmarks. Estimated. a b e

06316400 CRAZY WOMAN CREEK AT UPPER STATION, NEAR ARVADA, WY--continued

WATER QUALITY RECORDS.

PERIOD OF RECORD. -- Water years 1967 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: July to September 2001 (seasonal). WATER TEMPERATURE: July to September 2001 (seasonal).

INSTRUMENTATION.--Water quality monitor for specifice conductance and water temperature.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum daily, 3,280 microsiemens/cm, September 4-7, 2001; minimum daily, 2810 microsiemens/cm, August 6-8, 2001.

WATER TEMPERATURE: Maximum, 31.4°C, August 6, 2001; minimum, 10.4°C, September 9, 2001.

EXTREMES FOR CURRENT YEAR . --

EXEMPLE FOR CONTROL DEAR. - SPECIFIC CONDUCTANCE: Maximum daily, 3,280 microsiemens/cm, September 4-7; minimum daily, 2810 microsiemens/cm, August 6-8. WATER TEMPERATURE: Maximum, 31.4 $^{\circ}$ C, August 6; minimum, 10.4 $^{\circ}$ C, September 9.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
MAR 28	1430	24	659	11.8	104	8.0	1460	11.0	4.0	590	127	66.0	3.16
MAY 09	1320	8.0	662	9.7	121	8.2	1760	26.5	18.5	730	144	88.9	5.76
JUN 07 JUL	1500	8.7	668	8.7	113	8.1	2820	26.5	21.5	1200	223	153	7.27
12 AUG	1855	232	660	5.4	72	7.5	684	28.0	21.5	290	78.5	23.8	6.98
14 SEP	1145	.12	666	9.6	130	7.7	2850	30.0	23.0	1200	262	120	10.5
11	1430	.05				8.0	3140	23.0	21.5	1200	280	128	10.2
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
MAR 28 MAY	2	102	187	6.8	.2	6.4	627	1.57	75.4	1160	1050	<.041	E.041
09 JUN	2	139	222	8.6	.3	4.7	772	1.98	31.5	1460	1300	<.041	E.024
07 JUL	3	241	228	15.7	.3	3.9	1460	3.33	57.6	2450	2240	<.040	<.050
12 AUG	.5	17.9	72	1.7	.3	4.9	265	.67	309	493	443		
14 SEP	3	267	249	11.8	.4	5.3	1480	3.44	.82	2530	2320		
11	4	326	263	12.5	.3	5.8	1630	3.69	.37	2710	2560		
DATE	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)
MAR 28 MAY	<.006	<.018			<2.0		34.7						
09 JUN	E.004	<.018	<1	.17	E1.0	41.0	44.6	<.06	166	.06	<.8	.68	4.2
07 JUL	<.006	<.020	3	.34	E1.1	52.9	54.8	<.10	290	<.07	<.8	.78	9.0
12 AUG			4	.27	<2.0	46.1	696	<.06	53	<.04	<.8	.39	2.1
14 SEP			4	.66	E1.5	98.1	107	<.10	325	E.04	<.8	3.05	22.3
11			<2	.19	E1.4	97.5	94.8	<.10	135	<.07	<.8	1.52	13.5

06316400 CRAZY WOMAN CREEK AT UPPER STATION, NEAR ARVADA, WY--Continued

DATE	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)
MAR	10			04.6									
28 MAY	<10			94.6									
09	10	<.08	47.4	113	2.5	1.20	1.2	<1.0	1440	<.04	.9	3	12.9
JUN	-20	. 00	65.5	F1 6	4 0	2 02	1 0	.0.0	2250	. 00	1.6	0	10.2
07 JUL	<30	<.20	65.5	71.6	4.2	3.83	1.8	<2.0	2250	<.08	1.6	8	18.3
12	<10	<.08	11.0	8.2	2.3	2.32	1.9	<1.0	433	<.04	1.1	1	3.38
AUG													
14	<30	<.20	106	1460	12.1	.84	1.7	<2.0	4510	<.08	.8	15	23.6
SEP													
11	<30	<.20	56.9	951	5.6	<.30	1.0	<2.0	2670	<.08	. 4	8	12.1

DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	(T/DAY)
MAR		
28	108	7.0
MAY		
09	123	2.7
JUN		
07	16	.38
JUL		
12		
AUG		
14		
SEP		
11		

E -- Estimated value.

06316400 CRAZY WOMAN CREEK AT UPPER STATION, NEAR ARVADA, WY--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1							2880	2850	2860	3190	3010	3120
2							2870	2840	2850	3280	3130	3210
3							2850	2820	2840	3280	3210	3270
4							2840	2820	2820	3280	3280	3280
5							2830	2810	2820	3280	3280	3280
6							2830	2800	2810	3280	3280	3280
7							2820	2800	2810	3280	3280	3280
8							2820	2800	2810	3280	3110	3230
9							2830	2810	2820	3160	3090	3120
10							2850	2820	2830	3140	3020	3070
11							2860	2830	2840			
12							2870	2850	2860			
13							2880	2860	2870			
14							3010	2870	2920			
15							3120	3000	3060			
16							3140	3070	3100			
17							3170	3100	3130			
18							3150	3000	3130			
19							3140	3050	3080			
20							3110	3030	3070			
21							3070	2900	3020			
22							3010	2920	2950			
23							3040	2970	3000			
24							3070	2950	3010			
25							3060	2930	3000			
26							3040	2890	2950			
27							3020	2860	2940			
28				2880	2850	2860	3010	2860	2950			
29				2890	2860	2870	3070	2920	3010			
30				2890	2860	2870			3010			
							3100	3010				
31				2890	2860	2870	3160	3030	3090			
MONTH				2890	2850	2870	3170	2800	2940	3280	3010	3210
YEAR	3280	2800	3000									

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	AP	RIL	MA	ΔY	JUN	Œ	JU	LY	AUG	UST	SEPT	EMBER
1									27.8	21.5	28.1	17.7
2									30.2	22.2	26.4	17.4
3									29.9	22.8	27.8	17.4
4									29.6	23.6	27.7	18.7
5									30.9	22.7	25.1	18.8
6									31.4	23.4	20.5	16.6
7									30.0	24.3	17.2	12.7
8									27.4	23.0	15.7	11.1
9									26.3	20.6	21.0	10.4
10									28.1	20.8	23.5	12.5
11									27.4	20.8		
12									27.9	21.8		
13									27.0	21.5		
14									26.0	21.0		
15									25.0	19.4		
16									27.6	17.6		
17									26.6	18.0		
18									28.3	17.4		
19									26.9	18.5		
20									25.2	18.1		
21									25.0	19.0		
22									28.7	19.1		
23									29.4	19.1		
24									25.7	19.4		
25									28.6	17.5		
26									27.8	18.7		
27									27.0	17.8		
28							27.9	22.4	28.6	19.6		
29							27.2	21.4	26.0	18.2		
30							27.7	20.7	28.5	16.8		
31							28.8	22.9	26.7	18.1		
MONTH							28.8	20.7	31.4	16.8	28.1	10.4
VEND	21 /	10 4										

YEAR 31.4 10.4

06317000 POWDER RIVER AT ARVADA, WY

LOCATION.--Lat $44^{\circ}39^{\circ}00^{\circ}$, long $106^{\circ}07^{\circ}37^{\circ}$, in $SW^{1}/_{4}$ SE $^{1}/_{4}$ sec.16, T.54 N., R.77 W., Sheridan County, Hydrologic Unit 10090202, on right bank 0.1 mi downstream from bridge on county road, 0.2 mi southeast of Arvada, and 0.2 mi upstream from Wild Horse Creek

DRAINAGE AREA. -- 6,050 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1919 to current year (no winter records in water years 1919-30, 1934). Records for Feb. 16-23, 1930, published in WSP 701, are unreliable and should not be used.

REVISED RECORDS.--WSP 1509: 1921(M), 1923(M), 1924-26, 1927-28(M), 1929, 1930(M), 1931, 1932(M), 1933, 1934(M), 1935-36. See PERIOD OF RECORD.

GAGE.--Water-stage recorder. Elevation of gage is 3,620 ft above sea level, from topographic map. Prior to Oct. 24, 1938, non-contributing gage at bridge 0.2 mi upstream at datum 3,621.87 ft. Oct. 24, 1938 to Apr. 27, 1983, at site 0.7 mi upstream at different datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Numerous small reservoirs and diversions for irrigation of about 29,000 acres upstream from station. Data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAR APR MAY JUN JUL AUG SEP JAN 1 61 144 e120 e120 e110 e110 187 189 49 16 20 0.0 2 201 .00 64 142 e130 e110 e120 e120 182 204 50 e14 139 e130 e130 e130 e150 194 248 175 38 e10 .00 4 65 e130 e120 e140 e130 e170 206 274 140 17 e9.0 .00 5 275 4.5 e8.0 64 e100 e120 e130 e190 224 126 .00 e110 e130 e100 e7.0 .00 6 67 e80 e120 e220 248 255 115 e4.0 72 e80 e120 e120 e80 e250 266 243 90 e4.0 e6.0 .00 e120 255 257 e.41 8 74 e90 e130 e70 e320 215 77 e3.0 .00 78 e70 e100 e120 e80 e400 186 85 e3.0.05 .00 10 85 e60 e80 e130 e90 e600 243 177 95 e85 .02 .00 e800 208 76 11 89 e50 e60 e130 e80 166 286 .01 .00 e120 12 91 e80 e90 e1200 181 147 52 1740 .00 .00 13 92 e60 e110 e110 e76 e660 166 131 53 50 1120 0.0 0.0 99 14 e120 e100 e82 e600 166 125 .00 e60 650 .00 15 100 e60 e130 e100 e800 163 129 81 630 .00 .00 16 100 e62 e100 e100 e66 e1000 156 119 50 528 .00 .00 275 e110 e100 e80 51 .00 .00 e100 18 100 680 e110 e110 e500 151 101 42 220 0.0 0.0 19 101 e110 e120 147 36 163 e70 e130 e400 96 .00 .00 20 103 e80 e100 e110 e120 e450 149 95 33 137 .00 .00 21 106 e94 e80 e120 e120 e320 166 98 32 116 .00 .00 22 106 e100 e92 e120 e110 e350 171 94 29 100 .00 .00 23 108 e100 **e86** e110 e110 e340 173 88 26 88 0.0 0.0 24 108 e110 e300 22 e80 e120 e100 80 .00 .00 25 112 e110 e92 e130 e110 e240 185 79 16 256 .00 .00 115 e100 e110 198 79 11 26 e110 e250 124 .00 2.7 119 e110 e120 e120 e120 e280 197 74 7.2 83 .00 .00 28 124 e110 e130 e130 e110 250 175 69 6.4 59 .00 .00 126 e120 216 67 5.5 .00 29 e120 e130 46 .00 e110 30 127 e110 e110 203 162 64 4.7 36 .00 .00 31 131 e120 e110 ---195 56 28 .00 ---TOTAL 2953 2751 3320 3670 2818 12631 5669 4331 1836.8 7198.5 74.49 0.00 91.7 107 61.2 .000 MEAN 95.3 118 101 407 189 140 232 2.40 MAX 131 144 130 140 130 1200 266 275 201 1740 20 .00 MTN 61 50 60 100 66 110 147 56 4 7 3 0 ΛN .00 5590 25050 8590 14280 AC-FT 5860 5460 6590 7280 11240 3640 148 .00 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 2001, BY WATER YEAR (WY) MEAN 137 129 100 90 8 170 394 357 737 752 261 96.5 75.4 MAX 865 419 290 242 567 953 1107 4025 3319 1703 861 451 1974 1982 (WY) 1995 1999 1974 1972 1978 1941 1978 1962 1937 1941 MIN .000 11.4 23.0 15.0 10 0 144 99.0 51.3 30.6 15.8 .000 .000 (WY) 1961 1936 1950 1933 1933 1961 1961 1936 1954 1974 1932 1932

06317000 POWDER RIVER AT ARVADA, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEND	AR YEAR	FOR 2001 WAT	ER YEAR	WATER YEAR	S 1931 - 2001
ANNUAL TOTAL	58794.55		47252.79			
ANNUAL MEAN	161		129		277	
HIGHEST ANNUAL MEAN					735	1978
LOWEST ANNUAL MEAN					70.3	1961
HIGHEST DAILY MEAN	4160	May 19	1740	Jul 12	22600	May 20 1978
LOWEST DAILY MEAN	.00	Aug 18	.00	Many days	.00	Many days, some years
ANNUAL SEVEN-DAY MINIMUM	.00	Aug 18	.00	Aug 12	.00	Many days,
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	116600 281 130		2640 ^a 5.01 ^c 93730 249 100 .00	Jul 12 Mar 15	100000 ^b 23.70 ^d 200400 595 130 15	some years Sep 29 1923 Sep 29 1923

Gage height, $4.55~\rm{ft}$. About, from rating curve extended above $20,000~\rm{ft}^3/\rm{s}$. Backwater from ice. From floodmarks, site and datum then in use. Estimated.

06317000 POWDER RIVER AT ARVADA, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1946-57, 1968 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: March 1949 to September 1957, October 1967 to September 1978.
SUSPENDED-SEDIMENT DISCHARGE: April 1946 to September 1957, October 1967 to September 1971, January 1975 to September 1978,
April 1983 to September 1984.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 24 NOV	1300	108	670	10.2	101	8.4	2300	14.5	9.0	570	124	63.2	7.99
16	1120	63	672	13.4	105	7.3	2640	-4.0	.00	770	174	81.4	8.99
DEC 13	1430	112	665			7.7		-11.0	.00	580	141	56.3	6.60
JAN 11 FEB	1405	125	667	9.3	73	7.7	1950	9.5	.00	530	130	49.9	6.18
14	1615	82				7.9	2050	-7.0	.00	590	143	57.1	6.46
MAR 13 APR	1800	659	663	10	79	8.0	1790	7.0	.00	440	105	43.1	5.30
11 MAY	1645	203	666	8.9	90	8.1	2960	9.0	9.5	720	164	75.5	9.56
09	1110	177	667	9.1	108	8.2	1560	22.0	16.5	390	87.4	41.7	6.09
JUN 07	1240	88	673	7.2	93	8.0	2500	26.0	21.0	640	146	66.3	9.72
JUL 12	1020	2260	671	4.5	59	7.5	2040	24.0	22.0	620	160	54.3	10.6
AUG 14	1405	.00											
SEP 11	1330	.00											
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT.DIS FET LAB CACO3 (MG/L)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	INUM, DIS- SOLVED (UG/L AS AL)	MONY, DIS- SOLVED (UG/L AS SB)
OCT 24 NOV 16	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB)
OCT 24 NOV 16 DEC 13	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11	AD- SORP- TION RATIO (00931) 5	DIS- SOLVED (MG/L AS NA) (00930) 272	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 206 317	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945) 762	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 479	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1640 2120	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1540	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14	AD- SORP- TION RATIO (00931) 5 5	DIS- SOLVED (MG/L AS NA) (00930) 272 343 227	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 206 317 281	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 182 183	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 4.3 8.9	DIS- SOLVED (MG/L AS SO4) (00945) 762 973 592	DIS- SOLVED (TONS PER AC-FT) (70303) 2.23 2.88 1.94	DIS- SOLVED (TONS PER DAY) (70302) 479 360 432	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1640 2120 1430	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1540 1960 1360	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14 MAR 13	AD- SORP- TION RATIO (00931) 5 5 4	DIS- SOLVED (MG/L AS NA) (00930) 272 343 227 211	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 206 317 281 265	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 182 183 155	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 4.3 8.9 10.5	DIS- SOLVED (MG/L AS SO4) (00945) 762 973 592 557	DIS- SOLVED (TONS PER AC-FT) (70303) 2.23 2.88 1.94	DIS- SOLVED (TONS PER DAY) (70302) 479 360 432 470	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1640 2120 1430 1390	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1540 1960 1360	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14 MAR 13 APR 11	AD- SORP- TION RATIO (00931) 5 5 4 4	DIS- SOLVED (MG/L AS NA) (00930) 272 343 227 211 240	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 206 317 281 265 267	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 182 183 155 165	RIDE, DIS- SOLVED (MG/L AS F) (00950) .6 .6 .6	DIS- SOLVED (MG/L AS SIO2) (00955) 4.3 8.9 10.5 10.1	DIS- SOLVED (MG/L AS SO4) (00945) 762 973 592 557 586	DIS- SOLVED (TONS PER AC-FT) (70303) 2.23 2.88 1.94 1.90	DIS- SOLVED (TONS PER DAY) (70302) 479 360 432 470 320	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1640 2120 1430 1390 1440	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1540 1960 1360 1290	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14 MAR 13 APR 11 MAY 09	AD- SORP- TION RATIO (00931) 5 5 4 4 4	DIS- SOLVED (MG/L AS NA) (00930) 272 343 227 211 240 225	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 206 317 281 265 267 143	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 182 183 155 165 149	RIDE, DIS- SOLVED (MG/L AS F) (00950) .6 .6 .6	DIS- SOLVED (MG/L AS SIO2) (00955) 4.3 8.9 10.5 10.1 11.2	DIS- SOLVED (MG/L AS SO4) (00945) 762 973 592 557 586 666	DIS- SOLVED (TONS PER AC-FT) (70303) 2.23 2.88 1.94 1.90 1.96 1.80	DIS- SOLVED (TONS PER DAY) (70302) 479 360 432 470 320 2360	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1640 2120 1430 1390 1440	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1540 1960 1360 1290 1350 1220	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14 MAR 13 APR 11 MAY 09 JUN 07	AD- SORP- TION RATIO (00931) 5 5 4 4 4 5	DIS- SOLVED (MG/L AS NA) (00930) 272 343 227 211 240 225 418	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 206 317 281 265 267 143 222	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 182 183 155 165 149 87.6	RIDE, DIS- SOLVED (MG/L AS F) (00950) .6 .6 .6 .6	DIS- SOLVED (MG/L AS SIO2) (00955) 4.3 8.9 10.5 10.1 11.2 5.7	DIS- SOLVED (MG/L AS SO4) (00945) 762 973 592 557 586 666	DIS- SOLVED (TONS PER AC-FT) (70303) 2.23 2.88 1.94 1.90 1.96 1.80 3.33	DIS- SOLVED (TONS PER DAY) (70302) 479 360 432 470 320 2360 1340	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1640 2120 1430 1390 1440 1330 2450	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1540 1960 1360 1290 1350 1220 2190	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14 MAR 13 APR 11 MAY 09 JUN 07 JUL 12	AD- SORP- TION RATIO (00931) 5 5 4 4 4 5 7	DIS- SOLVED (MG/L AS NA) (00930) 272 343 227 211 240 225 418	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 206 317 281 265 267 143 222 172	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 182 183 155 165 149 87.6 145	RIDE, DIS- SOLVED (MG/L AS F) (00950) .6 .6 .6 .6 .6 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 4.3 8.9 10.5 10.1 11.2 5.7	DIS- SOLVED (MG/L AS SO4) (00945) 762 973 592 557 586 666 1230 489	DIS- SOLVED (TONS PER AC-FT) (70303) 2.23 2.88 1.94 1.90 1.96 1.80 3.33 1.52	DIS- SOLVED (TONS PER DAY) (70302) 479 360 432 470 320 2360 1340 535	RESIDUE AT 180 DEG. C DIS-SOLVED (MG/L) (70300) 1640 2120 1430 1390 1440 1330 2450 1120	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1540 1960 1360 1290 1350 1220 2190 1020	INUM, DIS- SOLVED (UG/L AS AL) (01106) 2	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14 MAR 13 APR 11 MAY 09 JUN 07 JUL	AD- SORP- TION RATIO (00931) 5 5 4 4 4 5 7 4 5	DIS- SOLVED (MG/L AS NA) (00930) 272 343 227 211 240 225 418 175 293	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 206 317 281 265 267 143 222 172 147	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 182 183 155 165 149 87.6 145 103	RIDE, DIS- SOLVED (MG/L AS F) (00950) .6 .6 .6 .6 .6 .7	DIS- SOLVED (MG/L AS SIO2) (00955) 4.3 8.9 10.5 10.1 11.2 5.7 10.7 7.2 6.5	DIS- SOLVED (MG/L AS SO4) (00945) 762 973 592 557 586 666 1230 489	DIS- SOLVED (TONS PER AC-FT) (70303) 2.23 2.88 1.94 1.90 1.96 1.80 3.33 1.52 2.62	DIS- SOLVED (TONS PER DAY) (70302) 479 360 432 470 320 2360 1340 535 459	RESIDUE AT 180 DEG. C DIS-SOLVED (MG/L) (70300) 1640 2120 1430 1390 1440 1330 2450 1120 1930	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1540 1960 1360 1290 1350 1220 2190 1020 1750	INUM, DIS- SOLVED (UG/L AS AL) (01106) 2 5	MONY, DIS- SOLVED (UG/L AS SB) (01095)

06317000 POWDER RIVER AT ARVADA, WY--Continued

			WAIEK-	QUALITI D	AIA, WAIE	N IEAN OC	IOBER 200	O IO SEPI	EMBER 200	1			
DATE	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
OCT 24	<2.0		59.7							<30			17.1
NOV 16	E1.1		90.0							<30			E2.7
DEC 13	<2.0		41.7							<30			E5.2
JAN 11	<2.0		63.8							<30			E4.3
FEB 14	<2.0		40.3							<30			E4.8
MAR 13	<2.0		307							<10			14.0
APR 11	E1.5		257							1600			64.0
MAY 09	<2.0	24.4	118	<.06	190	.05	<.8	.20	3.1	<10	<.08	63.5	1.5
JUN 07	<2.0	43.3	204	<.06	212	.45	<.8	.36	7.1	<30	.12	77.7	2.8
JUL 12	<2.0	45.4	723	<.06	230	E.04	E.4	.41	4.5	<10	<.08	66.1	2.6
AUG 14													
SEP 11													
	DA	TE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)		
		4											
		6											
		3											
		1											
		4											
		.3											
		1											
		19	3.0	.10	1.9	<1.0	1250	.04	.7	4	5.94		
		7	3.8	2.26	4.0	<1.0	2110	E.03	1.4	7	8.18		
		2	5.2	2.09	5.7	<1.0	1700	E.03	.9	3	7.21		
		4											
	SEP 1	1											

E -- Estimated value.

06317020 WILD HORSE CREEK NEAR ARVADA, WY

LOCATION.--Lat 44° 37' 57", long 106° 01' 53", in $NE^1/_4$ $NE^1/_4$ sec. 29, T.54 N., R. 76 W., Sheridan County, Hydrologic Unit 10090202, on left bank 0.2 ft upstream from county culvert, 0.4 mi upstream from Middle Prong Wildhorse Creek, and 5.0 mi southeast of Arvada.

DRAINAGE AREA. -- 250 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 3,730 ft above sea level, from topographic map.

REMARKS.--Records excellent except those for daily discharges greater than .00 ${\rm ft^3/s}$, which are fair. Natural flow of stream affected by numerous small reservoirs and coalbed methane production water.

		DISCHARG	E, CUBIC	FEET PER		WATER YE. Y MEAN VA	AR OCTOBER LUES	R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.01 .01 .00 .00	.00 .01 .62 1.8 1.0	.44 .19 .14 .13	.06 .06 .07 .08	.00 .00 .00 .02	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
6 7 8 9	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.97 1.0 1.1 .81	.15 .14 .13 .11	.08 .06 .04 .04	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.49 .55 .55 .49	.09 .08 .07 .07	.03 .03 .02 .02	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
16 17 18 19 20	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.13 .23 .02 .06	.00 .00 .00 .00	.43 .44 .47 .45	.06 .06 .05 .05	.02 .01 .01 .01	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.05 .02 .05 .01	.00 .00 .00 .00	. 45 . 47 . 47 . 45 . 43	.18 .20 .16 .12 .09	.01 .01 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.01 .01 .02 .02 .01	.00 .00 .00 	.43 .45 .46 .45 .45	.09 .08 .07 .07 .06	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN AC-FT	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	0.77 .025 .23 .00	0.02 .001 .01 .00	17.62 .57 1.8 .00	3.47 .12 .44 .05 6.9	0.81 .026 .08 .00	0.04 .001 .02 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00
STATIST	TICS OF	MONTHLY MEAN	DATA FO	R WATER Y	EARS 200	0 - 2001,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	.000 .000 2001 .000 2001	.000 .000 2001 .000 2001	.000 .000 2001 .000 2001	.025 .025 2001 .025 2001	.001 .001 2001 .001 2001	.57 .57 2001 .57 2001	.12 .12 2001 .12 2001	.026 .026 2001 .026 2001	.001 .001 2001 .000 2000	.000 .000 2000 .000 2000	.000 .000 2000 .000 2000	.000 .000 2000 .000 2000

06317020 WILDHORSE CREEK NEAR ARVADA, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR*	FOR 2001 WATER YEAR	WATER YEARS 2000 - 2001
ANNUAL TOTAL		22.73	
ANNUAL MEAN		.062	.062
HIGHEST ANNUAL MEAN			.062 2001
LOWEST ANNUAL MEAN			.062 2001
HIGHEST DAILY MEAN		1.8 Mar 4	1.8 Mar 4 2001
LOWEST DAILY MEAN	.00 Many days	.00 Many days	.00 Many days,
			most years
ANNUAL SEVEN-DAY MINIMUM	.00 Many days	.00 Many days	.00 Most years
MAXIMUM PEAK FLOW		2.3 Mar 4	2.3 Mar 4 2001
MAXIMUM PEAK STAGE		1.90 Mar 4	1.90 Mar 4 2001
ANNUAL RUNOFF (AC-FT)		45	45
10 PERCENT EXCEEDS		.15	.08
50 PERCENT EXCEEDS		.00	.00
90 PERCENT EXCEEDS		.00	.00

^{*} For period of operation.

06317020 WILD HORSE CREEK NEAR ARVADA, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 2000 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
MAR													
13 MAY	1530	.53	660	9.2	79	7.7	1520	13.0	3.0	290	45.3	43.5	6.23
09 JUN	1015	.03	665	5.6	64	7.9	4580	22.0	14.5	1200	165	189	15.5
07 AUG	1130	.00											
14 SEP	1345	.00											
11	1315	.00											
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
MAR	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT.DIS FET LAB CACO3 (MG/L)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)
MAR 13 MAY 09	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
MAR 13 MAY 09 JUN 07	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
MAR 13 MAY 09 JUN	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 44.4

DATE	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
MAR		
13	50	180
MAY		404
09	50	424
07		
AUG		
14		
SEP		
11		

E -- Estimated value.

06320000 ROCK CREEK NEAR BUFFALO, WY

LOCATION.--Lat $44^{\circ}27^{\circ}22^{\circ}$, long $106^{\circ}52^{\circ}42^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec.29, T.52 N., R.83 W., Johnson County, Hydrologic Unit 10090206, on left bank 300 ft downstream from confluence of North and South Forks and 11.5 mi northwest of Buffalo.

DRAINAGE AREA. -- 60.0 mi².

PERIOD OF RECORD.--April to August 1941, April to December 1942, May 1943 to November 1944, April 1945 to current year (no winter records since 1971). Monthly discharge only for some periods, published in WSP 1309.

GAGE.--Water-stage recorder. Elevation of gage is 5,280 ft above sea level, from topographic map. Prior to Jan. 8, 1944, nonrecording gages 600 ft upstream on North and South Forks at different datums, Jan. 8, 1944, to Sept. 30, 1952, water-stage recorder at present site at datum 0.72 ft lower.

REMARKS.--Records good. Water is imported into drainage basin upstream from station from South Piney Creek. Diversions for irrigation of about 250 acres upstream from station. Data collection platform with satellite telemetry at station. Result of discharge measurement, in cubic feet per second, made during period when station was not in operation, is given below:

Oct. 4 . . . 17.4

COOPERATION.--Station operated and recorded provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

		DISCHAR	RGE, CUBIC	C FEET PEF		WATER YE MEAN VA		R 2000 TO	SEPTEMBER	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							3.3	27	27	13	37	11
2							3.4	12	28	12	35	9.5
3							3.4	7.4	37	11	26	9.2
4							3.5	5.8	36	15	26	9.0
5							3.5	7.4	30	16	26	8.7
6							4.1	8.5	27	19	26	10
7							4.3	7.0	24	19	26	14
8							4.2	7.2	26	18	21	16
9							4.0	17	27	19	12	14
10							3.5	23	28	39	14	14
11							3.4	18	27	40	13	13
12							3.4	26	24	38	10	12
13							3.4	46	33	50	9.2	12
14							3.4	62	30	46	9.0	9.0
15							3.5	53	27	47	8.5	10
16							3.3	46	23	46	9.2	9.7
17							3.4	28	20	45	15	10
18							4.7	22	21	44	15	8.4
19							7.2	28	19	44	14	6.8
20							9.0	32	19	42	14	6.6
21							6.2	24	18	41	15	7.4
22							5.0	17	17	40	15	7.6
23							4.6	19	18	39	16	7.6
24							4.7	18	18	42	20	7.2
25							7.2	24	19	35	20	4.9
26							12	28	19	35	20	4.7
27							16	34	21	38	19	4.6
28							25	31	23	37	18	4.6
29							39	32	18	37	18	5.0
30							29	30	14	37	18	5.0
31								24		37	18	
TOTAL							230.6	764.3	718	1041	562.9	271.5
MEAN							7.69	24.7	23.9	33.6	18.2	9.05
MAX							39	62	37	50	37	16
MIN							3.3	5.8	14	11	8.5	4.6
AC-FT							457	1520	1420	2060	1120	539
STATIST	TICS OF MO	ONTHLY MEA	N DATA FO	OR WATER Y	ZEARS 1945	5 - 2001,	BY WATER	YEAR (WY) *			
MEAN	9.23	7.11	5.57	4.58	4.43	4.81	15.4	100	146	61.1	40.6	20.2
MAX	20.1	12.7	8.75	6.40	6.57	7.13	46.7	256	352	142	69.2	57.3
(WY)	1969	1969	1969	1965	1969	1960	1994	1978	1995	1975	1968	1982
MIN	3.44	2.74	3.08	1.88	2.27	2.22	4.63	24.7	23.9	28.3	4.22	1.57
(WY)	1955	1955	1967	1950	1957	1966	1966	2001	2001	1958	1954	1954

06320000 ROCK CREEK NEAR BUFFALO, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1945 - 2001*
ANNUAL MEAN		34.7
HIGHEST ANNUAL MEAN		54.7 1963
LOWEST ANNUAL MEAN		16.1 1954
HIGHEST DAILY MEAN	62 May 14	1110 Jun 8 1997
LOWEST DAILY MEAN	3.3 Apr 1,16	.50 Sep 19 1954 2080 Jun 8 1997
MAXIMUM PEAK FLOW	97 May 15	2080 ^a Jun 8 1997
MAXIMUM PEAK STAGE	4.54 May 15	8.80 Jun 8 1997
ANNUAL RUNOFF (AC-FT)		25120

^{*} For period of operation. a From rating curve extended above 610 ${\rm ft}^3/{\rm s}.$

06320210 CLEAR CREEK ABOVE KUMOR DRAW, NEAR BUFFALO, WY

LOCATION.--Lat $44^{\circ}23^{\circ}21^{\circ}$, long $106^{\circ}37^{\circ}23^{\circ}$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec.17, T.51 N., R.81 W., Johnson County, Hydrologic Unit 10090206, 10 ft upstream from bridge on State Highway 16, 0.7 mi upstream from Kumor Draw, and 5 mi northeast of Buffalo.

PERIOD OF RECORD.--January 1993 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT	1000	40	655	16.1	1.45	0.4	765	10.0	F 0	T 025	T 007	0.07	. 010
23 MAR	1020	42	655	16.1	147	8.4	765	10.0	5.0	E.035	E.027	.007	<.018
12	1030	47	643	10.2	83	8.0	958	7.5	.00	.555	.132	.007	.088
MAY	1015	4.5	645	0 5	110	0.0	210	00.0	14 5	0.40	0.50	006	000
29	1015	47	645	9.7	113	8.2	310	22.0	14.5	<.040	<.050	<.006	.020
JUL 18	1000	19	651	9.2	117	7.9	572	25.5	19.0	.066	E.036	.020	.041

DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	0.7 UM-MF (COLS. 100 ML
OCT 23	170 44	67 30
12 MAY		
29 JUL	280	E220k
18	270	280

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

06320500 SOUTH PINEY CREEK AT WILLOW PARK, WY

LOCATION.--Lat $44^{\circ}27^{\circ}59^{\circ}$, long $107^{\circ}02^{\circ}03^{\circ}$, in NW $^{1}/_{4}$ sec.24, T.52 N., R.85 W., Johnson County, Hydrologic Unit 10090206, Bighorn National Forest, on left bank about 300 ft downstream from Willow Park Dam, 1.4 mi upstream from Kearny Creek, and 10 mi southwest of Story.

DRAINAGE AREA. -- 33.6 mi².

PERIOD OF RECORD.--September 1945 to September 1957 (no winter records prior to 1948), October 1959 to current year (no winter records since 1971).

REVISED RECORDS. -- WSP 1309: 1949(M). WSP 1709: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 8,540 ft above sea level, from topographic map. Prior to Oct. 1, 1957, at site about 600 ft upstream at different datum. Oct. 1, 1959, to Sept. 30, 1965, at present site at datum 1.00 ft higher.

REMARKS.--Records good. Some regulation by Cloud Peak Reservoir, capacity, 3,385 acre-ft, and Willow Park Reservoir, capacity, 4,457 acre-ft. Storage began in Willow Park Reservoir in April 1959. Cloud Peak Reservoir enlarged December 1958. Water released from storage in Cloud Peak Reservoir is diverted just downstream from station into Rock Creek basin. Result of discharge measurement, in cubic feet per second, made during period when station was not in operation, is given below:

Oct. 10 . . . 10.4

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

		DISCHAR	GE, CUBIC	FEET PER		WATER YE.	AR OCTOBER LUES	R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									52	65	84	48
2									52	65	78	46
3									52	65	67	46
4									52	65	63	45
5									51	65	62	45
6									47	67	62	44
7									40	64	61	43
8									42	62	51	41
9									44	61	46	40
10									44	63	47	39
11									47	64	45	39
12									54	85	42	39
13									58	123	42	38
14									58	123	42	37
15									57	123	39	36
16									56	122	42	35
17									56	119	49	34
18									56	116	52	34
19									53	111	52	33
20									45	108	55	34
21									41	107	60	34
22								26	40	105	60	33
23								30	40	103	63	32
24								27	42	102	64	30
25								30	45	99	63	28
26								30	45	101	62	27
27								32	47	111	59	25
28								38	56	102	56	22
29								42	66	95	55	22
30								43	65	93	55	22
31								43		85	53	
TOTAL									1503	2839	1731	1071
MEAN									50.1	91.6	55.8	35.7
MAX									66	123	84	48
MIN									40	61	39	22
AC-FT									2980	5630	3430	2120
STATIST	TICS OF M	ONTHLY MEA	N DATA FO	R WATER	YEARS 1947	7 - 2001,	BY WATER	YEAR (WY)	*			
MEAN	15.0	9.77	8.20	6.93	6.21	6.29	10.0	49.5	162	113	86.4	49.5
MAX	26.8	16.8	14.2	12.4	11.7	10.6	27.0	153	332	281	130	118
(WY)	1962	1960	1968	1968	1968	1968	1949	1948	1995	1975	1998	1998
MIN	6.47	.52	1.94	1.26	1.27	1.58	1.27	2.77	50.1	74.1	30.9	17.0
(WY)	1967	1967	1964	1964	1964	1964	1960	1967	2001	1956	1954	1954

06320500 SOUTH PINEY CREEK AT WILLOW PARK, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1947 - 2001*
ANNUAL MEAN		42.4 ^a
HIGHEST ANNUAL MEAN		55.9 1963
LOWEST ANNUAL MEAN		27.5 1960
HIGHEST DAILY MEAN	123 Jul 13-15	1100 _b Jun 8 1997
LOWEST DAILY MEAN	22 Sep 28-30	13 ^D May 1 1989
MAXIMUM PEAK FLOW	125 Jul 13	1620 Jun 15 1963
MAXIMUM PEAK STAGE	2.65 Jul 13	5.68 Jun 15 1963
ANNUAL RUNOFF (AC-FT)		30700

- * For period of operation.
 a Unadjusted for regulation by reservoirs.
 b Minimum daily, prior to construction of Willow Park Reservoir, 4.5 ft³/s, Mar. 1 to Apr. 5, 1955.
 c From rating curve extended above 360 ft³/s on basis of slope-area measurement of peak flow.

253

06323000 PINEY CREEK AT KEARNY, WY

LOCATION.--Lat $44^{\circ}32^{\circ}08^{\circ}$, long $106^{\circ}49^{\circ}18^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $SE^{1}/_{4}$ sec.26, T.53 N., R.83 W., Johnson County, Hydrologic Unit 10090206, on right bank at Kearny, 300 ft northeast of Historical Monument and 2.0 mi upstream from Little Piney Creek.

DRAINAGE AREA. -- 118 mi².

PERIOD OF RECORD.--September 1902 to June 1906, June to August 1910, May 1911 to July 1917, May 1919 to September 1923 (no winter records), October 1940 to Sept. 1998, Oct. 1998 to Sept. 1999 (no winter record). Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.--WSP 1176: 1944. WSP 1309: 1913(M). WSP 1509: 1906, 1920(M), 1941(M), 1942, 1943(M). WSP 1916: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 4,655.11 ft above sea level. Sept. 6, 1902, to June 30, 1906, nonrecording gage at site 50 ft upstream at different datum. May 14, 1911, to July 31, 1917, and May 1, 1919, to Sept. 30, 1923, nonrecording gage at site 50 ft upstream at present datum.

REMARKS.--Records good. Some regulation by Cloud Peak Reservoir, capacity, 3,385 acre-ft, Willow Park Reservoir, capacity, 4,457 acre-ft, and Kearny Lake, capacity, 1,860 acre-ft. Diversion upstream from station from South Piney Creek into Rock Creek basin for irrigation. Diversions upstream from station for irrigation of about 240 acres, of which about 90 acres are downstream from station. Record includes flow in bypass channel (Spring Creek), 300 ft left of main channel. Result of discharge measurement, in cubic feet per second, made during period when station was not in operation, is given below:

Oct. 2 . . . 3.82

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

		DISCHAR	GE, CUBIC	FEET PEF		WATER YEA		ER 2000 TC	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							25	126	5.9	26	13	14
2							27	116	7.1	25	17	12
3							32	116	15	25	12	11
4							34	113	19	20	11	13
5							35	124	14	19	9.2	15
6							39	138	9.6	16	9.2	17
7							41	118	7.4	16	11	22
8							43	116	6.5	15	15	33
9							41	128	7.8	12	16	20
10							39	122	7.4	7.1	16	18
11							41	94	6.8	9.2	14	7.1
12							39	96	11	11	13	8.0
13							39	99	17	38	13	12
14							39	101	24	42	14	17
15							38	107	26	47	13	19
16							51	63	14	44	13	14
17							55	54	9.6	37	14	11
18							63	28	8.5	26	15	12
19							70	25	9.4	15	13	12
20							76	23	6.8	13	9.2	14
21							66	16	5.3	16	16	14
22							63	9.6	8.7	15	16	13
23							61	9.9	21	12	13	12
24							64	9.6	19	15	14	11
25							70	9.9	19	13	17	11
26							88	11	14	17	15	10
27							101	13	12	21	14	9.6
28							106	15	16	16	12	7.8
29							109	20	27	15	11	6.8
30							129	17	28	13	13	7.1
31								6.2		14	12	
TOTAL							1724	2044.2	402.8	630.3	413.6	403.4
MEAN							57.5	65.9	13.4	20.3	13.3	13.4
MAX							129	138	28	47	17	33
MIN							25	6.2	5.3	7.1	9.2	6.8
AC-FT							3420	4050	799	1250	820	800
STATIST	TICS OF MO	ONTHLY MEA	N DATA FO	R WATER Y	EARS 1903	3 - 2001,	BY WATER	YEAR (WY) *			
MEAN	30.4	36.1	31.1	27.3	26.3	30.8	70.1	272	373	94.3	30.6	25.6
MAX	85.4	76.9	53.6	44.3	54.4	72.8	204	683	911	413	153	185
(WY)	1913	1999	1977	1997	1962	1972	1943	1944	1995	1975	1998	1923
MIN	8.84	13.0	13.4	12.3	10.7	16.7	15.8	43.3	13.4	13.0	7.98	3.47
(WY)	1965	1955	1966	1967	1960	1957	1981	1985	2001	1985	1980	1981
,												

06323000 PINEY CREEK AT KEARNY, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1903 - 2001*
ANNUAL MEAN		86.4
HIGHEST ANNUAL MEAN		168 1944
LOWEST ANNUAL MEAN		27.8 1985
HIGHEST DAILY MEAN	138 May 6	1780 Jun 15 1963
LOWEST DAILY MEAN	5.3 Jun 21	1.9 Oct 3 1981 3410 Jun 15 1963
MAXIMUM PEAK FLOW	169 May 6	3410 ^a Jun 15 1963
MAXIMUM PEAK STAGE	2.26 May 6	6.05 Jun 15 1963
ANNUAL RUNOFF (AC-FT)		62560

^{*} For period of operation. a From rating curve extended above 1,800 ${\rm ft}^3/{\rm s}.$

06324000 CLEAR CREEK NEAR ARVADA, WY

LOCATION.--Lat $44^{\circ}52^{\circ}18^{\circ}$, long $106^{\circ}04^{\circ}56^{\circ}$, in $SE^{1}/_{4}$ sec.36, T.57 N., R.77 W., Sheridan County, Hydrologic Unit 10090206, 600 ft downstream from Cabin Creek, 1.8 mi upstream from mouth, and 16 mi north of Arvada.

PERIOD OF RECORD.--Water years 1949-54, 1967-92, October 2000 to September 2001.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 24	1025	118	675	10.7	102	8.5	993	11.0	8.0	420	103	39.3	4.56
NOV 16	1410	79	674	12.5	97	7.6	1110	-0.5	.00	520	122	52.5	4.28
DEC 13	1140	43	670			8.1		-8.0	.00	580	137	56.7	4.14
JAN 11	1035	47		11.1		7.6	1180		.00	490	117	49.4	3.89
FEB 14	1040	45				7.8	1260	-11.0	.00	550	129	55.9	3.97
MAR 13	1345	107	667	11.0	86	7.8	969	11.5	.00	410	96.4	41.7	6.13
APR 11	1830	46	670	9.7	99	8.1	1320	7.0	10.5	560	122	63.3	5.96
MAY 10	0840	76	671	7.6	87	8.2	756	15.0	15.5	310	71.3	31.9	3.66
JUN 07	0950	74	676	8.3	98	8.1	1020	22.5	17.5	440	108	40.6	5.54
JUL 13	1250	42	677	9.2	129	8.2	1270	28.5	26.5	550	115	62.6	6.51
AUG 14	1500	1.6	673	9.2	132	8.0	1580	32.0	27.0	640	128	76.5	7.84
SEP 11	1215	13				8.3	1810	20.5	17.5	770	151	94.3	7.18
DATE	SODIUM AD- SORP- TION RATIO	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT.DIS FET LAB CACO3 (MG/L)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	INUM, DIS- SOLVED (UG/L AS AL)	MONY, DIS- SOLVED (UG/L AS SB)
OCT 24 NOV 16	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	INUM, DIS- SOLVED (UG/L AS AL)	MONY, DIS- SOLVED (UG/L AS SB)
OCT 24 NOV 16 DEC 13	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 49.2	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 4.6	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 49.2 63.1 68.4	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 198 257 270	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.4 3.0 4.6	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 4.6 11.4 9.8	DIS- SOLVED (MG/L AS SO4) (00945) 349 403 441	DIS- SOLVED (TONS PER AC-FT) (70303) .96 1.18	DIS- SOLVED (TONS PER DAY) (70302) 224 185	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 704 866 946	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 671 814 884	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14 MAR 13	AD- SORP- TION RATIO (00931) 1 1	DIS- SOLVED (MG/L AS NA) (00930) 49.2 63.1 68.4	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 198 257 270	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.4 3.0 4.6 3.8	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 4.6 11.4 9.8 10.6	DIS- SOLVED (MG/L AS SO4) (00945) 349 403 441 416	DIS- SOLVED (TONS PER AC-FT) (70303) .96 1.18 1.29	DIS- SOLVED (TONS PER DAY) (70302) 224 185 110	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 704 866 946 898	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 671 814 884 814	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14 MAR 13 APR 11	AD-SORP-TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 49.2 63.1 68.4 62.2 68.0	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 198 257 270 251 258	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.4 3.0 4.6 3.8 4.5	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 4.6 11.4 9.8 10.6 11.2	DIS- SOLVED (MG/L AS SO4) (00945) 349 403 441 416 447	DIS- SOLVED (TONS PER AC-FT) (70303) .96 1.18 1.29 1.22	DIS- SOLVED (TONS PER DAY) (70302) 224 185 110 113	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 704 866 946 898 946	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 671 814 884 814	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14 MAR 13 APR 11 MAY 11	AD- SORP- TION RATIO (00931) 1 1 1 1	DIS- SOLVED (MG/L AS NA) (00930) 49.2 63.1 68.4 62.2 68.0 52.1	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 198 257 270 251 258 181	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.4 3.0 4.6 3.8 4.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) .2 .3 .2 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 4.6 11.4 9.8 10.6 11.2 7.2	DIS- SOLVED (MG/L AS SO4) (00945) 349 403 441 416 447 348	DIS- SOLVED (TONS PER AC-FT) (70303) .96 1.18 1.29 1.22 1.29	DIS- SOLVED (TONS PER DAY) (70302) 224 185 110 113 115	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 704 866 946 898 946 730	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 671 814 884 814 874 665	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14 MAR 13 APR 11 MAY 10 JUN 07	AD- SORP- TION RATIO (00931) 1 1 1 1 1 2	DIS- SOLVED (MG/L AS NA) (00930) 49.2 63.1 68.4 62.2 68.0 52.1	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 198 257 270 251 258 181 207	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.4 3.0 4.6 3.8 4.5 5.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .2 .3 .2 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 4.6 11.4 9.8 10.6 11.2 7.2	DIS- SOLVED (MG/L AS SO4) (00945) 349 403 441 416 447 348 527	DIS- SOLVED (TONS PER AC-FT) (70303) .96 1.18 1.29 1.22 1.29 .99	DIS- SOLVED (TONS PER DAY) (70302) 224 185 110 113 115 211	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 704 866 946 898 946 730 1020	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 671 814 884 814 874 665	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14 MAR 13 APR 11 MAY 10 JUN 07 JUL 13	AD- SORP- TION RATIO (00931) 1 1 1 1 1 2 1	DIS- SOLVED (MG/L AS NA) (00930) 49.2 63.1 68.4 62.2 68.0 52.1 82.7 40.6	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 198 257 270 251 258 181 207 153	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.4 3.0 4.6 3.8 4.5 5.0 4.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) .2 .3 .2 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 4.6 11.4 9.8 10.6 11.2 7.2 .4 2.9	DIS- SOLVED (MG/L AS SO4) (00945) 349 403 441 416 447 348 527 243	DIS- SOLVED (TONS PER AC-FT) (70303) .96 1.18 1.29 1.22 1.29 .99	DIS- SOLVED (TONS PER DAY) (70302) 224 185 110 113 115 211 128	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 704 866 946 898 946 730 1020 533	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 671 814 884 814 874 665 930 488	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 24 NOV 16 DEC 13 JAN 11 FEB 14 MAR 13 APR 11 MAY 10 JUN 07 JUL	AD- SORP- TION RATIO (00931) 1 1 1 1 1 2 1	DIS- SOLVED (MG/L AS NA) (00930) 49.2 63.1 68.4 62.2 68.0 52.1 82.7 40.6	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 198 257 270 251 258 181 207 153 166	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.4 3.0 4.6 3.8 4.5 5.0 4.1 2.6 3.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .2 .3 .2 .3 .2	DIS- SOLVED (MG/L AS SIO2) (00955) 4.6 11.4 9.8 10.6 11.2 7.2 .4 2.9 5.3	DIS- SOLVED (MG/L AS SO4) (00945) 349 403 441 416 447 348 527 243 382	DIS- SOLVED (TONS PER AC-FT) (70303) .96 1.18 1.29 1.22 1.29 .99 1.39 .72	DIS- SOLVED (TONS PER DAY) (70302) 224 185 110 113 115 211 128 109	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 704 866 946 898 946 730 1020 533 748	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 671 814 884 814 874 665 930 488 694	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)

06324000 CLEAR CREEK NEAR ARVADA, WY--Continued

DATE	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
OCT 24 NOV	<2.0		34.6							20			10.8
16	<2.0		37.8							M			12.3
DEC 13	<2.0		40.1							10			17.8
JAN 11	<2.0		37.4							<10			15.5
FEB 14	<2.0		38.1							М			14.5
MAR 13	<2.0		32.2							40			27.4
APR 11	<2.0		37.5							20			29.5
MAY 10	<2.0	31.3	33.1	<.06	61	E.02	<.8	.30	2.0	10	<.08	14.1	16.6
JUN 07	<2.0	36.8	38.9	<.06	74	.14	<.8	.36	3.1	<10	.09	21.7	16.2
JUL 13	<2.0	30.0	31.3	<.06	123	E.02	E.4	.32	3.5	<10	<.08	27.4	13.0
AUG 14	E1.0	51.2	54.8	<.06	145	<.04	<.8	.47	6.3	<10	E.04	36.3	80.0
SEP 11	E1.1	32.7	38.0	<.06	164	.07	<.8	.39	7.6	20	E.05	35.2	38.3
	DATE		MOLYB- DENUM,	NICKEL,	SELE- NIUM,	SILVER,	STRON- TIUM,	THAL- LIUM,	VANA- DIUM,	ZINC,	URANIUM NATURAL		
	DA	TE	DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS TL) (01057)	DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U) (22703)		
	OCT		DIS- SOLVED (UG/L AS MO)	SOLVED (UG/L AS NI)	SOLVED (UG/L AS SE)	SOLVED (UG/L AS AG)	DIS- SOLVED (UG/L AS SR)	DIS- SOLVED (UG/L AS TL)	DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)	DIS- SOLVED (UG/L AS U)		
	OCT 2 NOV 1		DIS- SOLVED (UG/L AS MO) (01060)	SOLVED (UG/L AS NI) (01065)	SOLVED (UG/L AS SE) (01145)	SOLVED (UG/L AS AG) (01075)	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS TL) (01057)	DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 1 DEC		DIS- SOLVED (UG/L AS MO) (01060)	SOLVED (UG/L AS NI) (01065)	SOLVED (UG/L AS SE) (01145)	SOLVED (UG/L AS AG) (01075)	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS TL) (01057)	DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 1 DEC 1 JAN	6	DIS- SOLVED (UG/L AS MO) (01060)	SOLVED (UG/L AS NI) (01065)	SOLVED (UG/L AS SE) (01145)	SOLVED (UG/L AS AG) (01075)	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS TL) (01057)	DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 1 DEC 1 JAN 1 FEB	6	DIS- SOLVED (UG/L AS MO) (01060)	SOLVED (UG/L AS NI) (01065)	SOLVED (UG/L AS SE) (01145)	SOLVED (UG/L AS AG) (01075)	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS TL) (01057)	DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 1 DEC 1 JAN 1 FEB 1 MAR	3 11	DIS- SOLVED (UG/L AS MO) (01060)	SOLVED (UG/L AS NI) (01065)	SOLVED (UG/L AS SE) (01145)	SOLVED (UG/L AS AG) (01075)	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS TL) (01057)	DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 1 DEC 1 JAN 1 FEB 1 MAR 1 APR	6 6 1 1 3 4 1	DIS- SOLVED (UG/L AS MO) (01060)	SOLVED (UG/L AS NI) (01065)	SOLVED (UG/L AS SE) (01145)	SOLVED (UG/L AS AG) (01075)	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS TL) (01057)	DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 1 DEC 1 JAN 1 FEB 1 MAR 1 APR 1 MAY 1	6 3 11 3 4 11	DIS- SOLVED (UG/L AS MO) (01060)	SOLVED (UG/L AS NI) (01065)	SOLVED (UG/L AS SE) (01145)	SOLVED (UG/L AS AG) (01075)	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS TL) (01057)	DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 1 DEC 1 JAN 1 MAR 1 APR 1 MAY 1 JUN 0	3 3 3 3 4 3 1	DIS- SOLVED (UG/L AS MO) (01060)	SOLVED (UG/L AS NI) (01065)	SOLVED (UG/L AS SE) (01145)	SOLVED (UG/L AS AG) (01075)	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS TL) (01057)	DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 1 DEC 1 JAN 1 FEB 1 MAR 1 APR 1 MAY 1 JUN 0 JUL 1	6 3 1 3 1 3	DIS- SOLVED (UG/L AS MO) (01060)	SOLVED (UG/L AS NI) (01065)	SOLVED (UG/L AS SE) (01145) 5	SOLVED (UG/L AS AG) (01075) <1.0	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS TL) (01057)	DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U) (22703)		
	OCT 2 NOV 1 DEC 1 1 JAN 1 APR 1 MAY 1 JUN 0 JUL 1 AUG	6 1 3 1 3 4 1	DIS- SOLVED (UG/L AS MO) (01060)	SOLVED (UG/L AS NI) (01065) 1.75	SOLVED (UG/L AS SE) (01145) 5 .8	SOLVED (UG/L AS AG) (01075) <1.0	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS TL) (01057)	DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U) (22703) 5.61 7.33		

E -- Estimated value. M -- Presence verified, not quantified.

06324500 POWDER RIVER AT MOORHEAD, MT

LOCATION.--Lat $45^{\circ}04^{\circ}04^{\circ}$, long $105^{\circ}52^{\circ}10^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ NW $^{1}/_{4}$ sec.8, T.9 S., R.48 E., Powder River County, Hydrologic Unit 10090207, on left bank 500 ft downstream from discontinued post office at Moorhead, 6.2 mi upstream from Buffalo Creek, and at river mile 184.8.

DRAINAGE AREA. -- 8,088 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1929 to September 1972, October 1974 to current year. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS.--WSP 1309: 1932(M). WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 3,334.6 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Aug. 28, 1931, nonrecording gage at site 0.3 mi upstream at different datum. Aug. 28, 1931, to Mar. 21, 1956, water-stage recorder at site 1.2 mi upstream at different datum. Mar. 22 to July 24, 1956, nonrecording gage at site 0.3 mi downstream at different datum. July 25 to Sept. 12, 1956, nonrecording gage at present site and datum.

REMARKS.--Records fair except those for period of estimated daily discharges, which are poor. Some regulation by three reservoirs in Wyoming with combined usable capacity of 36,800 acre-ft. Diversions for irrigation of about 66,300 acres upstream from station. U.S. Geological Survey data collection platform from satellite telemeter at station. Station operated and record provided by the Montana District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		Dibeii	ritor, cor	JIC IBBI I		LY MEAN V		10 2000 10	ODI IDID.	DIC 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	196 221 237	240 259 249	e140 e160 e150	e140 e140 e150	e150 e160 e150	e170 e180 e180	263 248 238	195 329 353	41 47 117	16 12 9.9	9.9 9.7 9.5	2.2 2.3 2.5 2.7
4 5	249 255	251 e200	e150 e160	e140 e140	e160 e150	e190 e200	235 240	384 397	257 261	17 23	9.3 8.5	2.7 3.7
6 7	259 236	e140 e120	e170 e160	e130 e120	e140 e140	e210 e220	247 263	403 373	336 235	28 18	6.4 4.4	4.0 3.8
8 9	202 200	e140 e140	e150 e140	e120 e120	e120 e130	e240 e220	269 310	335 295	176 124	12 12	3.0 2.0	4.0 5.1
10	202	e140	e130	e130	e140	e240	306	266	98	12	1.5	e5.0
11 12	226 274	e130 e140	e110 e130	e130 e140	e140 e130	e240 e240	273 252	232 218	103 93	11 376	1.0	e5.0 e5.0
13	297	e140	e150	e130	e130	e220	246	189	95	1260	.61	e5.0
14 15	287 236	e150 e160	e140 e130	e130 e140	e140 e140	e240 e260	221 208	157 137	102 84	731 528	.51 .51	e7.0 e10
16 17	234 229	e150 e150	e150 e150	e140 e140	e140 e150	e280 e340	201 195	128 114	80 106	479 339	.50 .36	e15 e15
18	224	e160	e150	e150	e150	e400	192	94	83	130	.21	e15
19 20	223 223	e150 e150	e140 e120	e140 e150	e140 e150	e420 e420	184 174	121 119	65 45	89 56	.14 .12	e15 15
21 22	223 225	e160 e150	e130 e140	e160 e150	e150 e140	446 400	200 216	89 77	37 33	37 23	.08	14 14
23	223	e150	e130	e140	e140	393	213	73	31	42	.17	11
24 25	230 235	e160 e170	e140 e140	e160 e150	e150 e140	381 374	213 208	62 53	27 25	559 108	.18 .17	7.1 5.6
26 27	225 223	e160 e160	e160 e160	e140 e130	e140 e150	404 399	214 220	51 50	23 19	121 237	.16 .15	6.4 6.9
28	225	e150	e160	e140	e160	344	241	51	17	38	2.1	7.2 7.7
29	228	e170	e150	e160		304	217	49	16	17	2.1	7.7
30 31	231 227	e150 	e140 e140	e140 e130		276 267	198 	48 44	15 	11 10	2.8 2.5	7.4
TOTAL	7205	4939	4470	4320	4020	9098	6905	5486	2791	5361.9	79.53	229.6
MEAN MAX	232 297	165 259	144 170	139 160	144 160	293 446	230 310	177 403	93.0 336	173 1260	2.57 9.9	7.65 15
MIN	196	120	110	120	120	170	174	44	15	9.9	.08	2.2
AC-FT	14290	9800	8870	8570	7970	18050	13700	10880	5540	10640	158	455
STATIST	rics of	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	30 - 2001	, BY WATER	R YEAR (WY	*) *			
MEAN	229	226	160	153	289	618	510	1069	1384	473	174	145
MAX	897 1995	660 1999	326 1981	445 1981	1200 1930	2290 1947	1314 1965	5553 1978	4131 1967	2500 1937	1219 1941	686 1982
(WY) MIN	16.1	80.0	56.2	27.2	20.9	210	1965	1978 82.6	39.5	33.9	.60	1.28
(WY)	1955	1936	1933	1950	1933	1935	1961	1934	1954	1961	1966	1960

06324500 POWDER RIVER AT MOORHEAD, MT--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WATER YEAR	WATER YEAR	S 1930 - 2001*
ANNUAL TOTAL	110287		54905.03		
ANNUAL MEAN	301		150	452	
HIGHEST ANNUAL MEAN				1091	1978
LOWEST ANNUAL MEAN				109	1961
HIGHEST DAILY MEAN	3340	May 20	1260 Jul 13	27500	May 20 1978
LOWEST DAILY MEAN	26	Aug 27	.08 ^a Aug 21	.00	Jul 15 1931
ANNUAL SEVEN-DAY MINIMUM	30	Aug 25	14 Aug 19 1490 Jul 13	33000d ⁰⁰	Sep 4 1960
MAXIMUM PEAK FLOW			1490 ^D Jul 13	33000 ^d _f	May 20 1978
MAXIMUM PEAK STAGE			6.16 ^C Mar 17	17.70 ⁻	Mar 21 1956
ANNUAL RUNOFF (AC-FT)	218800		108900	327800	
10 PERCENT EXCEEDS	631		273	1060	
50 PERCENT EXCEEDS	244		140	220	
90 PERCENT EXCEEDS	47		5.0	46	

- a b c d e f

- For period of operation.
 Site and datum then in use.
 Gage height, 3.77 ft.
 Backwater from ice.
 Gage height, 15.24 ft.
 Estimated.
 Ice jam, site and datum then in use.

06324500 POWDER RIVER AT MOORHEAD, MT--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1951-53, 1956-67, 1969-72, 1975-77, May to September 2001.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: July 1986 to November 1989, May to September 2001.

WATER TEMPERATURE: February 1951 to September 1953, October 1955 to September 1957, October 1974 to September 1977, March 1978 to September 1981 (seasonal records only).

SUSPENDED-SEDIMENT DISCHARGE: October 1974 to September 1977, March 1978 to September 1996 (seasonal records only).

INSTRUMENTATION .-- Specific conductance probe installed May 20, 2001.

REMARKS.--Sample for July 17 had an extremely high suspended sediment concentration. Sample filtration for dissolved constitutents was very difficult and probably affected by an unknown level of particulate contamination. Such values are qualified as either "Estimated" (E) or deleted. Missing specific conductance data for Sept. 11-19 due to equipment problems. Unpublished records of instantaneous water temperature and specific conductance are available in files of District office.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE (water years 1986-90): Maximum daily, 4,150 microsiemens per centimeter (mS/cm) at 25.0 C, July 17, 1988; minimum daily, 642 mS/cm at 25.0 C, May 20, 1988.

WATER TEMPERATURE (water years 1951-53, 1955-57, 1975-81): Maximum daily, 33.0 C,July 14, 1981; minimum daily 0.0 C on many days during winter.

SEDIMENT CONCENTRATION: Maximum daily mean, 53,500 mg/L May 27,1980; minimum daily mean, 3 mg/L Sept. 16-18, 1996. SEDIMENT LOAD: Maximum daily, 2,230,000 tons May 20, 1978; minimum daily, 0.17 ton Aug. 1, 1988 and Sept. 16, 1996.

EXTREMES FOR CURRENT YEAR. --

SPECIFIC CONDUCTANCE (May to September): Maximum daily mean, 4,020 microsiemens per centimeter (mS/cm) at 25.0 C,July 6; minimum daily mean, 802 mS/cm at 25.0 C, July 27.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	CENT	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
MAY 2001 14	2000	151	665	5.6	78	8.5	1750	21.0	24.5	480	111
JUN 19	1640	61	681	8.1	110	8.5	2390	22.0	24.5	730	154
JUL 17	1145	363	671	5.7	79	8.3	2310	29.5	25.0		E295
AUG 28	1800	2.2				8.4	3090	32.0	28.0	1100	190
SEP 04	1600	2.7				8.3	3260	35.0	27.5	1200	204
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)
MAY 2001 14	49	7.0	4	184	183	99	.6	6.2	572	1.6	464
JUN 19	83	10	4	264	178	109	. 5	4.9	933	2.3	275
JUL 17	-01	=10	T 4	E286	E103	E38	E.7	E8.2	E1110	E2.6	E1860
	E81	E18	E4	E280	ET02	E30	D.,	50.5	DITIO	E2.0	E1000
AUG 28 SEP	150	15	£4 5	355	161	52	. 4	.9	1560	3.3	14.4

06324500 POWDER RIVER AT MOORHEAD, MT--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE MAY 2001 14 JUN 19 JUL 17 AUG 28 SEP 04	SOLIDS SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1140 1670 E1900 2430	, NITROGEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.040 <.040 <.040 <.040	GEN,AM-	- NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.005 <.005 1.2 .006 E.007	- NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001 <.001 <.001	- PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.007 <.007 .008 <.007 <.007	PHOS- PHORUS TOTAL (MG/L AS P) (00665) .133 .079 15 .026	ALUM-INUM, DIS- SOLVED (UG/L AS AL) (01106) 2 4 4	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)2826 .23	ARSENIC DIS- SOLVED (UG/L AS AS) (01000) 1.0 1.1	ARSENIC TOTAL (UG/L AS AS) (01002) E2 E2 5 E1
DATE	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	BORON, TOTAL RECOV- ERABLE (UG/L AS B) (01022)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)
MAY 2001 14 JUN 19 JUL 17 AUG 28 SEP 04	 43 72 66	53 55 739 62 65	 <.06 .12 <.10	 247 290 289	188 264 336 302 305	 E.02 <.07 <.07	.07 .04 9.8 1.1 <.07	 <.8 <.8 E.4	<1 <1 133 <1 <1	.39 .31	7.2 12 7.7
DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)
MAY 2001 14 JUN 19 JUL 17 AUG 28 SEP 04	6.3 5.3 161 8.9 8.1	2140 1430 198000 190 120	 <.08 E.10	2 18 171 <2 <2	 75 90 99	 6.6 1.1 8.1	71 47 4900 64 60	 3.7 4.8 4.7	 2.2 <.1 <.1	9 5 247 6 6	3.0 2.5 1.5
DATE	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	SED. SUSP. SIEVE DIAM. * FINER THAN .062 MM (70331)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
MAY 2001 14 JUN 19 JUL 17	2.8 2.6 7.2	 <1 	 1860 	 <.04	 1.1 	 4 	10 8 601	 13 	94 99 99	158 83 25900	64 14 25400
AUG											

E--Estimated.

06324500 POWDER RIVER AT MOORHEAD, MT--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5									2430 2440 2570 2810 2800	3310 3250 2950 3080 3410	1700 1840 1990 2130 2220	3270 3290 3330 3320 3150
6 7 8 9 10									2870 2750 2660 2560 2500	4020 3950 3260 3040 2810	2390 2570 2750 2940 3140	3170 3110 2940 2770 2700
11 12 13 14 15									2500 2460 2460 2460 2410	2780 2610 1520 1720 2020	3310 3470 3590 3850 3870	
16 17 18 19 20									2380 2430 2370 2390 2540	2310 2450 2300 2230 2180	3700 3550 3420 3450 3540	 1870
21 22 23 24 25								2520 2540 2580 2590 2550	2790 2910 3060 2970 3120	2080 1950 1910 1270 1390	3590 3610 3630 3630 3550	1830 1850 1910 1980 2040
26 27 28 29 30 31								2530 2520 2510 2500 2480 2450	3180 3090 3210 3340 3360	1420 802 958 1170 1350 1530	3430 3340 3130 3140 3220 3260	2100 2140 2200 2210 2190
MEAN MAX MIN									2730 3360 2370	2290 4020 802	3130 3870 1700	

06324970 LITTLE POWDER RIVER ABOVE DRY CREEK, NEAR WESTON, WY

LOCATION.--Lat $44^{\circ}55'37"$, long $105^{\circ}21'10"$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ sec.13, T.57 N., R.71 W., Campbell County, Hydrologic Unit 10090208, on left bank 3.1 mi upstream from Dry Creek, 5.0 mi south of the Wyoming-Montana State line, and 20 mi north of Weston

DRAINAGE AREA. -- 1,235 mi².

PERIOD OF RECORD. -- October 1972 to current year.

REVISED RECORDS.--WDR WY-77-1: Drainage area. WDR WY-78-1: 1976(M).

GAGE.--Water-stage recorder. Elevation of gage is 3,410 ft above sea level, from topographic map.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Diversion upstream from station for irrigation of about 80 acres downstream from station. Flow occasionally affected by contributions from mine dewatering. U.S. Geological Survey satellite telemetry at station. Water-quality data are published in the special studies section of this report.

		DISCHA	RGE, CUBI	C FEET PE		, WATER YE LY MEAN VA		R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e.01 e.06 e.06 e.13 e.20	e2.8 e2.5 e3.6 e4.9 e3.6	2.0 1.9 2.0 2.0 2.1	1.3 1.3 1.3 1.2	1.5 1.4 1.4 1.3 e1.3	2.3 2.8 12 51 e65	e8.6 8.5 9.1 9.6 22	7.0 6.6 5.9 5.4 5.1	2.1 2.1 2.8 3.5 3.6	1.8 1.9 1.5 2.5	6.5 4.8 3.6 2.7 2.2	.02 .01 .01 .01
6 7 8 9 10	e.25 e.35 e.55 e.50 e.40	e2.5 e1.8 1.9 e1.7 e1.5	2.0 2.1 2.1 1.9 1.6	1.6 1.7 1.6 1.6	e1.2 e1.1 e1.1 e1.3 e1.6	e74 e150 e100 e70 e54	52 62 38 30 22	5.7 5.6 5.8 4.7 4.9	3.4 3.5 3.7 4.6 3.6	1.4 1.1 1.0 3.0 1.4	1.7 1.3 1.1 .89 .74	.03 .04 .03 .02
11 12 13 14 15	e.65 e.60 e.75 e1.3 e1.5	e1.3 e1.4 e1.5 e1.6 e1.6	e1.4 e1.2 e1.0 1.1	1.6 1.6 1.7 1.6 1.6	e1.7 e1.8 e1.6 e1.4 e1.6	e50 e56 e66 e70 e56	17 13 11 9.0 8.0	4.6 4.3 3.8 3.4 3.2	2.9 3.0 4.4 21 30	1.3 9.1 9.1 26 24	.65 .55 .58 .54 .47	.09 .02 .01 .03
16 17 18 19 20	36 6.9 3.7 2.7 2.1	e1.8 e2.0 2.2 e1.9 2.2	e1.0 1.1 1.1 1.2 e1.1	1.7 e1.8 e1.6 e1.5 e1.4	e1.7 e2.0 2.2 2.0 1.8	e26 e14 e7.6 e5.6 e5.8	7.2 6.8 6.5 6.5	3.3 3.2 3.2 3.1 3.5	9.7 9.0 7.8 5.9 4.7	8.4 40 13 5.2 3.5	.44 .42 .38 .29 .27	.01 .01 .02 .02
21 22 23 24 25	1.6 1.9 1.8 1.7	2.0 2.1 2.1 2.1 2.2	e.96 e1.1 e1.3 e1.2 e1.3	e1.5 e1.6 e1.7 1.8 1.7	1.7 1.8 2.0 1.9	e6.2 e6.2 e6.2 e6.7	7.0 8.4 28 24 22	3.6 3.4 3.1 2.9 2.7	3.9 2.9 2.3 2.1 5.0	2.4 1.7 1.9 54 252	.30 .26 .15 .13	.01 .01 .01 .01
26 27 28 29 30 31	1.9 1.8 2.0 2.1 2.5 2.4	2.1 2.1 e2.0 1.9 1.8	e1.4 1.5 1.2 1.2 e1.1 e1.2	e1.5 e1.4 e1.5 1.6 1.6	1.6 1.7 2.1 	e12 e11 e11 e10 e9.2 e8.8	19 14 9.9 8.1 6.9	2.5 2.2 2.1 2.1 2.1 2.2	5.8 2.0 1.4 1.2 1.5	125 58 53 31 12 8.7	.04 .04 .03 .03 .05	.01 .01 .01 .01
TOTAL MEAN MAX MIN AC-FT	80.21 2.59 36 .01 159	64.7 2.16 4.9 1.3 128	44.46 1.43 2.1 .96 88	47.9 1.55 1.8 1.2 95	45.5 1.62 2.2 1.1 90	1034.4 33.4 150 2.3 2050	500.5 16.7 62 6.4 993	121.2 3.91 7.0 2.1 240	159.4 5.31 30 1.2 316	756.5 24.4 252 1.0 1500	31.29 1.01 6.5 .02 62	0.56 .019 .09 .01
STATIS	TICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 19	73 - 2001,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	11.7 172 1995 .009 1992	3.95 25.4 1999 .015 1982	2.61 9.97 1995 .21 1982	8.33 89.0 1974 .10 1991	38.9 336 1997 .46 1989	62.0 613 1978 1.34 1981	24.3 99.3 1999 .75 1981	59.9 703 1978 1.04 1992	29.3 187 1984 2.11 1988	11.4 68.8 1982 .044 1980	5.72 44.8 1993 .000 1991	4.13 60.8 1986 .002 1991

06324970 LITTLE POWDER RIVER ABOVE DRY CREEK, NEAR WESTON, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1973 - 2001
ANNUAL TOTAL	1737.94	2886.62	
ANNUAL MEAN	4.75	7.91	21.8
HIGHEST ANNUAL MEAN			127 1978
LOWEST ANNUAL MEAN			1.49 1992
HIGHEST DAILY MEAN	93 May 19	252 Jul 25	5000 May 19 1978
LOWEST DAILY MEAN	.00 Many days	.01 Many days	.00 Many days, some years
ANNUAL SEVEN-DAY MINIMUM	.00 Aug 17	.01 Sep 21	.00 Many days,
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE		314 Jul 25 6.14 Jul 25	some years 5300 ^a May 19 1978 11.63 Mar 20 1978
ANNUAL RUNOFF (AC-FT)	3450	5730	15780
10 PERCENT EXCEEDS	9.7	15	35
50 PERCENT EXCEEDS	2.8	1.9	3.0
90 PERCENT EXCEEDS	.01	.06	.03

Gage height, 11.62 ft. Estimated.

06364700 ANTELOPE CREEK NEAR TECKLA, WY

LOCATION.--Lat $43^{\circ}29^{\circ}08^{\circ}$, long $105^{\circ}13^{\circ}39^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.35, T.41 N., R.70 W., Converse County, Hydrologic Unit 10120101, on left bank 0.4 mi downstream from Porcupine Creek, 9 mi southeast of Teckla, and 18 mi north of Bill.

PERIOD OF RECORD.--Water years 1977-81, 2001.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
NOV 13 MAR	1200	.15	650				3010	-7.0	2.0	1300	311	124	18.6
15	1220	.28	650	8.2	75	7.3	2890	4.5	4.5	1200	303	118	15.2
MAY 07	0930	.41	653	8.0	82	7.4	2860	13.0	9.5	1300	306	119	17.4
JUN 05	0940	.21	645	6.5	73	7.3	2950	14.5	12.5	1200	293	118	20.1
JUL 10	0930	84	651	5.5	72	7.4	885	23.0	20.5	300	78.7	24.7	10.4
AUG 13	0945	.00											
SEP 10	0910	.00											
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
NOV 13	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT.DIS FET LAB CACO3 (MG/L)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)
NOV 13 MAR 15	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
NOV 13 MAR 15 MAY 07	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
NOV 13 MAR 15 MAY 07 JUN 05	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 458	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 21.9	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945) 1410	DIS- SOLVED (TONS PER AC-FT) (70303) 3.61 3.53	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 2660	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 2450 2330	DIS- SOLVED (UG/L AS AS) (01000) <2.0	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
NOV 13 MAR 15 MAY 07 JUN 05 JUL	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 259 241 253	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 458 403 396	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 21.9 22.8 23.8	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 22.0 18.1	DIS- SOLVED (MG/L AS SO4) (00945) 1410 1360 1440	DIS- SOLVED (TONS PER AC-FT) (70303) 3.61 3.53	DIS- SOLVED (TOMS) PER DAY) (70302) 1.08 1.96 3.05	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 2660 2600	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 2450 2330 2410	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 32.3 26.6 29.7
NOV 13 MAR 15 MAY 07 JUN 05 JUL	AD- SORP- TION RATIO (00931) 3 3 3	DIS- SOLVED (MG/L AS NA) (00930) 259 241 253 257	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 458 403 396 397	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 21.9 22.8 23.8	RIDE, DIS- SOLVED (MG/L AS F) (00950) .6 .6	DIS- SOLVED (MG/L AS SIO2) (00955) 22.0 18.1 18.4	DIS- SOLVED (MG/L AS SO4) (00945) 1410 1360 1440	DIS- SOLVED (TONS PER AC-FT) (70303) 3.61 3.53 3.74 3.50	DIS- SOLVED (TONS PER DAY) (70302) 1.08 1.96 3.05 1.46	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 2660 2600 2750	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 2450 2330 2410 2350	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 <2.0	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 32.3 26.6 29.7 27.6

(UG/L	MANGA- NESE, DIS- SOLVEE (UG/L AS MN) (01056)
550	2400
E20	2190
<30	1730
.20	1460
<30	1460
20	20.1
20	20.1
	DIS- SOLVED (UG/L AS FE) (01046)

E -- Estimated value.

06376300 BLACK THUNDER CREEK NEAR HAMPSHIRE, WY

LOCATION.--Lat $43^{\circ}34^{\circ}51^{\circ}$, long $104^{\circ}43^{\circ}04^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec.31, T.42 N., R.65 W., Weston County, Hydrologic Unit 10120103, 20 ft downstream from bridge on county road, 1.3 mi west of Hampshire, and 4.0 mi upstream from mouth.

PERIOD OF RECORD.--Water years 1980-81, 2001.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
NOV 13 JAN	1415	.60	655	10.3	84		1850	-1.5	.5	390	63.8	56.0	13.9
08	1145	1.2				7.9	2060	8.5	.00	510	98.6	63.8	15.2
MAY 07 JUN	1330	1.5	662	9.4	102	8.1	2030	19.5	12.0	540	96.6	72.3	13.9
05	1355	3.6	655	9.2	107	8.2	1990	22.5	15.0	440	73.2	62.8	12.8
JUL 10 AUG	1500	354	660	3.0	41	7.8	372	26.5	22.5	110	24.9	11.3	8.23
13	1315	.00											
SEP 10	1155	.00											
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
NOV 13	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT.DIS FET LAB CACO3 (MG/L)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (UG/L AS AS)	TOTAL RECOV- ERABLE (UG/L AS BA)
NOV 13 JAN 08	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
NOV 13 JAN 08 MAY 07	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
NOV 13 JAN 08 MAY 07 JUN 05	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 272	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 453	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945) 527	DIS- SOLVED (TONS PER AC-FT) (70303) 1.78 2.03	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000) E1.1 <2.0	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 40.1 74.0
NOV 13 JAN 08 MAY 07 JUN 05 JUL 10	AD- SORP- TION RATIO (00931) 6 6	DIS- SOLVED (MG/L AS NA) (00930) 272 309 263	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 453 615 352	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 25.6 26.1 23.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.2 1.6	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945) 527 555 753	DIS- SOLVED (TOMS) PER AC-FT) (70303) 1.78 2.03 2.11	DIS- SOLVED (TOMS PER DAY) (70302) 2.12 4.96 6.23	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1310 1490	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1230 1440	DIS- SOLVED (UG/L AS AS) (01000) E1.1 <2.0	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 40.1 74.0 81.5
NOV 13 JAN 08 MAY 07 JUN 05	AD- SORP- TION RATIO (00931) 6 6 5	DIS- SOLVED (MG/L AS NA) (00930) 272 309 263 278	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 453 615 352 274	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 25.6 26.1 23.1 24.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.2 1.6 1.0	DIS- SOLVED (MG/L AS SIO2) (00955) 2.9 6.2 .9	DIS- SOLVED (MG/L AS SO4) (00945) 527 555 753	DIS- SOLVED (TONS PER AC-FT) (70303) 1.78 2.03 2.11 1.96	DIS- SOLVED (TONS PER DAY) (70302) 2.12 4.96 6.23 14.0	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1310 1490 1550	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1230 1440 1430	DIS- SOLVED (UG/L AS AS) (01000) E1.1 <2.0 <2.0	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 40.1 74.0 81.5 85.6

AS FE) AS MN (01046) (01056)
NOV	
13 <10 11.9	
JAN	
08 <30 14.4	
MAY	
07 <30 36.6	
JUN	
05 <30 15.4 JUL	
10 20 4.7	
AUG	
13	
SEP	
10	

E -- Estimated value.

06392900 BEAVER CREEK AT MALLO CAMP, NEAR FOUR CORNERS, WY

LOCATION.--Lat $44^\circ05'06"$, long $104^\circ03'36"$, in $SE^1/_4$ $NE^1/_4$ $NE^1/_4$ sec.4, T.47 N., R.60 W., Weston County, Hydrologic Unit 10120107, on right bank in Mallo Campgrounds, 250 ft upstream from mouth, 750 ft upstream from dam on Stockade Beaver Creek, and 3.8 mi east of Four Corners.

DRAINAGE AREA. -- 10.3 mi².

PERIOD OF RECORD.--October 1974 to September 1982, April 1991 to current year.

REVISED RECORD. -- WDR-85-1: 1981, 1982.

GAGE.--Water-stage recorder. Elevation of gage is 6,030 ft above sea level, from topographic map. October 1974 to September 1982, at site 50 ft upstream and datum 3.11 ft lower.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. No diversions upstream from station.

		=			=			_		_		
		DISCHAF	RGE, CUBIC	FEET PE		WATER YEA	AR OCTOBER LUES	2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.2 2.9 2.7 2.9 2.9	1.7 1.5 2.1 1.9	1.8 e1.7 1.8 1.7	e1.6 1.8 1.9 1.9	1.8 1.9 1.9 1.8	e1.6 e1.8 1.9 1.9	1.7 1.7 1.7 1.7	3.0 2.7 2.5 3.1 2.5	2.8 2.6 2.6 2.9 2.7	2.5 2.3 3.1 2.5 2.6	2.1 3.0 2.7 2.8 2.7	2.1 2.0 2.6 2.4 2.4
6 7 8 9 10	2.9 2.9 2.8 2.8 2.8	e1.8 e1.7 e1.6 e1.7	1.6 1.6 1.6 1.6 e1.5	1.8 1.6 1.6	1.7 e1.6 e1.6 e1.7 1.8	1.8 1.8 1.8 1.8	2.3 2.4 2.2 2.0 2.0	2.6 3.0 2.7 2.5 2.2	2.5 2.5 3.1 2.6 2.7	2.5 2.5 2.2 3.4 3.2	2.6 2.4 3.7 3.1 2.9	2.1 1.5 1.5 1.5
11 12 13 14 15	2.6 2.6 2.6 2.4 2.4	1.7 1.6 1.6 1.5	e1.4 1.2 1.4 1.8 2.0	1.7 1.7 1.7 1.7	1.8 1.8 1.8 e1.7 e1.6	1.8 1.8 1.8 1.8 e1.8	2.0 1.9 1.9 1.8	2.3 2.2 3.0 2.5 2.9	2.7 2.5 2.6 2.5 3.1	2.1 2.0 2.8 2.9 2.7	2.8 2.7 2.6 2.6 2.6	1.4 1.4 1.4 2.5
16 17 18 19 20	2.3 2.3 2.0 2.1 2.2	1.9 1.6 1.9 1.9	1.7 2.0 2.1 2.0 1.9	1.6 1.5 1.7 1.6 1.7	e1.7 1.8 1.9 1.9	e1.9 1.8 1.9 1.9	1.8 1.7 1.8 2.0 2.2	2.6 2.3 2.3 2.3 2.6	2.6 2.5 2.4 2.4 2.4	2.7 2.5 2.5 2.3 3.1	3.2 2.9 2.8 2.7 2.8	1.3 1.4 1.4 1.4
21 22 23 24 25	2.1 2.1 2.1 2.0 2.0	1.7 1.7 1.7 1.6 1.6	1.5 1.8 1.9 1.9	1.7 1.7 1.7 1.6 1.7	1.9 1.9 1.9 1.9	1.9 2.0 1.9 1.9	2.2 2.1 3.8 2.8 2.6	1.8 2.0 2.7 2.3 2.7	2.9 2.5 2.5 2.6 2.7	2.5 2.5 2.4 2.9 2.6	2.7 2.7 2.4 3.1 2.8	1.4 1.4 1.3 1.3
26 27 28 29 30 31	1.9 2.0 2.1 2.0 2.0 2.0	1.6 1.7 1.7 1.6 1.7	1.7 1.8 1.8 1.8 1.8 e1.7	1.7 1.6 1.7 1.8 1.8	1.8 1.8 e1.7 	1.9 1.6 1.7 1.7 1.7	2.6 2.6 2.6 2.4 3.3	2.4 2.2 3.2 2.9 2.6 2.2	2.4 3.1 2.6 2.6 2.5	3.3 2.8 2.8 2.7 2.5 2.3	2.8 2.8 2.4 2.4 2.3 2.1	3.0 2.6 2.4 2.3 3.1
TOTAL MEAN MAX MIN AC-FT	74.6 2.41 3.2 1.9 148	51.7 1.72 2.1 1.5 103	53.6 1.73 2.1 1.2 106	52.8 1.70 1.9 1.5 105	50.2 1.79 1.9 1.6 100	56.4 1.82 2.0 1.6 112	65.5 2.18 3.8 1.7 130	78.8 2.54 3.2 1.8 156	79.1 2.64 3.1 2.4 157	81.7 2.64 3.4 2.0 162	84.2 2.72 3.7 2.1 167	54.3 1.81 3.1 1.0 108
STATIST	ICS OF M	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 1975	5 - 2001,	BY WATER	YEAR (WY))			
MEAN MAX (WY) MIN (WY)	1.93 3.16 2000 .31 1977	1.80 3.30 2000 .47 1977	1.69 2.68 1999 .44 1977	1.62 2.95 1999 .42 1993	1.79 2.90 1999 .46 1977	2.08 5.83 1999 .71 1977	2.36 4.07 1994 .88 1993	2.26 3.44 1978 .81 1993	2.43 4.05 1980 1.34 1994	2.16 3.09 1979 1.34 1993	2.03 2.89 1978 .75 1976	1.95 3.08 2000 .62 1976

06392900 BEAVER CREEK AT MALLO CAMP, NEAR FOUR CORNERS, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1975 - 2001
ANNUAL TOTAL	916.4	782.9	
ANNUAL MEAN	2.50	2.14	2.02
HIGHEST ANNUAL MEAN			3.20 1999
LOWEST ANNUAL MEAN			.94 1977
HIGHEST DAILY MEAN	4.2 Apr 23	3.8 Apr 23	34 Mar 26 1999
LOWEST DAILY MEAN	1.2 Dec 12	1.0 Sep 15	.10 Jan 20 1993
ANNUAL SEVEN-DAY MINIMUM	1.5 Dec 7	1.3 Sep 15 26 ^a Apr 23	12 Jan 17 1993 103 Apr 22 1994
MAXIMUM PEAK FLOW		26 ^d Apr 23 1.83 ^C Feb 15	103 ^D Apr 22 1994
MAXIMUM PEAK STAGE		1.83 ^C Feb 15	2.88 ^c Dec 25 1998
ANNUAL RUNOFF (AC-FT)	1820	1550	1460
10 PERCENT EXCEEDS	3.2	2.8	2.9
50 PERCENT EXCEEDS	2.6	2.0	1.9
90 PERCENT EXCEEDS	1.7	1.6	1.2

a b c e

Gage height, 1.55 ft. From rating curve extended above 85 ${\rm ft^3/s.}$ Backwater from ice. Estimated.

06392950 STOCKADE BEAVER CREEK NEAR NEWCASTLE, WY

LOCATION.--Lat $43^{\circ}51'32"$, long $104^{\circ}06'24"$, in $SW^{1}/_{4}$ SE $^{1}/_{4}$ sec.19, T.45 N., R.60 W., Weston County, Hydrologic Unit 10120107, on right bank 20 ft upstream of culvert on county road, 0.6 mi upstream from South Draw, 2.5 mi upstream from LAK Reservoir Dam, and 4.7 mi east of Newcastle.

DRAINAGE AREA. -- 107 mi².

PERIOD OF RECORD. -- October 1974 to September 1982, April 1991 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,460 ft above sea level, from topographic map. October 1974 to September 1982, at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. A few small diversions upstream from station for irrigation. U.S. Geological Survey data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 9.3 13 9.5 9.8 9.9 9.5 e17 9 1 e16 e15 e16 e17 e17 e15 e17 e17 e17 e16 e16 17 13 15 e16 e16 e18 e17 e18 17 e19 13 15 e17 e18 e16 9.7 9.5 9.3 ---TOTAL 420.5 440.1 19.0 20 18.7 21 14.4 MEAN 16.7 17.5 16.8 17.0 18.2 18.0 14.0 14.2 13.1 MAX 9.3 9.1 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 2001, BY WATER YEAR (WY) MEAN 13.3 13.5 13.3 13.0 13.4 14.8 13.8 11.4 11.7 11.7 12.1 12.9 MAX 18.9 19.0 18.1 17.6 17.6 21.3 19.4 18.5 17.8 17.0 20.9 20.0 9.52 (WY) 9.74 5.92 9.40 10.6 9.53 8.89 10.2 10.8 6.45 8.24 6.33 MIN (WY)

06392950 STOCKADE BEAVER CREEK NEAR NEWCASTLE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WAT	ER YEAR	WATER YEAR	S 1975 - 2001
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	6304 17.2 		6011.6 16.5 		 13.0 17.4	2000
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	 21 13 13	Many days Jun 10 Aug 18	 21 9.1 9.6	Apr 7,Jul 9 Jul 7 Jun 27	9.80 143 3.9 4.6	1992 Jul 16 1993 May 21 1992 Aug 2 1992
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT)	13 12500	Aug 16	50 7.35 11920	Jul 9 Jul 9	776 ^a 12.44 9390	Jul 16 1993 Jul 16 1993
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	12500 19 17 14		11920 19 17 13		17 12 8.9	

a $\,$ From rating curve extended above 18 $\rm ft^3/s$ on basis of culvert backwater computation. e $\,$ Estimated.

06395000 CHEYENNE RIVER AT EDGEMONT, SD

LOCATION.--Lat $43^{\circ}18^{\circ}20^{\circ}$, long $103^{\circ}49^{\circ}14^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.36, T.8 S., R.2 E., Fall River County, Hydrologic Unit 10120106, on right bank at downstream side of bridge on U.S. Highway 18, at Edgemont, 300 ft downstream from Burlington Northern Railroad bridge, and 600 ft upstream from Cottonwood Creek.

DRAINAGE AREA.--7,143 mi².

PERIOD OF RECORD.--June 1903 to November 1906 (no winter records), April 1928 to February 1933 (monthly discharge only), October 1946 to current year.

REVISED RECORDS.--WSP 1086: Drainage area. WSP 1116: 1947. WDR SD-78-1: 1977.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 3,414.56 ft above sea level. Prior to Dec. 1, 1906, nonrecording gage 20 ft upstream at datum 0.7 ft lower. Apr. 11, 1928, to Feb. 28, 1933, Oct. 4, 1946, to Oct. 23, 1947, and Jan. 11, 1961, to Apr. 24, 1963, nonrecording gage, and Oct. 24, 1947, to Jan. 10, 1961, and Apr. 25, 1963, to Sept. 30, 1972, water-stage recorder all at present site at datum 2.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Many small reservoirs upstream from station used for stock and irrigation water, total capacity, about 45,000 acre-ft. U.S. Bureau of Reclamation satellite data-collection platform at station. Station operated and record provided by the South Dakota District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY .TTTN TTTT. ATIG SEP e190 31 e17 e10 e14.5 409 2.7 4.9 10 37 2 15 42 e17 e11 €14 5 e180 61 34 160 1 9 15 4 0 3 e14.5 99 2.3 11 40 e17 e13 e220 66 34 15 4.6 e180 e17 15 e17 e15 74 38 83 2.0 12 5.8 e15.5 .96 5 23 40 e17 e19 e160 68 34 78 10 4.2 e15 6 23 e17 e300 62 32 25 8.5 3.7 7 22 e20 3.1 7.2 e20 e20 e15 e310 59 31 670 4.4 8 21 e18 e20 e20 e14.5 e300 70 25 641 6.4 3.9 21 22 e17 e14.5 5.7 e20 e22 e350 204 27 226 124 3.4 10 e14 e19 e25 e14 e350 357 26 144 346 3.9 3.5 e14 11 24 e12 e17 e25 e300 213 23 106 680 3.4 3.8 12 25 25 e13.5 141 e10 e25 e285 877 3.9 3.8 e16 84 22 72 13 24 e9.0 e15 e25 e13.5 e270 93 694 4.0 e14 e239 14 23 e9 N e25 e13.5 67 17 62 358 9 4 4.7 21 15 e23 204 53 18 48 197 5.1 4.1 e10 e13 e13.0 16 20 e10 e13 e22 e13.0 177 46 18 72 125 4.4 2.6 2.8 17 20 e12 e21 203 40 19 91 104 11 e10 e13 4.5 e12.5 184 17 8.8 21 e12 e11 e20 41 19 21 ₽14 e10 e20 e12 5 140 37 21 54 63 6 4 20 e12.5 24 18 45 4.0 e11 e10 e19 139 69 4.9 21 21 e12 e10 e18 e12 5 185 19 19 34 61 4 1 3 9 22 21 3.5 e12 e10 e12.5 203 33 16 28 46 5.5 e18 23 21 e13 e10 e17.5 e12.5 176 42 17 23 41 2.5 24 21 ₽14 e10 e17 e12 5 151 62 13 20 37 3 3 e10 e16.5 2.6 2.3 25 163 e14 26 22 e15 e10 e16 e100 181 62 11 11 52 3 0 3 0 27 20 11 3.0 e16 e10 e15.5 e300 133 68 61 3.1 28 18 e17 e10 e15 e240 97 68 11 6.5 41 4.6 29 21 e17 e10 e15 74 50 11 4.8 31 4.2 2.8 21 69 40 25 30 e10 31 21 e10 e14.5 66 100 19 4.9 TOTAL 631 532.0 422 580.0 998.0 6179 2359 745.8 3455.4 4180.71 207 4 111.3 MEAN 20.4 17.7 13.6 18.7 35.6 199 78.6 24.1 115 135 6.69 3.71 25 5.8 42 25 20 300 350 100 670 877 16 MAX 10 357 9.8 3.5 2.6 10 9.0 10 66 19 2.1 MIN 12 AC-FT 1250 1060 837 1150 1980 12260 4680 1480 6850 8290 411 221 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1947 - 2001, BY WATER YEAR (WY) MEAN 22.1 16.7 8.99 8.92 42.1 123 68.3 213 252 125 66.6 26.4 MAX 291 266 50.5 37.3 302 506 558 2192 2084 806 388 275 (WY) 1999 1999 1999 1999 1997 1994 1955 1978 1962 1958 1955 1973 .000 .023 .000 .000 .000 3.39 .22 1.76 .000 .000 MIN .15 1985 (WY) 1961 1962 1960 1950 1960 1961 1961 1960 1966 1960 1956

06395000 CHEYENNE RIVER AT EDGEMONT, SD--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1929-1932, 1947-2001
ANNUAL TOTAL	15028.41	20401.61	2
ANNUAL MEAN	41.1	55.9	81.3 ^a
HIGHEST ANNUAL MEAN			434 1962
LOWEST ANNUAL MEAN			12.0 1988
HIGHEST DAILY MEAN	1160 Apr 20	877 Jul 12	24000 h May 20 1978
LOWEST DAILY MEAN	.66 Aug 26	.75 Jul 6	.00 Many days,
			most years
ANNUAL SEVEN-DAY MINIMUM	.77 Aug 20	2.0 Jul 1	.00 Many years
MAXIMUM PEAK FLOW		1070 Jun 7	28000 May 20 1978
MAXIMUM PEAK STAGE		4.88 Jun 7	13.65c May 20 1978
ANNUAL RUNOFF (AC-FT)	29810	40470	58900
10 PERCENT EXCEEDS	71	168	155
50 PERCENT EXCEEDS	20	18	12 ⁰
90 PERCENT EXCEEDS	3.7	4.1	.10 ^d

- Median of annual mean discharge, 72 ft³/s.

 No flow at times in most years.

 Flood of May 12, 1920 reached a stage of 13.0 ft and May 1, 1922, 14.0 ft present datum, from floodmarks at railroad bridge.

 Reflects water years 1947-2001 only.
 Estimated. a b c
- d

06425720 BELLE FOURCHE RIVER BELOW RATTLESNAKE CREEK, NEAR PINEY, WY

LOCATION.--Lat $43^{\circ}59^{\circ}04^{\circ}$, long $105^{\circ}23^{\circ}16^{\circ}$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.9, T.46 N., R.71 W., Campbell County, Hydrologic Unit 10120201, on right bank 200 ft downstream from bridge on county road, 1.2 mi downstream from Rattlesnake Creek, 10.0 mi southwest of Piney, 15.5 mi north of Reno Junction, and 22 mi south of Gillette.

DRAINAGE AREA. -- 495 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1975 to April 1983, March to September 2001.

REVISED RECORD. -- WDR WY-78-1.

GAGE.--Water-stage recorder and metal v-notch weir. Elevation of gage is 4,540 ft, from topographic map.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. No diversions upstream from station. Several small stockwater reservoirs upstream from station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e8.6 3.0 .82 ___ ------6.8 7.3 2 ___ ___ e8.0 3.8 3.1 .68 26 .00 3 3.5 .27 .00 -----e8.6 .74 ------3.7 -----------e9.0 .71 .25 ---5 e9.6 7.5 3.9 3.7 .86 21 .00 ---6 --e10 6.9 4.0 .88 .00 ------7 ___ 11 6.9 4.0 4.0 .84 .13 .03 7.0 8 12 3.9 3.9 .89 .13 .16 ------------3.8 12 3.7 . 89 .10 ---10 11 1.2 6.2 3.8 3.3 .10 .22 11 12 2.9 10 5.5 4.0 09 .24 ---------------10 5.2 3.9 1.5 .08 .32 4.9 5.2 13 9.8 3.9 1.6 .07 .36 9.3 5.5 14 ___ ---___ ___ ___ 4.9 4.5 1.5 07 .37 15 ------___ 2.0 4.9 4.9 .06 .43 16 17 ___ ___ ___ ___ ___ 9.3 9.1 4 6 5.5 7 2 6 1 0.4 42 ___ ------6.0 ------4.6 5.1 6.0 .04 .45 8.9 4.4 4.8 18 4.3 5.0 .03 19 ___ ___ ___ ___ ___ 8 7 4.4 4 2 4.0 4.0 05 59 4.5 3.6 20 9.0 4.0 3.3 .05 .96 4.7 21 ___ ___ ___ ___ ___ 8 9 4.4 3.3 2 5 0.4 2.6 22 8.4 5.4 3.0 1.5 .04 5.3 3.8 23 ---7.9 5.5 .04 4.4 2.5 24 ___ ___ ___ ___ ___ 7.9 7.5 5.5 3 4 1.5 03 3.3 1.2 5.3 4.5 25 3.3 .03 7.3 7.1 26 ___ 5 1 2 0 0.2 3.3 ___ ___ ___ ___ 3 2 1 1 27 4.9 3.2 1.8 .02 28 ---------------7.1 4.7 2.9 .78 .01 .89 ___ ---___ ---29 ___ 7.1 4 6 2.8 1.3 62 0.0 59 30 ------7.0 4.9 .48 .00 .49 31 ---------------7.0 2.9 .54 .00 TOTAL ___ 276.3 168.7 119.8 107.19 53.86 2.91 32.34 MEAN ---------------8.91 5.62 3.86 3.57 1.74 .094 1.08 ------___ ------12 7.2 .51 MAX 8.1 5.5 6.1 5.3 7.0 MIN ___ ---___ ------4.4 2.8 .99 .48 .00 .00 AC-FT ---------------548 335 238 213 107 5.8 64 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1976 - 2001, BY WATER YEAR (WY)* .12 .11 .22 MEAN . 43 1.60 4.46 1.74 11.8 4.47 1.88 2.47 .47 2.71 MAX .94 .61 .68 2.61 7.36 15.8 5.62 88.3 15.6 6.22 15.8 (WY) 1983 1983 1983 1983 1982 1978 2001 1978 1979 1982 1982 1982 .000 .000 .000 .000 .051 .010 .000 .000 .000 .000 MIN .000 .000 (WY) 1976 1976 1982 1977 1978 1981 1981 1981 1981 1976 1976 1976

06425720 BELLE FOURCHE RIVER BELOW RATTLESNAKE CREEK, NEAR PINEY, WY--Continued

ANNUAL MEAN 2.52 HIGHEST ANNUAL MEAN 9.76 1978 LOWEST ANNUAL MEAN 1976 HIGHEST DAILY MEAN 12 Mar 8,9 1060 May 19 1978 LOWEST DAILY MEAN 1.00 Several days .00 Many days, several years ANNUAL SEVEN-DAY MINIMUM 14 ^a Mar 8 4100 May 18 1978 MAXIMUM PEAK FLOW 114 ^a Mar 8 4100 May 18 1978 MAXIMUM PEAK STAGE 1.78 ^C Mar 2 11.33 May 18 1978 ANNUAL RUNOFF (AC-FT) 1830 10 PERCENT EXCEEDS 4.0 50 PERCENT EXCEEDS 0.03	SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1976 - 2001*
LOWEST ANNUAL MEAN	ANNUAL MEAN		2.52
HIGHEST DAILY MEAN 12 Mar 8,9 1060 May 19 1978 LOWEST DAILY MEAN .00 Several days .00 Many days, Several years ANNUAL SEVEN-DAY MINIMUM .00 Aug 29 .00 Several years MAXIMUM PEAK FLOW .14 Mar 8 .4100 May 18 1978 MAXIMUM PEAK STAGE .1.78 Mar 2 .11.33 May 18 1978 ANNUAL RUNOFF (AC-FT) 1830 1060 May 19 1978 Mary May 18 1978 May 18 1978 May 18 1978 ANNUAL RUNOFF (AC-FT) 1830 50 PERCENT EXCEEDS 10.03	HIGHEST ANNUAL MEAN		9.76 1978
LOWEST DAILY MEAN .00 Several days ANNUAL SEVEN-DAY MINIMUM .00 Aug 29 MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) .00 Aug 29 May 18 1978 ANNUAL RUNOFF (AC-FT) .01 PERCENT EXCEEDS .03 Many days, several years May 18 1978 May 18 1978 ANNUAL RUNOFF (AC-FT) .03 4.0 .03	LOWEST ANNUAL MEAN		.19 1976
ANNUAL SEVEN-DAY MINIMUM ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 10 PERCENT EXCEEDS Several years 84100 May 18 1978 May 18 1978 4100 42 4100 May 18 1978 43 4100 44 0 40 50 PERCENT EXCEEDS 10 3	HIGHEST DAILY MEAN	12 Mar 8,9	1060 May 19 1978
ANNUAL SEVEN-DAY MINIMUM . 00 Aug 29 . 00 Several years MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS . 00 Several years May 18 1978 May 18 1978 . 1.78° May 2 . 11.33° May 18 1978 . 4.0 . 03	LOWEST DAILY MEAN	.00 Several days	.00 Many days,
MAXIMUM PEAK STAGE 1.78 Mar 2 11.33 May 18 1978 ANNUAL RUNOFF (AC-FT) 1830 10 PERCENT EXCEEDS 4.0 50 PERCENT EXCEEDS03			several years
MAXIMUM PEAK STAGE 1.78 Mar 2 11.33 May 18 1978 ANNUAL RUNOFF (AC-FT) 1830 10 PERCENT EXCEEDS 4.0 50 PERCENT EXCEEDS03	ANNUAL SEVEN-DAY MINIMUM	.00 Aug 29	
ANNUAL RUNOFF (AC-FT) 1830 10 PERCENT EXCEEDS 4.0 50 PERCENT EXCEEDS03	MAXIMUM PEAK FLOW	14 ^a Mar 8	4100 ^D a May 18 1978
10 PERCENT EXCEEDS 4.0 50 PERCENT EXCEEDS03	MAXIMUM PEAK STAGE	1.78 ^C Mar 2	11.33 ^d May 18 1978
50 PERCENT EXCEEDS03	ANNUAL RUNOFF (AC-FT)		1830
	10 PERCENT EXCEEDS		4.0
90 PERCENT EXCEEDS00	50 PERCENT EXCEEDS		.03
	90 PERCENT EXCEEDS		.00

- * For period of operation.
 a Gage height, 1.58 ft.
 b From rating curve extended above 1,200 ft³/s on basis of flow over road and culvert computations.
 c Backwater from ice.
 d From floodmarks.
 e Estimated.

06425720 BELLE FOURCHE RIVER BELOW RATTLESNAKE CREEK, NEAR PINEY, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1975-83, March to September 2001.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
MAR 15	1000	9.3	649	7.9	64	7.7	1680	-2.5	.00	580	111	74.2	9.21
MAY 07	1115	4.2	652	9.2	97	8.0	2700	13.0	10.0	980	176	131	12.3
JUN 05	1130	3.9	643	9.9	110	8.0	2720	16.5	12.0	940	157	132	11.3
JUL 10	1130	.99	650	7.3	101	7.9	2450	24.0	23.0	700	91.1	115	11.2
AUG 13 SEP	1100	.06	652	9.4	127	8.4	3100	29.0	22.0	930	78.3	177	19.5
10	1730	.21				8.6	4200	17.0	19.0	1400	143	254	23.9
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
MAR 15	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT.DIS FET LAB CACO3 (MG/L)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	TOTAL RECOV- ERABLE (UG/L AS BA)	DIS- SOLVED (UG/L AS FE)
MAR 15 MAY 07	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	DIS- SOLVED (UG/L AS FE) (01046)
MAR 15 MAY 07 JUN 05	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	DIS- SOLVED (UG/L AS FE) (01046)
MAR 15 MAY 07 JUN 05 JUL 10	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945) 677	DIS- SOLVED (TONS PER AC-FT) (70303) 1.80 3.19	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 77.0	DIS- SOLVED (UG/L AS FE) (01046)
MAR 15 MAY 07 JUN 05 JUL	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 173 277 305	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 269 373 333	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 10.3 15.7	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 3.5 3.0	DIS- SOLVED (MG/L AS SO4) (00945) 677 1210	DIS- SOLVED (TOMS) PER AC-FT) (70303) 1.80 3.19 3.02	DIS- SOLVED (TOMS PER DAY) (70302) 33.1 26.5	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1320 2340	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1220 2050	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 77.0 72.3 59.6	DIS- SOLVED (UG/L AS FE) (01046) 50 <30

DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
MAR	
15	133
MAY	
07	346
JUN	
05	52.1
JUL	
10	111
AUG	
13	440
SEP	
10	95.8

06425900 CABALLO CREEK AT MOUTH, NEAR PINEY, WY

LOCATION.--Lat $44^{\circ}04^{\circ}48^{\circ}$, long $105^{\circ}15^{\circ}59^{\circ}$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ $SE^{1}/_{4}$ sec.4, T.47 N., R.70 W., Campbell County, Hydrologic Unit 10120201, 0.1 mi downstream from bridge on county road, 0.7 mi southwest of Piney, 1.3 mi upstream from mouth, and 18 mi southeast of Gillette.

PERIOD OF RECORD.--Water years 1978-80, 1982, 1983, 2001.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
DEC													
12 JAN	1005	1.6	650	9.0	73	7.6	2310	-15.0	.00	550	103	72.2	14.1
10 FEB	1125	1.8		9.5		7.8	1750	1.0	.00	380	69.9	49.1	11.0
15 MAR	1350	1.9				7.8	1500	-6.0	.00	330	64.3	41.4	9.20
15	0815	5.2	654	8.8	71	7.6	1540	-2.0	.00	480	86.7	65.0	9.96
APR 12 MAY	1445	7.4	646	11.5	120	7.9	2120	16.0	9.5	680	125	89.8	13.2
09	0730	6.7	650	7.7	83	8.1	1840	14.0	11.5	390	64.2	56.8	10.1
06	1235	3.6	652	9.2	115	8.2	1890	18.0	18.0	420	69.1	59.7	10.5
JUL 11	0850	4.7	650	3.9	52	7.7	1630	24.0	21.5	310	47.7	46.8	10.7
AUG 14	0720	2.0	653	4.6	58	8.1	1560	19.5	18.5	230	33.4	36.6	11.9
SEP 10	1900	2.6				8.8	1430	20.0	18.0	230	35.5	35.1	11.1
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
DEC	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
DEC 12 JAN	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
DEC 12 JAN 10 FEB	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 526 458	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303) 2.33	DIS- SOLVED (TONS PER DAY) (70302) 7.39 6.08	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1710	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000) <2.0	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 44.5
DEC 12 JAN 10	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 44.5 78.6
DEC 12 JAN 10 FEB 15	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 526 458	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303) 2.33	DIS- SOLVED (TONS PER DAY) (70302) 7.39 6.08	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1710	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (UG/L AS AS) (01000) <2.0	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 44.5
DEC 12 JAN 10 FEB 15 MAR 15	AD- SORP- TION RATIO (00931) 6 6	DIS- SOLVED (MG/L AS NA) (00930) 342 248 210	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 526 458 417	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 21.8 18.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.0 1.1	DIS- SOLVED (MG/L AS SIO2) (00955) 6.7 6.2 5.6	DIS- SOLVED (MG/L AS SO4) (00945) 783 510 379	DIS- SOLVED (TONS PER AC-FT) (70303) 2.33 1.70	DIS- SOLVED (TONS PER DAY) (70302) 7.39 6.08 5.26	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1710 1250 1030	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1660 1190 974	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 44.5 78.6
DEC 12 JAN 10 FEB 15 MAR 15 APR 12 MAY	AD- SORP- TION RATIO (00931) 6 6 5	DIS- SOLVED (MG/L AS NA) (00930) 342 248 210	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 526 458 417 205	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 21.8 18.0 13.3	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.0 1.1	DIS- SOLVED (MG/L AS SIO2) (00955) 6.7 6.2 5.6 4.3	DIS- SOLVED (MG/L AS SO4) (00945) 783 510 379 616	DIS- SOLVED (TONS PER AC-FT) (70303) 2.33 1.70 1.40	DIS- SOLVED (TONS PER DAY) (70302) 7.39 6.08 5.26 16.8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1710 1250 1030	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1660 1190 974 1080	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 <2.0	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 44.5 78.6 109 68.1
DEC 12 JAN 10 FEB 15 MAR 15 APR 12 MAY 09 JUN 06	AD- SORP- TION RATIO (00931) 6 6 5 3	DIS- SOLVED (MG/L AS NA) (00930) 342 248 210 159 244	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 526 458 417 205 326	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 21.8 18.0 13.3 16.8	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.0 1.1 1.0 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 6.7 6.2 5.6 4.3 2.1	DIS- SOLVED (MG/L AS SO4) (00945) 783 510 379 616 839	DIS- SOLVED (TONS PER AC-FT) (70303) 2.33 1.70 1.40 1.63 2.33	DIS- SOLVED (TONS PER DAY) (70302) 7.39 6.08 5.26 16.8 34.1	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1710 1250 1030 1200 1710	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1660 1190 974 1080	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 <2.0 <2.0	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 44.5 78.6 109 68.1 58.2
DEC 12 JAN 10 FEB 15 MAR 15 APR 12 MAY 09 JUN 06 JUL 11	AD- SORP- TION RATIO (00931) 6 6 5 3 4	DIS- SOLVED (MG/L AS NA) (00930) 342 248 210 159 244 259	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 526 458 417 205 326 389	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 21.8 18.0 13.3 16.8 37.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.0 1.1 1.0 .5 .8	DIS- SOLVED (MG/L AS SIO2) (00955) 6.7 6.2 5.6 4.3 2.1	DIS- SOLVED (MG/L AS SO4) (00945) 783 510 379 616 839 596	DIS- SOLVED (TONS PER AC-FT) (70303) 2.33 1.70 1.40 1.63 2.33 1.83	DIS- SOLVED (TONS PER DAY) (70302) 7.39 6.08 5.26 16.8 34.1 24.3	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1710 1250 1030 1200 1710	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1660 1190 974 1080 1550 1240	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 <2.0 <2.0 <2.0	TOTAL RECOVERABLE (UG/L AS BA) (01007) 44.5 78.6 109 68.1 58.2 53.7
DEC 12 JAN 10 FEB 15 MAR 15 APR 12 MAY 09 JUN 06	AD- SORP- TION RATIO (00931) 6 6 5 3 4 6	DIS- SOLVED (MG/L AS NA) (00930) 342 248 210 159 244 259	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 526 458 417 205 326 389 387	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 21.8 18.0 13.3 16.8 37.2 18.5 20.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.0 1.1 1.0 .5 .8	DIS- SOLVED (MG/L AS SIO2) (00955) 6.7 6.2 5.6 4.3 2.1 1.2	DIS- SOLVED (MG/L AS SO4) (00945) 783 510 379 616 839 596	DIS- SOLVED (TONS PER AC-FT) (70303) 2.33 1.70 1.40 1.63 2.33 1.83	DIS- SOLVED (TONS PER DAY) (70302) 7.39 6.08 5.26 16.8 34.1 24.3	RESIDUE AT 180 DEG. C DIS-SOLVED (MG/L) (70300) 1710 1250 1030 1200 1710 1350 1300	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1660 1190 974 1080 1550 1240 1260	DIS- SOLVED (UG/L AS AS) (01000) <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 44.5 78.6 109 68.1 58.2 53.7 64.6

06425900 CABALLO CREEK AT MOUTH, NEAR PINEY, WY--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	(UG/L	AS MN)
DEC		
12	<30	98.7
JAN		
10 FEB	M	74.5
15	М	81.9
MAR		02.5
15	60	329
APR		
12 MAY	<30	185
09	10	179
JUN		
06	<10	164
JUL		TO 0
11 AUG	M	72.0
14	М	58.7
SEP		-3.,
10	<10	11.3

E -- Estimated value.
M -- Presence verified, not quantified.

06426130 DONKEY CREEK NEAR GILLETTE, WY

LOCATION.--Lat $44^{\circ}16^{\circ}04^{\circ}$, long $105^{\circ}26^{\circ}17^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 31, T.50 N., R.71 W., Campbell County, Hydrologic Unit 10120201, on right bank 0.2 mi upstream from mouth and 3.0 mi southeast of Gillette.

DRAINAGE AREA. -- 63.4 mi².

PERIOD OF RECORD. -- July 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4460 ft above sea level, from topographic map.

REMARKS.--Records excellent except those for daily discharges greater than .00 ft³/s, which are fair and those for May 28-31, and those for estimated daily discharges, which are poor. Natural flow of stream affected by numerous small reservoirs and diversions for irrigation and coalbed methane production water.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY NOV DEC JAN FEB MAY .03 . 55 e.60 e.50e.30e1.3 .97 . 25 7.2 . 43 .00 .00 1 .83 .02 .95 4.8 e.50 e.60 e.80 e1.5 .23 .31 .00 .00 1.4 3.4 7.7 3 .02 .44 e.80 e.60 e2.5 .20 .32 0.0 .00 8.9 .02 .82 e3.5 4.3 4 1.1 e1.2 e1.0 .18 .00 .00 .02 e.90 e.60 e8.0 e20 13 e.60 .65 1.8 .00 6 .03 e.40 .48 e15 .24 6.0 .00 .00 e.70 e.40 e10 .85 .04 e.60 .42 e.50 e.30 e12 e7.0 .31 3.9 .00 .00 8 0.4 e.40 45 e.40 e.25 e11 e5.0 83 2 8 e 30 0.0 0.0 .08 e9.0 .53 2.3 e.30 e.40 e.60 e.20 e4.0 e.20 .00 .00 10 .20 e.25 e.25 e.90 e.30 e7.0 e3.0 .38 2.1 e.10 .00 .00 11 .34 e.20 e.10 e.70 e.40 e5.0 e2.0 .35 1.4 e.75 .00 .00 4.2 1.7 1.1 12 1.3 e.30 e.15 e1.0 e.80 1.0 e.40 .00 .00 e.70 .40 13 1.1 e.50e.30 e.60 e.20 .00 .00 14 .59 e.50 e.50 e.50 e.40 4.6 e1.0 .13 8.6 e.08 .00 .00 15 .35 e.40 e.40 e.40 e.50 3.3 e.90 .10 9.3 e.03 .00 .00 .27 .11 4.3 16 e.30 e.30 e.30 e.30 4.0 e.80 e.01 .00 .00 .66 e.25 e.20 e.20 e.15 e.50 e.70 4.2 e.70 .65 2.4 .00 17 e.60 .08 .00 .00 18 e.50 .04 .00 .00 .43 e.50 2.9 .55 19 e.30 e.25 e.50 .03 .00 .00 .00 20 2.4 .30 e.40 e.30 e.40 2 5 .54 02 1.0 .00 .00 .00 21 .20 .25 e.20 e.60 2.4 3.2 .03 .00 .00 e.50 .00 .25 e.60 e1.0 e.80 e.70 2.4 3.5 4.4 .04 .77 .78 22 .19 e.15 .00 .00 23 .25 .00 e.30 .00 .00 .20 e.40 e.25 e1.5 e.60 1.6 .19 .00 .00 .40 25 .20 e.70 e1.3 e1.0 1.3 1.7 .13 .43 .00 .00 .00 26 .26 e.60 .65 e.70 1.2 .11 .10 92 .36 .00 .00 .00 e.50 e.30 27 .78 .53 e.70 e.60 .77 e.70 e.50 e1.0 1.1 1.1 .81 .32 .65 0.0 0.0 .00 28 .55 .00 .00 .00 29 .47 e.40 e.40 e1.0 1.0 .38 442 2.2 .00 .00 .00 .82 .00 e.50 ___ 30 45 e.50 e.30 85 .33 30 0.0 0.0 13 31 .44 e.40 e.40 .87 .00 .00 TOTAL. 10 51 14 57 12 28 21 20 15 75 124 92 89 73 583 31 101 34 10 63 0 00 0 00 .49 4.03 2.99 18.8 .000 .000 MEAN .34 .40 .68 .56 3.38 .34 MAX 1.3 1.7 .82 1.5 1.0 15 20 442 13 4.3 .00 .00 MIN .02 .19 .10 .30 .20 .85 . 33 .02 .32 .00 .00 .00 24 201 AC-FT 42 31 .00 .00 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2000 - 2001, BY WATER YEAR (WY) .68 MEAN .34 .49 .40 .56 4.03 2.99 18.8 3.38 .34 .000 .010 .34 .49 .40 . 68 .56 4.03 2.99 .000 .019 MAX 18.8 3.38 . 34 (WY) 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 2000 2000 MTN .34 49 . 40 68 56 4.03 2 99 18 8 3 38 34 000nnn 2001 2001 2001 2001 2001 2001 2000 2001 2001 2001 2001 2001 (WY)

06426130 DONKEY CREEK NEAR GILLETTE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR*	FOR 2001 WATER YEAR	WATER YEARS 2000 - 2001
ANNUAL TOTAL		984.24	
ANNUAL MEAN		2.70	2.70
HIGHEST ANNUAL MEAN			2.70 2001
LOWEST ANNUAL MEAN			2.70 2001
HIGHEST DAILY MEAN	1.7 Nov 3	442 May 29	442 May 29 2001
LOWEST DAILY MEAN	.00 Many days	.00 Many days	.00 Many days,
			most years
ANNUAL SEVEN-DAY MINIMUM	.00 Jul 10	00 Jul 17 3400 ^a May 28 10.89 ^b May 28	00 Most years 3400 ^a h May 28 2001
MAXIMUM PEAK FLOW		3400° h May 28	3400° h May 28 2001
MAXIMUM PEAK STAGE		10.89 ^D May 28	10.89 ^b May 28 2001
ANNUAL RUNOFF (AC-FT)		1950	1950
10 PERCENT EXCEEDS		3.4	2.5
50 PERCENT EXCEEDS		.40	.30
90 PERCENT EXCEEDS		.00	.00

For period of operation. From rating curve extended above 150 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. From floodmarks. Estimated. a b e

06426160 STONEPILE CREEK AT MOUTH NEAR GILLETTE, WY

LOCATION.--Lat $44^{\circ}16^{\circ}04^{\circ}$, lnog $105^{\circ}26^{\circ}17^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 31. T.50 N., R.71 W., Campbell County, Hydrologic Unit 10120201, on right bank 0.2 mi upstream form mouth and 3.0 mi southeast of Gillette.

DRAINAGE AREA.--14.5 mi².

PERIOD OF RECORD. -- July 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4460 ft above sea level, from topographic map.

REMARKS.--Records fair except those for May 28-30, and those for estimated daily discharges, which are poor. Natural flow of stream affected by City of Gillette Wastewater Treatment Facility. U.S. Geological Survey data collection platform with satellite telemetry at station.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.1 3.2 e3.0 e2.8 e2.6	9.0 3.7 3.1 3.2 3.2	3.3 3.5 3.6 3.6 3.5	3.1 3.2 3.2 3.5 3.6	3.2 3.4 3.6 3.6 3.1	2.7 2.8 2.8 4.7 9.5	5.4 4.9 6.8 15	3.0 2.9 2.7 2.6 2.6	3.7 3.5 4.9 12 9.0	3.1 3.2 6.4 3.7 3.1	3.0 2.7 3.0 2.7 3.0	2.4 2.0 2.0 1.8 1.4
6 7 8 9 10	2.5 2.2 3.1 2.9 3.0	3.3 3.9 2.7 3.1 3.1	3.4 3.4 3.5 3.7 3.8	3.6 3.7 3.8 3.8 3.7	2.6 2.6 2.7 2.8 2.7	11 11 11 9.7 e8.0	6.0 5.9 5.1 4.9 5.6	4.2 3.3 2.8 2.9 4.5	4.2 3.7 3.6 3.6 3.5	2.7 3.6 3.0 3.1 6.7	3.0 3.1 3.3 3.0 3.3	1.8 1.4 1.9 2.5 1.9
11 12 13 14 15	2.8 2.9 3.2 4.6 3.1	3.1 3.1 3.0 2.9 2.9	3.7 3.6 3.3 3.3	3.6 3.6 3.9 3.8 3.9	3.2 2.8 2.6 2.5 2.5	e7.0 e6.0 e6.0 5.0 3.9	e4.5 3.4 2.5 2.6 2.2	4.0 3.0 2.7 2.9 2.6	3.6 4.1 17 7.8 5.2	4.8 3.6 2.8 2.8	2.8 3.0 3.1 3.1	1.6 1.8 1.2 1.7
16 17 18 19 20	2.9 2.6 2.9 2.7 2.7	2.9 3.1 3.1 3.0 3.0	3.4 3.4 3.3 3.2 3.2	3.5 3.5 3.5 3.5 3.6	2.4 2.6 2.7 2.9 2.9	4.8 4.3 3.9 3.7 3.6	2.6 2.3 2.8 2.9 3.8	3.5 2.8 2.5 2.8 3.0	3.1 3.4 3.6 3.4 3.4	3.3 2.7 2.7 2.7 2.7	2.9 2.8 2.4 2.6 2.8	2.0 2.0 2.0 1.9 2.1
21 22 23 24 25	2.7 2.9 3.1 2.5 3.2	2.9 2.8 2.6 2.7 3.0	3.2 3.0 2.9 3.0 2.6	3.8 3.6 3.7 3.5 3.4	2.9 2.5 2.5 2.7 2.9	3.7 3.9 3.6 4.3 4.9	11 7.4 4.2 3.1 2.9	3.7 3.1 3.0 2.7 2.3	3.5 3.3 3.1 3.0 3.1	2.4 2.5 2.8 3.2 3.1	3.2 3.0 3.2 3.3	2.4 3.0 2.9 3.2 2.9
26 27 28 29 30 31	3.2 3.0 3.1 3.1 3.3 3.0	3.2 3.4 3.3 3.3 3.2	3.1 3.2 3.3 3.3 3.3 3.1	3.4 3.5 3.4 3.4 3.2 3.4	2.8 3.0 3.2 	5.6 5.6 5.1 5.0 4.8 5.8	2.8 2.7 2.4 2.9 2.9	2.0 1.8 54 192 7.0 5.4	3.3 3.3 5.5 3.7 3.1	2.7 2.8 2.5 2.7 3.0 2.7	2.7 3.3 3.3 3.6 3.2 2.8	2.6 2.7 2.5 2.4 2.8
TOTAL MEAN MAX MIN AC-FT	91.9 2.96 4.6 2.2 182	98.8 3.29 9.0 2.6 196	103.2 3.33 3.8 2.6 205	109.9 3.55 3.9 3.1 218	79.9 2.85 3.6 2.4 158	173.7 5.60 11 2.7 345	148.5 4.95 17 2.2 295	338.3 10.9 192 1.8 671	141.2 4.71 17 3.0 280	109.1 3.52 12 2.4 216	93.6 3.02 3.6 2.4 186	64.4 2.15 3.2 1.2 128
STATIST	rics of M	ONTHLY ME	AN DATA F	OR WATER	YEARS 200	0 - 2001,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	2.96 2.96 2001 2.96 2001	3.29 3.29 2001 3.29 2001	3.33 3.33 2001 3.33 2001	3.55 3.55 2001 3.55 2001	2.85 2.85 2001 2.85 2001	5.60 5.60 2001 5.60 2001	4.95 4.95 2001 4.95 2001	10.9 10.9 2001 10.9 2001	4.71 4.71 2001 4.71 2001	3.52 3.52 2001 3.52 2001	2.94 3.02 2001 2.87 2000	2.44 2.73 2000 2.15 2001

06426160 STONEPILE CREEK AT MOUTH NEAR GILLETTE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR*	FOR 2001 WATER YEAR	WATER YEARS 2000 - 2001
ANNUAL TOTAL		1552.5	
ANNUAL MEAN		4.25	4.25
HIGHEST ANNUAL MEAN			4.25 2001
LOWEST ANNUAL MEAN			4.25 2001
HIGHEST DAILY MEAN	9.0 Nov 1	192 May 29	192 May 29 2001
LOWEST DAILY MEAN	1.4 Sep 22	1.2 Sep 14	1.2 Sep 14 2001
ANNUAL SEVEN-DAY MINIMUM	2.4 Jul 6	1.7 Sep 10 800 ^a _b May 28	1.7 Sep 10 2001 800 ^a h May 28 2001
MAXIMUM PEAK FLOW		800 ^a _h May 28	800 ^a h May 28 2001
MAXIMUM PEAK STAGE		9.14 May 28	9.14 ^b May 28 2001
ANNUAL RUNOFF (AC-FT)		3080	3080
10 PERCENT EXCEEDS		5.1	4.8
50 PERCENT EXCEEDS		3.1	3.0
90 PERCENT EXCEEDS		2.5	2.4

For period of operation. From rating curve extended above 39 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. From floodmarks. Estimated.

a b e

06426400 DONKEY CREEK NEAR MOORCROFT, WY

LOCATION.--Lat $44^{\circ}16^{\circ}58^{\circ}$, long $105^{\circ}03^{\circ}48^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $SE^{1}/_{4}$ sec.30, T.50 N., R.68 W., Crook County, Hydrologic Unit 10120201, 25 ft upstream from county bridge, 1.2 mi downstream from Well Creek, and 6.0 mi west of Moorcroft.

PERIOD OF RECORD.--Water years 1977-89, 2001.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
NOV 15 JAN	0750	.69	649	8.8	72	8.0	3240	-5.0	.00	1100	177	153	13.1
09 MAY	1510	2.8		7.6		7.6	2980		.00	970	162	138	16.6
08	0930	.90	659	13.2	139	8.6	3030	19.0	10.5	820	98.3	140	13.8
JUN 05	1815	9.0	652	6.2	78	7.7	2240	18.5	18.0	870	145	123	16.7
JUL 10	1730	4.6	655	8.9	135	8.4	2380	24.0	28.0	900	144	132	11.4
AUG 13	1930	.20	659	6.0	82	8.2	4000	21.5	23.0	810	93.0	141	15.3
SEP 10	1520	.16				8.6	2800	26.5	22.0	650	86.4	105	15.2
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
NOV 15 JAN	6	425	491	108	1.0	5.1	1380	3.81	5.22	2800	2550	E1.1	29.1
09 MAY	5	326	371	204	1.2	13.5	1020	3.12	17.4	2300	2100	6.1	33.2
08 JUN	6	378	235	158	1.1	2.3	1240	3.38	6.05	2490	2170	E1.8	27.3
05	3	185	216	78.3	.8	14.0	940	2.50	44.7	1840	1630	E2.0	75.2
JUL 10	3	206	240	124	1.1	.4	921	2.53	23.1	1860	1680	3.1	65.1
AUG 13	10	635	483	133	1.5	.6	1610	4.15	1.65	3050	2920	5.1	46.2
SEP 10	7	400	335	200	1.4	<.3	917	2.67	.85	1960	1930	3.3	38.1

DATE		DIS- SOLVED (UG/L AS MN)
NOV		
15 JAN	E20	656
09	E20	289
MAY 08 JUN	E20	254
05	<30	453
JUL 10 AUG	<30	215
13	<30	179
SEP 10	<30	250

 $^{{\}tt E}$ -- ${\tt Estimated}$ value.

06426500 BELLE FOURCHE RIVER BELOW MOORCROFT, WY

LOCATION.--Lat $44^\circ19^\circ19^\circ$, long $104^\circ56^\circ24^\circ$, in $NW^1/_4$ $NW^1/_4$ sec.17, T.50 N., R.67 W., Crook County, Hydrologic Unit 10120201, on right bank 3.1 mi upstream from bridge on Highway 14, and 4.0 mi northeast of Moorcroft.

DRAINAGE AREA. -- 1,690 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1943 to September 1970, October 1975 to September 1983, October 1985 to September 1987, October 1990 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4,110 ft above sea level, from topographic map. Prior to Mar. 28, 1947, nonrecording gage, and Mar. 28, 1947, to Jan. 16, 1951, water-stage recorder at site 4 mi downstream at different datum. Jan. 17, 1951, to September 1970, water-stage recorder at site 7.9 mi upstream at different datum. September 1970 to Oct. 22, 1993, water-stage recorder at site 8.0 mi upstream at different datum.

REMARKS.--Records fair except those for Sept. 23-30, and those for estimated daily discharges, which are poor. Numerous small stockwater and soil conservation reservoirs upstream from station. Diversions for irrigation upstream from station. U.S. Geological Survey data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUL AUG SEP 1.6 e2.9 e4.0 e3.2 e4.2 e5.4 27 81 3.8 3.0 3.0 14 1 2 3.8 e2.9 e3.8 e4.1 e5.6 27 15 4.4 4.3 2.7 e3.4 39 3 3 8 e2.8 e3 6 e3 1 e3 9 e6 0 27 14 27 4 5 5 0 2 1 28 2.7 4.9 1.9 2.4 e2.4 e3.3 e2.9 e4.0 e6.6 15 3.2 5 2.1 e7.4 14 26 12 2.7 2.0 e2.8 30 6 2.1 e2.8 e4.0 e8.6 38 14 90 13 2.5 2.0 e2.1 e3.9 e2.1 e2.2 2.3 2.0 2.0 e3.7 e2.9 e30 60 13 48 7.2 e4.2 1.9 12 6.7 8 e3.8 e3.1 e4.3 e115 141 36 1.8 e1.9 e3.9 e3.3 e4.4 e130 12 23 11 2.5 e1.7 e4.0 e4.4 10 1.8 e3.9 e110 45 12 11 42 2.6 2.4 9.3 2.2 11 1.6 e1.5 e3.9 e3.7 e4.4 e80 36 13 8.1 12 13 1.5 e4.3 e4.2 29 27 12 12 11 12 5.8 2.0 e1.6 e4.6 e3.5 e74 3.9 e1.5 e64 3.1 e4.1 e3.6 e4.3 2.6 e1.4 e3.9 e3.8 e56 14 5.2 15 1.4 e1.3 e3.4 e4.0 e4.4 e48 21 17 73 9.6 2 4 2 4 17 13 74 8.0 2.2 2.8 16 e1.5 e2.6 e4.1 e4.3 e38 5.5 3.6 e2.5 e2.8 6.2 3.0 17 e1.7 e4.2 e4.1 e32 15 11 42 2.1 e1.9 e4.0 15 10 28 2.1 18 e4.0 e26 e22 23 20 3.0 e1.8 e3.4 e3.7 e4.1 e20 16 11 20 6.0 1 8 2.6 21 2.8 e3.6 e4.1 e21 19 11 15 5.2 1.8 2.6 22 3.0 3.3 e2.1 e2.3 e3.3 e3.4 e3.5 e4.2 e5.4 e22 18 10 9 4 5.1 1.8 2.6 3.1 23 e3.5 e22 17 11 8.5 4.9 1.8 24 e2.5 e3.3 e3.6 e5.2 e23 23 10 10 4.5 8.9 25 3.3 e2 5 e3.1 e3.8 e5 0 e23 24 11 4 6 1 5 3 2 7.6 26 3.1 e2.8 e2.9 e3.7 e4.7 e26 22 10 6.1 2.0 3.1 3.1 2.9 e2.8 e3.0 9 7 6.1 4.7 3.5 2.4 27 e3.4 e3.8 e4 8 31 20 6 6 2.0 28 e4.3 e3.9 31 14 10 4.5 1.9 e5.0 29 3.1 e4.1 e3.0 e4.0 30 12 11 3.8 3.7 2.5 1.3 30 2.9 e4.0 e3.0 e4.7 ---29 12 9.5 3.6 3.4 3.7 1.4 91 3.2 28 TOTAL 112.3 1170.6 82.1 69.2 106.3 122.3 893 454.2 851.9 224.2 79.3 73.7 MEAN 2.65 2.31 3.43 3.62 4.37 37.8 29.8 14.7 28.4 7.23 2.56 2.46 MAX 5.5 1.3 4.3 4.6 2.5 4.7 5.4 3.9 130 141 91 90 42 5.0 3.5 3.6 1.3 9.5 3.2 1.5 MIN 5.4 12 223 163 137 211 2320 1770 901 1690 445 157 146 AC-FT 243 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1944 - 2001, BY WATER YEAR (WY) MEAN 5.72 2.32 2.31 3.56 18.1 59.2 27.2 68.1 62.1 19.5 10.4 57.3 5.31 68.0 23.1 22.3 53.5 260 374 190 1057 509 72.5 63.5 MAX (WY) 1995 1999 1956 1997 1962 1978 1944 1978 1964 1948 1993 1951 MTN .000 .000 .000 .000 .000 .10 .000 .045 .097 .000 .000 .000 1951 (WY) 1944 1944 1944 1944 1944 1961 1958 1966 1954 1944 1944

06426500 BELLE FOURCHE RIVER BELOW MOORCROFT, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1944 - 2001
ANNUAL TOTAL	2784.23	4239.1	
ANNUAL MEAN	7.61	11.6	23.7
HIGHEST ANNUAL MEAN			136 1978
LOWEST ANNUAL MEAN			1.14 1961
HIGHEST DAILY MEAN	93 Jul 12	141 Apr 8	10300 May 19 1978
LOWEST DAILY MEAN	.00 Several days	1.3 Several days	.00 Several days,
			most years
ANNUAL SEVEN-DAY MINIMUM	.00 Aug 4	1,5 Nov 10	00 Most years 15300 May 19 1978
MAXIMUM PEAK FLOW		1,5 Nov 10 196 Apr 8 6.39 ^C Mar 6	15300 ^D a May 19 1978
MAXIMUM PEAK STAGE		6.39 ^C Mar 6	14.60 ^d May 19 1978
ANNUAL RUNOFF (AC-FT)	5520	8410	17170
10 PERCENT EXCEEDS	15	28	35
50 PERCENT EXCEEDS	4.8	4.0	1.5
90 PERCENT EXCEEDS	.47	2.0	.00

- Gage height, 5.29 ft. From rating curve extended above 11,000 ${\rm ft}^3/{\rm s}$, site and datum then in use. Backwater from ice. From floodmarks in shelter, site and datum then in use. Estimated. a b c d e

06426500 BELLE FOURCHE RIVER BELOW MOORCROFT, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1947-57, 1975-93, October 1994 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 25	1135	3.4	655	13.1	132	8.4	2960	12.5	8.5	840	124	128	14.8
NOV 15	0920	1.3	651	9.8	80	7.8	3350	-0.5	.00	870	146	123	14.8
DEC 12	1245	5.0	675	6.4	50	7.4	3130	-6.0	.00	960	174	127	16.9
JAN 09	1330	3.3		6.7		7.7	3510	1.5	.00	1100	187	143	15.0
FEB 15	1030	4.4				7.6	3550	-9.0	.00	1100	214	138	13.9
MAR 27	1130	31	655	12.3	104	8.0	1910	4.0	2.0	620	119	78.4	10.7
APR 12	1215	29	654	9.7	90	8.0	1980	10.0	5.5	650	115	87.2	10.8
MAY 08	0800	12	661	8.5	87	8.1	2610	12.0	9.5	780	125	114	13.5
JUN 05	1630	24	654	7.3	88	7.9	2330	16.5	16.5	820	134	117	13.2
JUL 10	1615	35	652	6.1	84	7.8	816	28.5	23.5	200	38.4	25.2	8.23
AUG 13 SEP	1800	2.9	661	9.2	130	8.5	2450	29.0	25.0	440	57.1	71.6	20.6
10	1415	2.4				8.5	2500	29.0	19.0	420	51.0	71.2	14.2
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
OCT 25	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT.DIS FET LAB CACO3 (MG/L)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
OCT 25 NOV 15	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
OCT 25 NOV 15 DEC 12	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
OCT 25 NOV 15 DEC 12 JAN 09	AD- SORP- TION RATIO (00931) 5	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 267 400	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945) 1150	DIS- SOLVED (TONS PER AC-FT) (70303) 3.05	DIS- SOLVED (TONS PER DAY) (70302) 20.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 2240 2690	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) E.031
OCT 25 NOV 15 DEC 12 JAN 09 FEB 15	AD- SORP- TION RATIO (00931) 5 7	DIS- SOLVED (MG/L AS NA) (00930) 356 491	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 267 400 456	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 163 211	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.0 .9	DIS- SOLVED (MG/L AS SIO2) (00955) <.3 2.6	DIS- SOLVED (MG/L AS SO4) (00945) 1150 1280 1160	DIS- SOLVED (TONS PER AC-FT) (70303) 3.05 3.66 3.33	DIS- SOLVED (TONS PER DAY) (70302) 20.6 9.45	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 2240 2690 2450	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 2100 2510 2270	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) E.031
OCT 25 NOV 15 DEC 12 JAN 09 FEB 15 MAR 27	AD- SORP- TION RATIO (00931) 5 7 5 6	DIS- SOLVED (MG/L AS NA) (00930) 356 491 379	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 267 400 456 497	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 163 211 130	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.0 .9 1.1	DIS- SOLVED (MG/L AS SIO2) (00955) <.3 2.6 8.5	DIS- SOLVED (MG/L AS SO4) (00945) 1150 1280 1160	DIS- SOLVED (TONS PER AC-FT) (70303) 3.05 3.66 3.33 3.75	DIS- SOLVED (TONS PER DAY) (70302) 20.6 9.45 33.0 24.5	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 2240 2690 2450 2760	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 2100 2510 2270 2550	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) E.031
OCT 25 NOV 15 DEC 12 JAN 09 FEB 15 MAR 27 APR 12	AD- SORP- TION RATIO (00931) 5 7 5 6	DIS- SOLVED (MG/L AS NA) (00930) 356 491 379 430	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 267 400 456 497 437	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 163 211 130 137 99.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.0 .9 1.1 1.1	DIS- SOLVED (MG/L AS SIO2) (00955) <.3 2.6 8.5 11.0	DIS- SOLVED (MG/L AS SO4) (00945) 1150 1280 1160 1330	DIS- SOLVED (TONS PER AC-FT) (70303) 3.05 3.66 3.33 3.75 4.01	DIS- SOLVED (TONS PER DAY) (70302) 20.6 9.45 33.0 24.5	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 2240 2690 2450 2760 2950	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 2100 2510 2270 2550 2680	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) E.031
OCT 25 NOV 15 DEC 12 JAN 09 FEB 15 MAR 27 APR 12 MAY 08	AD- SORP- TION RATIO (00931) 5 7 5 6 6	DIS- SOLVED (MG/L AS NA) (00930) 356 491 379 430 446	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 267 400 456 497 437 261	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 163 211 130 137 99.2 48.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.0 .9 1.1 1.1	DIS- SOLVED (MG/L AS SIO2) (00955) <.3 2.6 8.5 11.0 10.4 5.1	DIS- SOLVED (MG/L AS SO4) (00945) 1150 1280 1160 1330 1500 728	DIS- SOLVED (TONS PER AC-FT) (70303) 3.05 3.66 3.33 3.75 4.01	DIS- SOLVED (TONS PER DAY) (70302) 20.6 9.45 33.0 24.5 35.1	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 2240 2690 2450 2760 2950	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 2100 2510 2270 2550 2680 1340	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041381	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) E.031855
OCT 25 NOV 15 DEC 12 JAN 09 FEB 15 MAR 27 APR 12 MAY 08 JUN 05	AD- SORP- TION RATIO (00931) 5 7 5 6 6 6 3	DIS- SOLVED (MG/L AS NA) (00930) 356 491 379 430 446 191 214	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 267 400 456 497 437 261 274	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 163 211 130 137 99.2 48.0 43.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.0 .9 1.1 1.1 1.0	DIS- SOLVED (MG/L AS SIO2) (00955) <.3 2.6 8.5 11.0 10.4 5.1 3.3	DIS- SOLVED (MG/L AS SO4) (00945) 1150 1280 1160 1330 1500 728 782	DIS- SOLVED (TONS PER AC-FT) (70303) 3.05 3.66 3.33 3.75 4.01 1.96 2.14	DIS- SOLVED (TONS PER DAY) (70302) 20.6 9.45 33.0 24.5 35.1 121	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 2240 2690 2450 2760 2950 1440 1580	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 2100 2510 2270 2550 2680 1340 1420	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041381	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) E.031 855
OCT 25 NOV 15 DEC 12 JAN 09 FEB 15 MAR 27 APR 12 MAY 08 JUN 05 JUL 10	AD- SORP- TION RATIO (00931) 5 7 5 6 6 6 3 4	DIS- SOLVED (MG/L AS NA) (00930) 356 491 379 430 446 191 214	LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 267 400 456 497 437 261 274 319	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 163 211 130 137 99.2 48.0 43.9 68.8	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.0 .9 1.1 1.1 1.0 .6	DIS- SOLVED (MG/L AS SIO2) (00955) <.3 2.6 8.5 11.0 10.4 5.1 3.3 2.3	DIS- SOLVED (MG/L AS SO4) (00945) 1150 1280 1160 1330 1500 728 782	DIS- SOLVED (TONS PER AC-FT) (70303) 3.05 3.66 3.33 3.75 4.01 1.96 2.14 2.86	DIS- SOLVED (TONS PER DAY) (70302) 20.6 9.45 33.0 24.5 35.1 121 125 68.7	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 2240 2690 2450 2760 2950 1440 1580 2100	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 2100 2510 2270 2550 2680 1340 1420 1900	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041381 <.041	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) E.031855 <.047
OCT 25 NOV 15 DEC 12 JAN 09 FEB 15 MAR 27 APR 12 MAY 08 JUN 05 JUL	AD- SORP- TION RATIO (00931) 5 7 5 6 6 6 3 4 5	DIS- SOLVED (MG/L AS NA) (00930) 356 491 379 430 446 191 214 312	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 267 400 456 497 437 261 274 319 260	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 163 211 130 137 99.2 48.0 43.9 68.8 71.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) 1.0 .9 1.1 1.0 .6 .7	DIS- SOLVED (MG/L AS SIO2) (00955) <.3 2.6 8.5 11.0 10.4 5.1 3.3 2.3	DIS- SOLVED (MG/L AS SO4) (00945) 1150 1280 1160 1330 1500 728 782 1070 961	DIS- SOLVED (TONS PER AC-FT) (70303) 3.05 3.66 3.33 3.75 4.01 1.96 2.14 2.86 2.60	DIS- SOLVED (TONS PER DAY) (70302) 20.6 9.45 33.0 24.5 35.1 121 125 68.7	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 2240 2690 2450 2760 2950 1440 1580 2100	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 2100 2510 2270 2550 2680 1340 1420 1900	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041381 <.041	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) E.031855 <.047

06426500 BELLE FOURCHE RIVER BELOW MOORCROFT, WY--Continued

DATE	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
OCT	222	010		400	0.0	45.0	2.0	50.0
25 NOV	.033	<.018		420	<2.0	45.8	<30	52.2
15 DEC					E1.5	38.8	<30	91.8
12 JAN					2.2	33.2	<30	54.6
09 FEB					2.0	42.5	<30	88.7
15 MAR					E1.0	64.4	E20	116
27 APR	.019	.077	52	70	<2.0	67.6	10	143
12 MAY					E1.3	89.5	<30	94.7
08 JUN	E.004	<.018	160	200	<2.0	64.4	<30	14.3
05 JUL					E1.5	69.6	<30	242
10 AUG					<2.0	132	10	6.9
13 SEP	<.006	<.020	240	240	2.1	94.5	<10	24.3
10					E1.6	55.0	<30	E7.5

E -- Estimated value.

06427000 KEYHOLE RESERVOIR NEAR MOORCROFT, WY

LOCATION.--Lat $44^{\circ}22^{\circ}55^{\circ}$, long $104^{\circ}46^{\circ}45^{\circ}$, in $NW^{1}/_{4}$ NW $^{1}/_{4}$ sec.27, T.51 N., R.66 W., Crook County, Hydrologic Unit 10120201, at reservoir dam on Belle Fourche River 12 mi northeast of Moorcroft.

DRAINAGE AREA. -- 1,953 mi².

PERIOD OF RECORD. -- March 1952 to current year.

GAGE.--Water-stage recorder. Datum of gage is sea level (Bureau of Reclamation datum). Prior to May 15, 1958, and Oct. 1, 1968 to Mar. 13, 1970, nonrecording gages; May 15 1958, to Sept. 30, 1968, water-stage recorder; all at present site and datum.

REMARKS.--Reservoir is formed by a zoned earthfill dam completed by the Bureau of Reclamation Oct. 25, 1952. Storage began Feb. 12, 1952. Dead storage, below elevation 4,036.0 ft, 730 acre-ft. Inactive storage, between elevations 4,036.0 ft and 4,051.0 ft, 7,230 acre-ft. Total capacity below elevation 4,099.3 ft, crest of spillway, 193,800 acre-ft. Figures given herein represent total contents. The reservoir provides flood control and water for irrigation in Wyoming and near Belle Fourche, SD

COOPERATION. -- Records provided by Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 210,000 acre-ft, May 21, 1978, elevation, 4,100.38 ft; minimum daily contents (since appreciable storage was attained), 6,000 acre-ft, May 8, 9, 1955, elevation, 4,095.36 ft.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 173,000 acre-ft, May 16-22, maximum daily elevation, 4,097.00 ft; May 18, minimum daily contents, 157,000 acre-ft, Sept. 29, 30, minimum daily elevation, 4,095.12, Sept. 30.

4,095 156,000 4,100 200,000

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	159000 159000 159000 159000 159000	159000 159000 159000 159000 159000	158000 158000 158000 158000 158000	159000 159000 159000 159000 159000	159000 159000 159000 159000 159000	160000 160000 161000 161000 161000	168000 168000 168000 168000 168000	171000 171000 171000 171000 171000	170000 170000 170000 171000 171000	172000 172000 172000 172000 172000	168000 168000 168000 168000 167000	161000 161000 161000 160000 160000
6 7 8 9 10	159000 159000 158000 158000 158000	159000 159000 159000 159000 159000	158000 158000 158000 158000 158000	159000 159000 159000 159000 159000	159000 159000 159000 159000 159000	161000 162000 162000 162000 162000	168000 169000 169000 169000 169000	171000 171000 171000 171000 171000	171000 171000 171000 171000 172000	172000 172000 172000 172000 172000	167000 167000 167000 167000 166000	160000 160000 160000 160000
11 12 13 14 15	158000 158000 158000 159000 159000	159000 159000 159000 159000 158000	158000 158000 158000 158000 158000	159000 159000 159000 159000 159000	159000 159000 159000 159000 159000	163000 163000 163000 163000 164000	169000 169000 169000 170000	171000 171000 171000 171000 170000	172000 172000 172000 172000 172000	172000 172000 172000 171000 171000	166000 166000 165000 165000	160000 159000 159000 159000 159000
16 17 18 19 20	159000 159000 158000 158000 158000	158000 158000 158000 158000 158000	158000 158000 158000 158000 158000	159000 159000 159000 159000 159000	160000 160000 160000 160000	164000 164000 164000 165000	170000 170000 170000 170000 170000	170000 170000 170000 170000 170000	173000 173000 173000 173000 173000	171000 171000 171000 170000 170000	164000 164000 164000 163000 163000	159000 159000 159000 159000 159000
21 22 23 24 25	158000 158000 158000 158000 158000	158000 158000 158000 158000 158000	159000 159000 159000 159000 159000	159000 159000 159000 159000 159000	160000 160000 160000 160000	165000 165000 166000 166000	170000 171000 171000 171000 171000	170000 170000 170000 170000 170000	173000 173000 172000 172000 172000	170000 170000 170000 169000 169000	163000 162000 162000 162000 162000	158000 158000 158000 158000 158000
26 27 28 29 30 31	158000 158000 158000 158000 158000 158000	158000 158000 158000 158000 158000	159000 159000 159000 159000 159000	159000 159000 159000 159000 159000	160000 160000 160000 	166000 167000 167000 167000 167000 168000	171000 171000 171000 171000 171000	170000 170000 170000 170000 170000	172000 172000 172000 172000 172000	169000 169000 169000 169000 168000 168000	162000 161000 161000 161000 161000	158000 158000 158000 157000 157000
MAX MIN (#) (*)	159000 158000 4095.20 -1,000	159000 158000 4095.21 0	159000 158000 4095.21 1,000	159000 159000 4095.21 0	160000 159000 4095.43 1,000	168000 160000 4096.38 8,000	171000 168000 4096.77 3,000	171000 170000 4096.64 -1,000	173000 170000 4096.85 2,000	172000 168000 4095.68 -10,000	168000 161000 4095.57 -1,000	161000 157000 4095.12 -4,000

WTR YR 2001 MAX 173,000 MIN 158,000 (*) 0

^(#) Elevation, in feet at end of month.

^(*) Change in content, in acre-feet.

06427000 KEYHOLE RESERVOIR NEAR MOORCROFT, WY--Continued

06428050 BELLE FOURCHE RIVER BELOW HULETT, WY

LOCATION.--Lat $44^{\circ}42^{\circ}04^{\circ}$, long $104^{\circ}35^{\circ}07^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.6, T.54 N., R.64 W., Crook County, Hydrologic Unit 10120201, at bridge, 1.3 mi northeast of Hulett, and 4.7 mi downstream from Blacktail Creek.

PERIOD OF RECORD.--February 1981 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
NOV 14 MAR	1550	10	664	11.8	94	7.6	2390	-1.5	.00	E.040	.210	E.004	E.010
14 MAY	0830	27	657	8.7	70	7.7	1630	5.5	.00	.182	.261	.007	E.013
07	1630	43	670	11.4	134	8.2	1540	18.0	16.5	<.041	E.024	E.005	<.018
AUG 13	1550	80	670	8.5	121	8.2	1610	36.5	26.5	E.037	E.027	<.006	<.020

		COLI-	
		FORM,	MANGA-
	E COLI,	FECAL,	NESE,
	MTEC MF	0.7	DIS-
	WATER	UM-MF	SOLVED
DATE	(COL/	(COLS./	(UG/L
	100 ML)	100 ML)	AS MN)
	(31633)	(31625)	(01056)
NOV			
14	450	E1400k	18.2
MAR			
14	E8k	E5k	51.7
MAY			
07	E4k	E3k	25.8
AUG			
13	230	160	9.0

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

06428200 BELLE FOURCHE RIVER NEAR ALVA, WY

LOCATION.--Lat $44^{\circ}47^{\circ}22^{\circ}$, long $104^{\circ}28^{\circ}51^{\circ}$ in $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.1, T.55 N., R.64 W., Crook County, Hydrologic Unit 10120201, on right bank 0.3 mi downstream from Beaver Creek and 6.7 miles north of Alva.

DRAINAGE AREA.--2,948 mi².

PERIOD OF RECORD.--October 1988 to 1998, and 2001 (no winter records).

GAGE.--Water-stage recorder. Elevation of gage is 3,600 ft above sea level, from topographic map.

REMARKS.--Major regulation by Keyhole Reservoir (station 06427000). Streamflow also affected by diversions for irrigation and return flow from irrigated areas. Result of discharge measurement, in cubic feet per second, made during period when station was not in operation, is given below:

Oct. 16 . . . 16.2

COOPERATION.--Station operated and record provided by Office of the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

		DISCHAR	GE, CUBIC	FEET PER		WATER Y	EAR OCTOBER	2000 то	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							e70	112	135	44	27	22
2							72	96	112	36	26	19
3							76	87	82	31	25	18
4							88	79	95	29	23	17
5							211	72	204	29	21	17
6							393	71	874	27	19	14
7							334	69	491	23	18	14
8							573	66	254	26	17	14
9							449	63	178	49	15	15
10							293	64	133	58	15	14
11							216	66	108	93	14	13
12							164	63	96	176	17	13
13							141	62	100	133	72	13
14							133	59	85	115	81	15
15							125	58	123	117	84	16
16							110	61	139	117	78	16
17							96	63	105	121	79	16
18							93	59	81	118	78	15
19							117	59	68	87	78	14
20							141	59	59	59	78	14
21							151	60	55	41	78	13
22							145	60	51	32	78	13
23							131	59	49	31	78	14
24							110	59	50	52	79	14
25							103	57	47	61	61	12
26							101	54	42	44	32	12
27							106	51	41	42	25	12
28							110	50	40	34	20	13
29							121	51	36	31	18	14
30							125	122	50	29	20	13
31								200		28	22	
TOTAL							5098	2211	3983	1913	1376	439
MEAN							170	71.3	133	61.7	44.4	14.6
MAX							573	200	874	176	84	22
MIN							70	50	36	23	14	12
AC-FT							10110	4390	7900	3790	2730	871
STATIST	CICS OF MC	NTHLY MEA	N DATA FO	R WATER Y	EARS 1989	9 - 2001	, BY WATER Y	YEAR (WY) *			
MEAN	12.4						114	132	100	73.2	60.6	27.5
MAX	14.4						360	404	204	109	106	49.7
(WY)	1989						1997	1995	1993	1989	1989	1993
MIN	10.3						8.82	37.3	32.8	40.4	22.2	14.6
(WY)	1990						1992	1992	1992	1998	1996	2001

06428200 BELLE FOURCHE RIVER NEAR ALVA, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1989 - 2001*
HIGHEST DAILY MEAN	874 Jun 6	2000 May 9 1995
LOWEST DAILY MEAN	12 Sep 25	3 1 Jun 11 1992
MAXIMUM PEAK FLOW	1060 Jun 6	2690 May 8 1995
MAXIMUM PEAK STAGE	4.69 Jun 6	8.15 Mar 20 1996

- For period of operation. From floodmarks, gage height, 6.76 ft. From floodmarks, backwater from ice. Estimated.
- a b e

06428500 BELLE FOURCHE RIVER AT WYOMING-SOUTH DAKOTA STATE LINE

LOCATION.--Lat $44^{\circ}44^{\circ}59^{\circ}$, long $104^{\circ}02^{\circ}49^{\circ}$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec.18, T.9 N., R.1 E., Butte County, Hydrologic Unit 10120202, on left bank 0.3 mi downstream from State line, 3.7 mi downstream from Oak Creek, and 11 mi northwest of Belle Fourche, SD.

DRAINAGE AREA. -- 3,280 mi², approximately.

PERIOD OF RECORD.--December 1946 to current year. Records for water year 1947 incomplete, yearly estimate published in WSP 1729. GAGE.--Water-stage recorder. Datum of gage is 3,095.7 ft above sea level.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 5,400 acres. Flow regulated by Keyhole Dam, usable capacity, 191,600 acre-ft, 143 mi upstream since Oct. 25, 1952. Maximum discharge prior to regulation, 3,620 ft³/s, June 23, 1947, gage height, 12.51 ft; maximum gage height, 14.33 ft, Mar. 22, 1949, backwater from ice; no flow at times some years. U.S. Bureau of Reclamation satellite data-collection platform at station. Station operated and record provided by the South Dakota District.

		DISCHAR	RGE, CUBIC	FEET PER		WATER YE Y MEAN VA	AR OCTOBER	R 2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	9.3 9.9 11 11 12	312 369 175 103 78	e18 e18 e17 e17	e12 e12 e13 e14 e17	e19 e20 e20 e21 e21	e21 e22 e23 e27 e32	110 122 119 143 502	144 138 126 116 109	142 111 100 121 206	265 172 84 62 51	34 31 29 27 25	12 9.0 13 13 12
6 7 8 9 10	11 11 11 12 12	54 37 e26 e23 e22	e16 e16 e16 e15 e14	e19 e20 e21 e21 e21	e21 e21 e21 e21 e20	e90 e330 e301 e280 e270	587 646 481 588 497	105 99 95 90 86	146 574 550 444 223	46 42 37 33 35	24 23 20 18 13	12 12 12 11 9.4
11 12 13 14 15	12 13 12 14 24	e21 e21 e21 e21 e20	e13 e12 e12 e13 e13	e21 e20 e20 e19 e19	e20 e19 e19 e20 e20	e240 e200 e170 e165 e160	365 282 235 206 193	81 82 75 70 65	167 136 330 173 151	55 53 139 129 113	8.8 7.7 9.4 11 52	7.1 7.5 10 11 12
16 17 18 19 20	20 20 19 17 15	e19 e19 e19 e20 e21	e13 e13 e13 e13	e19 e18 e18 e18 e18	e20 e20 e21 e21 e21	154 146 185 199 178	178 160 147 134 140	62 60 59 57 53	147 147 135 105 92	118 112 111 114 98	63 65 66 65 64	13 15 14 13
21 22 23 24 25	15 15 17 17 16	e21 e21 e21 e21 e22	e13 e13 e13 e13	e18 e18 e18 e18	e21 e21 e21 e21 e21	176 205 181 184 194	171 185 182 165 147	52 52 52 51 50	83 75 70 65 63	79 61 51 67 65	63 63 66 66 e68	12 11 11 10 10
26 27 28 29 30 31	16 15 16 16 16	e22 e20 e20 e19 e19	e13 e14 e14 e14 e13 e13	e18 e18 e18 e18 e19	e21 e21 e21 	166 133 138 164 135 114	137 132 132 132 139	50 48 46 46 48 44	58 53 49 47 103	127 135 82 53 42 38	e58 e48 e31 26 19	10 9.2 9.9 9.8 9.9
TOTAL MEAN MAX MIN AC-FT	453.2 14.6 24 9.3 899	1607 53.6 369 19 3190	438 14.1 18 12 869	559 18.0 21 12 1110	574 20.5 21 19 1140	4983 161 330 21 9880	7357 245 646 110 14590	2311 74.5 144 44 4580	4866 162 574 47 9650	2669 86.1 265 33 5290	1181.9 38.1 68 7.7 2340	333.8 11.1 15 7.1 662
							BY WATER			0.4.0	F1 0	20.0
MEAN MAX (WY) MIN (WY)	29.0 134 1999 .000 1955	28.2 277 1999 .000 1961	17.9 51.5 1999 .000 1961	21.3 247 1997 .000 1961	44.8 459 1996 .20 1959	158 931 1972 15.7 1981	166 823 1971 15.1 1992	222 1104 1978 3.10 1961	186 812 1984 11.9 1961	94.8 303 1981 2.94 1960	71.2 271 1980 .10 1961	32.9 109 1955 .000 1954

06428500 BELLE FOURCHE RIVER AT WYOMING-SOUTH DAKOTA STATE LINE--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1954 - 2001*
ANNUAL TOTAL	13093.2	27332.9	
ANNUAL MEAN	35.8	74.9	89.6
HIGHEST ANNUAL MEAN			229 1978
LOWEST ANNUAL MEAN			7.69 1961
HIGHEST DAILY MEAN	369 Nov 2	646 Apr 7	4760 May 9 1995
LOWEST DAILY MEAN	3.4 Aug 22	7.1 Sep 11	.00 ^a Jul 30 1954
ANNUAL SEVEN-DAY MINIMUM	4.6 Sep 9	9.7 Sep 8	"00 Jul 30 1954
MAXIMUM PEAK FLOW		1000 Apr 5	00 Jul 30 1954 6320 May 10 1995
MAXIMUM PEAK STAGE		9.16 Apr 5	16.33 May 10 1995
ANNUAL RUNOFF (AC-FT)	25970	54210	64900
10 PERCENT EXCEEDS	70	177	200
50 PERCENT EXCEEDS	27	23	37
90 PERCENT EXCEEDS	9.3	12	5.0

- Regulated period only (1954-2001). See REMARKS. No flow at times in some years. Based on slope-area measurement of peak flow. Estimated.
- a b e

06429500 COLD SPRINGS CREEK AT BUCKHORN, WY

LOCATION.--Lat $44^{\circ}09^{\circ}15^{\circ}$, long $104^{\circ}04^{\circ}37^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ Sec.9, T.48 N., R.60 W., Weston County, Hydrologic Unit 10120303, on right bank at downstream end of culvert at U.S. Highway 85 and 0.5 mi northeast of Buckhorn.

DRAINAGE AREA.--19.0 mi².

PERIOD OF RECORD.--October 1974 to September 1982, April 1991 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,050 ft above sea level, from topographic map. October 1974 to September 1982, 200 ft upstream at different datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. No diversion upstream from station.

		DISCHA	RGE, CUBI	C FEET PE		WATER YE Y MEAN VA		R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.4 6.6 6.6 6.3	e5.4 e5.2 e5.0 e5.2 e5.4	e5.0 e4.5 e4.7 e5.0 e5.0	e3.7 e4.2 e4.2 e4.1 e4.0	e4.0 e4.6 e5.4 e4.8 e5.0	6.0 5.5 5.5 5.5 5.5	5.8 5.8 6.0 6.3 6.3	5.9 5.9 5.9 5.9	6.1 6.0 6.2 6.4 6.3	5.7 5.7 5.7 5.7 5.7	5.9 5.9 5.9 5.9	5.9 5.9 5.9 5.9
6 7 8 9 10	6.1 6.3 6.1 6.1	e5.0 e4.5 e4.0 e4.2 e4.5	e4.6 e5.0 e4.7 e4.4 e4.7	e3.8 e3.7 e3.8 e4.2 e4.0	e4.8 e4.8 e4.7 e4.3 e5.0	5.5 5.5 5.6 5.7 5.7	6.8 6.7 6.5 6.4 6.3	5.9 5.9 5.7 5.7 5.8	6.1 6.1 6.2 6.2	5.7 5.8 6.0 5.9	5.9 5.9 5.9 6.0 5.9	5.9 5.9 5.9 5.9
11 12 13 14 15	6.1 6.1 6.1 6.1	e4.0 e3.5 e3.8 e4.0 e4.5	e5.0 e4.5 e4.0 e4.3 e4.8	e4.0 e3.9 e3.9 e3.9 e3.8	e5.0 e5.2 e5.6 e5.2 e4.6	5.7 5.7 5.8 5.8 5.7	6.3 6.2 6.2 6.1 6.1	5.8 5.9 5.9 5.7 5.7	6.1 6.2 6.2 6.2 6.1	5.9 5.7 5.7 5.7 5.8	5.9 5.9 5.9 5.9	5.9 5.9 5.9 5.9
16 17 18 19 20	6.1 6.1 6.1 6.1	e5.0 e4.5 e5.0 e4.0 e4.5	e4.3 e4.6 e4.4 e4.6 e4.0	e3.9 e4.3 e4.0 e4.5 e4.0	e5.6 e5.0 e5.6 e6.0 e5.6	e5.8 e5.8 5.8 e5.8	6.0 5.9 5.9 6.0	5.9 5.8 5.7 5.7	5.9 5.9 5.9 5.7	5.7 5.7 5.7 5.7 5.7	5.9 5.9 5.9 5.9	5.9 5.9 5.9 5.9
21 22 23 24 25	5.9 6.1 6.1 6.1 6.0	e5.0 e5.0 e5.8 e5.4 e5.2	e3.6 e4.0 e4.6 e4.3 e4.2	e4.2 e4.4 e4.2 e4.6 e4.8	e5.4 e5.8 e5.4 e5.6 e5.4	5.9 5.9 5.6 5.5	5.9 5.9 5.8 5.7 5.8	5.9 5.9 5.7 5.7	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.9 5.9 5.7	5.9 5.9 5.9 5.9	5.9 5.9 5.9 5.7
26 27 28 29 30 31	5.9 5.9 5.8 5.7 5.7	e6.0 e5.8 e5.0 e4.5 e5.0	e4.0 e4.4 e4.1 e4.0 e4.2 e4.5	e5.0 e4.7 e4.9 e4.6 e4.4 e4.2	e5.2 e5.6 e6.0	5.6 5.5 5.7 5.8 5.6	5.9 5.9 5.9 5.9	5.7 5.7 5.9 6.3 6.3	5.7 5.7 5.7 5.7 5.7	5.7 5.7 5.8 5.9 5.9	5.9 5.9 5.9 5.9 5.9	5.7 5.6 5.5 5.5 5.5
TOTAL MEAN MAX MIN AC-FT	189.3 6.11 6.6 5.7 375	143.9 4.80 6.0 3.5 285	138.0 4.45 5.0 3.6 274	129.9 4.19 5.0 3.7 258	145.2 5.19 6.0 4.0 288	176.3 5.69 6.0 5.5 350	182.2 6.07 6.8 5.7 361	181.2 5.85 6.3 5.7 359	178.6 5.95 6.4 5.7 354	178.7 5.76 6.0 5.7 354	183.0 5.90 6.0 5.9 363	175.1 5.84 5.9 5.5 347
STATIST	TICS OF M	MONTHLY ME	CAN DATA F	OR WATER	YEARS 197	5 - 2001,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	4.56 7.00 2000 2.53 1975	4.36 7.15 2000 2.09 1993	4.24 7.04 2000 2.06 1993	4.20 7.01 2000 2.50 1994	4.39 6.75 2000 2.61 1993	4.77 8.03 1999 2.91 1993	5.08 7.43 1999 3.07 1993	4.88 7.29 1999 3.10 1993	4.95 7.77 1999 3.19 1994	4.79 7.58 1999 2.62 1995	4.85 7.28 1999 2.71 1995	4.81 7.14 1999 2.92 1994

06429500 COLD SPRINGS CREEK AT BUCKHORN, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1975 - 2001
ANNUAL TOTAL	2300.8	2001.4	
ANNUAL MEAN	6.29	5.48	4.68
HIGHEST ANNUAL MEAN			7.06 1999
LOWEST ANNUAL MEAN			2.92 1993
HIGHEST DAILY MEAN	7.7 Feb 27-28	6.8 Apr 6	22 Mar 26 1999
LOWEST DAILY MEAN	3.5 Nov 12	3.5 Nov 12	.30 Dec 20 1996
ANNUAL SEVEN-DAY MINIMUM	4.0 Nov 8	3.9 Jan 6	75 Dec 18 1996 42 ^b a Mar 26 1999
MAXIMUM PEAK FLOW		7.9 ^a Feb 28	42 ^D a Mar 26 1999
MAXIMUM PEAK STAGE		3.45° Nov 15	8.61 ^d Jan 12 1978
ANNUAL RUNOFF (AC-FT)	4560	3970	3390
10 PERCENT EXCEEDS	7.1	6.1	6.6
50 PERCENT EXCEEDS	6.6	5.7	4.6
90 PERCENT EXCEEDS	4.7	4.2	3.0

- Gage height, 2.56 ft, maximum observed, may have been greater during periods of estimated daily discharges. Gage height, 3.33 ft.
 Backwater from ice.
 Backwater from ice, site and datum then in use.
 Estimated.

- a b c d e

06429905 SAND CREEK NEAR RANCH A, NEAR BEULAH, WY

LOCATION.--Lat $44^\circ 31^\circ 07^\circ$, long $104^\circ 04^\circ 57^\circ$, in $\mathrm{SE}^1/_4$ $\mathrm{SE}^1/_4$ $\mathrm{SE}^1/_4$ sec.5, T.52 N., R.60 W., Crook County, Hydrologic Unit 10120303, on right bank 1.0 mi upstream from Bear Gulch and 1.8 mi south of Beulah.

DRAINAGE AREA.--267 mi².

PERIOD OF RECORD.--October 1976 to September 1983, April 1991 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 3,580 ft above sea level, from topographic map. October 1976 to September 1983, at site 500 ft downstream at different datum.

REMARKS.--Records good except for estimated daily discharge on November 19, which is fair.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY NOV MAR AUG SEP OCT DEC FEB APR MAY MUTL JUL JAN 2.7 2.7 24 e24 24 25 27 23 ___ TOTAL 25.2 23.0 25.0 31 23.5 24 23.9 25.1 27 29.2 31 29.4 32 27.3 29 26.0 27 23.7 MEAN 23.6 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1977 - 2001, BY WATER YEAR (WY) MEAN 21.9 21.9 21.4 20.8 20.0 20.8 22.2 31.2 27.5 25.7 23.2 22.0 MAX 29 5 28.2 27.1 26.4 25.0 29.7 30.8 64.8 1995 40.5 39.8 34.5 1999 30.8 (WY) MIN 15.3 16.0 15.7 15.6 14.9 14.7 15.3 15.5 15.5 15.2 14.4 15.1 (WY)

06429905 SAND CREEK NEAR RANCH A, NEAR BEULAH, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1977 - 2001
ANNUAL TOTAL	9666		9279			
ANNUAL MEAN	26.4		25.4		23.5	
HIGHEST ANNUAL MEAN					30.5	1999
LOWEST ANNUAL MEAN					15.7	1992
HIGHEST DAILY MEAN	35	May 26	32	Jun 4	455	May 9 1995
LOWEST DAILY MEAN	22	Many days	22	Sep 30	12	Mar 10 1992
ANNUAL SEVEN-DAY MINIMUM	22	Mar 29	23	Sep 24	13	Mar 8 1992
MAXIMUM PEAK FLOW			34	Jun 30	1230	May 8 1995
MAXIMUM PEAK STAGE			1.71	Jun 30	3.80 ^a	May 8 1995
ANNUAL RUNOFF (AC-FT)	19170		18400		17000	
10 PERCENT EXCEEDS	32		29		30	
50 PERCENT EXCEEDS	25		25		23	
90 PERCENT EXCEEDS	23		23		16	

a $\,$ From floodmarks, present site and datum. e $\,$ Estimated.

06429997 MURRAY DITCH ABOVE HEADGATE AT WYOMING-SOUTH DAKOTA STATE LINE

LOCATION.--Lat $44^{\circ}34'35$ ", long $104^{\circ}03'20$ ", in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.7, T.7 N., R.1 E., Butte County, Hydrologic Unit 10120203, on right bank at State line and 12 mi southwest of Belle Fourche, SD.

PERIOD OF RECORD. -- April 1987 to current year.

REVISED RECORDS.--WDR SD-96-1: September 1995 daily discharges, monthly, and water year statistics.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 3,440 ft above sea level, from topographic map. Prior to Apr. 23, 1987, published as 06430000 (below diversion at site 15 ft downstream).

REMARKS.--Records good except those for Sept. 9-27, which are fair, and those for estimated daily discharges, which are poor. Ditch diverts water from left bank of Redwater Creek, 2.0 mi upstream, for irrigation of about 700 acres. Flow maintained during irrigation season only. Station operated and record provided by the South Dakota District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 5.5 .00 2 3.1 0.0 0.0 0.0 0.0 .00 0.0 4.4 8.0 9.0 5.5 5.9 .87 1.8 3 .00 .00 .00 .00 .00 .00 4.3 8.0 12 .01 6.5 .00 .01 5 3.4 .00 .00 .00 .00 .00 .00 .93 7.8 13 8.4 6 10 .00 .00 .00 .00 .00 .00 2.1 7.8 11 9.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 7.8 16 10 8 9.2 .00 .00 .00 .00 2.3 .00 .00 .00 5.1 15 9.1 8.3 .00 .00 .00 .00 1.6 2.0 11 .00 .00 9.9 10 7.6 .00 .00 .00 .00 .00 .00 .00 .94 3.8 3.3 11 2.4 0.0 .00 0.0 0.0 .00 0.0 0.0 5.0 11 .59 12 .00 .00 .00 .00 .00 .00 .00 .60 5.7 5.4 14 13 .71 .00 .00 .00 .00 .00 .00 .00 .15 3.2 6.2 13 .00 .20 14 .00 .00 00 0.0 .00 0.0 0.0 .10 12 15 .00 .00 .00 .00 .00 .00 .00 .16 .00 34 12 16 12 \cap 0.0 nη \cap 0.0 ΛΛ 9 2 14 $\cap \cap$ 29 11 17 8.9 3.0 25 3.0 .00 .00 .00 4.4 .00 .00 .00 .00 9.3 21 4.2 18 4.5 .00 .00 .00 .00 .00 .00 3.0 .00 19 1.7 0.0 0.0 0.0 0.0 0.0 0.0 2 9 9.0 .00 15 4 2 2.6 4.9 20 .00 .00 .00 16 .00 .00 .00 .00 3.1 21 6.8 0.0 0.0 0.0 0.0 0.0 0.0 9 7 0.0 14 6.0 22 21 .00 .00 .00 .00 .00 .00 14 7.9 .15 6.1 23 .00 .00 .00 .00 12 3.1 6.7 23 16 1.1 .00 2.7 24 20 0.0 0.0 0.0 0.0 0.0 0.0 12 16 6 2 25 12 15 14 .00 .00 .00 .00 .00 .00 4.6 .11 26 16 0.0 0.0 0.0 0.0 0.0 0.0 14 2.6 13 5 1 93 9.7 27 10 4.9 5.2 .00 .00 .00 .00 .00 .00 15 2.6 5.6 5.5 28 .98 .00 .00 .00 .00 .00 .00 15 9.9 4.8 5.3 4.7 5 7 29 32 0.0 0.0 0.0 0.0 0.0 14 9.2 2.1 30 .84 .00 .00 .00 .00 .00 14 .00 31 .00 .00 .00 .00 7.3 4.4 6.1 TOTAL 203.94 10.11 0.00 0.00 0.00 0.00 0.00 153.10 110.96 174.20 197.24 MEAN 6.58 .34 .000 .000 .000 .000 .000 4.94 3.70 5.62 11.2 6.57 MAX 23 6.6 .00 .00 .00 .00 .00 15 14 16 34 14 .00 .00 .00 .00 .00 .00 .10 .00 AC-FT 405 20 .00 .00 .00 .00 .00 304 220 346 687 391 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1988 - 2001, BY WATER YEAR (WY) 5.47 .000 MEAN . 29 .000 .000 .000 .010 1.48 4.54 9.86 8.38 8.29 MAX 20.6 2.01 .000 .000 .000 .000 .085 6.30 13.9 16.4 18.2 18.8 (WY) 1991 2000 1988 1988 1988 1988 1997 1992 1988 1991 1991 1994 .000 .000 .80 .000 .000 .000 .000 .000 .000 .000 1.84 2.24 MIN (WY) 1988 1988 1988 1988 1988 1988 1988 1990 1991 1993 1998 1993

06429997 MURRAY DITCH ABOVE HEADGATE AT WYOMING-SOUTH DAKOTA STATE LINE--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1988 - 2001
ANNUAL TOTAL	1016.69	1196.10	
ANNUAL MEAN HIGHEST ANNUAL MEAN	2.78	3.28	3.22 5.32 1994
LOWEST ANNUAL MEAN	 		.92 1993
HIGHEST DAILY MEAN	23 Oct 23	34 Aug 15	46 Oct 8 1990
LOWEST DAILY MEAN	.00 Many days	.00 Many days	.00 Many days, each year
ANNUAL RUNOFF (AC-FT)	2020	2370	2330
10 PERCENT EXCEEDS	9.5	12	12
50 PERCENT EXCEEDS	.00	.00	.00
90 PERCENT EXCEEDS	.00	.00	.00

06430500 REDWATER CREEK AT WYOMING-SOUTH DAKOTA STATE LINE

LOCATION.--Lat $44^{\circ}34^{\circ}26^{\circ}$, long $104^{\circ}02^{\circ}54^{\circ}$, in $NW^{1}/_{4}$ NW $^{1}/_{4}$ sec.18 T.7 N., R.1 E., Butte County, Hydrologic Unit 10120203, on left bank 800 ft downstream from State line, 5.7 mi upstream from Crow Creek, and 12 mi southwest of Belle Fourche, SD.

DRAINAGE AREA. -- 471 mi².

PERIOD OF RECORD.--April 1929 to September 1931 and February 1936 to July 1937 (published as "near Beulah, WY"), June 1954 to current year.

REVISED RECORDS. -- WSP 1309: 1931(M), 1936-37(M).

GAGE.--Water-stage recorder. Elevation of gage is 3,410 ft above sea level, from topographic map. Apr. 25, 1929, to Sept. 30, 1931, and Feb. 28, 1936, to July 31, 1937, nonrecording gage at site 2 mi upstream at different datum.

REMARKS.--Records good except those for Oct. 31 to Dec. 25, Feb. 5 to Mar. 29, May 27 to June 4, which are fair, and those for estimated daily discharges, which are poor. Large diversions for irrigation upstream from station. Total flow passing State line may be obtained by adding flow of Murray ditch (see station 06429997). Satellite data-collection platform at station. Station operated and record provided by the South Dakota District.

		DISCHAF	RGE, CUBIC	FEET PE		WATER YEA	AR OCTOBEF LUES	R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	38 38	57 49	39 40	39 39	41 41	39 43	38 39	47 47	37 39	35 35	39 38	32 32
3	37	41	40	39	41	48	39	46	42	33	39	31
4	38	36	39	39	41	51	40	47	52	34	40	30
5	35	40	39	39	42	46	42	48	52	34	37	29
6	29	40	39	39	41	49	49	49	50	34	35	27
7	30	40	40	39	43	52	59	48	43	35	35	26
8	31	41	40	39	41	49	78	48	43	38	37	25
9	34	41	40	39	e39	46	66	48	42	42	43	26
10	34	42	40	40	e39	44	59	49	41	38	44	25
11	38	41	e39	39	e40	42	51	48	41	39	44	24
12	36	41	e38	40	41	41	48	48	42	39	43	22
13	35	41	e39	40	41	41	46	48	44	41	42	22 22
14	38 34	41	e39 40	40 40	41 41	42 42	46 45	49 49	43 43	47 48	35 30	24
15		41										
16	29	40	e39	40	40	40	44	43	43	47	32	23
17	31	40	e39	40	40	40	43	46	40	45	32	23
18	33	40	39	40	41	40	43	46	34	44	33	24
19	35	40	39	40	41	40	44	45	34	44	34	24
20	37	40	40	39	40	41	50	46	39	44	37	23
21	33	40	e39	39	39	41	52	37	38	43	35	23
22	27	40	e39	39	39	41	52	29	38	35	42	25
23	27	39	39	39	39	40	50	31	38	29	34	30
24	28	39	39 39	39 40	39 39	40	47	32 32	40	29 30	29	30 32
25	28	39				39	47		41		30	
26	28	39	39	40	39	39	46	30	39	34	30	30
27	32	40	39	39	38	40	47	29	34	42	30	30
28	37	40	39	40	39	40	47	29	34	40	31	27
29	37	39	39	40		39	47	31	34	39	31	33
30	37	40	39	40		39 39	47	37 37	45	39	31	39
31	39		39	41		39		3 /		40	31	
TOTAL	1043	1227	1216	1225	1126	1313	1451	1299	1225	1196	1103	813
MEAN	33.6	40.9	39.2	39.5	40.2	42.4	48.4	41.9	40.8	38.6	35.6	27.1
MAX	39	57	40	41	43	52	78	49	52	48	44	39
MIN	27	36	38	39	38	39	38	29	34	29	29	22
AC-FT	2070	2430	2410	2430	2230	2600	2880	2580	2430	2370	2190	1610
STATIST	ICS OF M	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 1955	5 - 2001,	BY WATER	YEAR (WY) *			
MEAN	28.8	32.9	32.7	32.0	33.2	34.8	38.1	53.9	46.7	23.8	23.6	25.6
MAX	45.0	47.9	48.0	48.5	57.8	66.0	65.4	168	128	54.9	58.9	50.4
(WY)	1973	1974	1999	1999	1971	1996	1999	1995	1976	1976	1973	1973
MIN	14.2	20.8	21.5	20.7	21.2	22.1	18.8	7.44	6.29	7.62	6.78	11.8
(WY)	1991	1961	1993	1993	1993	1962	1981	1985	1961	1990	1985	1985

06430500 REDWATER CREEK AT WYOMING-SOUTH DAKOTA STATE LINE--Continued

SUMMARY STATISTICS	FOR 2000 CALENDA	AR YEAR	FOR 2001 WATER	R YEAR	WATER YEARS	3 1955 - 2001*
ANNUAL TOTAL	15001		14237			
ANNUAL MEAN	41.0		39.0		33.8	
HIGHEST ANNUAL MEAN					56.0	1973
LOWEST ANNUAL MEAN					17.9	1961
HIGHEST DAILY MEAN	64	Apr 26	78	Apr 8	1330	May 9 1995
LOWEST DAILY MEAN	23	Several days	22	Sep 12-14	1.3ª	May 22 1985
ANNUAL SEVEN-DAY MINIMUM	23	Jul 23	23 _b 5	Sep 11	1,9	May 21 1985
MAXIMUM PEAK FLOW			82 ^b	Apr 8	2440 ^C	Aug 22 1973
MAXIMUM PEAK STAGE				Dec 13	12.19	Aug 22 1973
ANNUAL RUNOFF (AC-FT)	29750		28240		24510	
10 PERCENT EXCEEDS	52		47		48	
50 PERCENT EXCEEDS	42		39		31	
90 PERCENT EXCEEDS	28		30		16	

- a b c d e
- Period using present site and datum only. See GAGE. No flow Aug. 13-15, 1929, during partial year. Gage height, 3.74 ft. Also June 30, gage height, 4.04 ft. From rating curve extended above 1,000 ft³/s on basis of slope-area measurement. Backwater from ice. Estimated.

06620000 NORTH PLATTE RIVER NEAR NORTHGATE, CO

LOCATION.--Lat $40^{\circ}56^{\circ}15^{\circ}$, long $106^{\circ}20^{\circ}16^{\circ}$, in NE $^{1}/_{4}$ SW $^{1}/_{4}$ SE $^{1}/_{4}$ sec.11, T.11 N., R.80 W., Jackson County, Hydrologic Unit 10180001, on right bank 1,000 ft downstream from bridge on State Highway 125, 0.7 mi upstream from Camp Creek, 4.2 mi northwest of Northgate, and 4.4 mi south of Colorado-Wyoming State line.

DRAINAGE AREA.--1,431 mi².

PERIOD OF RECORD.--May to November 1904 (published as "near Pinkhampton"), May 1915 to current year. Monthly discharge only for some periods, published in WSP 1310.

REVISED RECORDS. -- WSP 1310: 1916-21, 1929(M), 1930-32. WSP 1730: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 7,810.39 ft above sea level. See WSP 1730 for history of changes prior to Apr. 8, 1918. Apr. 8, 1918, to Aug. 21, 1961, water-stage recorder at site 0.7 mi downstream at datum 3.36 ft lower. Aug. 22, 1961, to Sept. 18, 1984, at site 650 ft upstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 130,000 acres of hay meadows upstream from station. Transbasin diversions upstream from station to Cache la Poudre River basin. National Weather Service data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY SEP OCT NOV DEC FEB MAY JUL AUG e105 e80 e68 e74 e230 e76 e100 e80 e66 e240 e96 e84 e68 e78 e100 e360 e70 e90 e86 e82 e105 e600 e70 e110 e88 e90 e84 e72 e92 e115 e660 e86 e68 e92 e115 e86 e86 e88 e66 e90 e115 e88 e88 e66 e86 e115 e68 e88 e86 e120 e90 e86 e72 e88 e115 13 77 e115 e120 92 e82 e82 e74 e90 e74 e82 e74 e94 e84 e72 e100 e115 e82 e84 e70 e98 e110 e84 e84 e96 e110 e82 e115 e98 e105 375 e80 e66 e115 e74 e80 e68 e80 e70 e110 e120 e76 e78 e72 e110 e80 e78 e70 e110 e84 e80 e70 e110 e150 e70 e115 e190 e82 e82 e80 e68 e115 e230 e78 e78 e70 e110 e270 e82 e74 e72 e110 e250 e84 e72 e72 e105 e240 e74 e74 e230 e82 e105 e84 e72 e76 e230 e84 e68 e76 --e240 TOTAL MEAN 87.5 85.3 80.6 70.3 96.9 67.5 MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1904 - 2001, BY WATER YEAR (WY) MEAN 84.0 89.4 MAX 31.7 (WY) MTN 54.2 33.9 27.5 35.7 47.8 89.4 26.7 38.5 23.8 (WY)

06620000 NORTH PLATTE RIVER NEAR NORTHGATE, CO--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 W	ATER YEAR	WATER YEAR	RS 1904 - 2001
ANNUAL TOTAL	110675		76126			
ANNUAL MEAN	302		209		433	
HIGHEST ANNUAL MEAN					878	1917
LOWEST ANNUAL MEAN					117	1977
HIGHEST DAILY MEAN	2030	Jun 1	1060	May 19,20	6450	Jun 10 1923
LOWEST DAILY MEAN	48	Sep 12-19	44	Sep 30	19 J	ul 17,19 1934
ANNUAL SEVEN-DAY MINIMUM	48	Sep 12	48	Sep 24	20_	Jul 15 1934
MAXIMUM PEAK FLOW			1100	h May 18	6720 ^a h	Jun 11 1923
MAXIMUM PEAK STAGE			5.12	20 Apr 4	9.65	Apr 25 1980
ANNUAL RUNOFF (AC-FT)	219500		151000		313900	
10 PERCENT EXCEEDS	871		572		1200	
50 PERCENT EXCEEDS	100		100		162	
90 PERCENT EXCEEDS	74		70		70	

a b e

06622700 NORTH BRUSH CREEK NEAR SARATOGA, WY

LOCATION.--Lat $41^{\circ}22'13"$, long $106^{\circ}31'12"$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$ sec.8, T.16 N., R.81 W., Carbon County, Hydrologic Unit 10180002, Medicine Bow National Forest, on right bank 0.2 mi upstream from bridge on logging road, 0.5 mi downstream from Lincoln Creek, 1.6 mi upstream from South Brush Creek, and 16 mi southeast of Saratoga.

DRAINAGE AREA.--37.4 mi².

PERIOD OF RECORD. -- May 1960 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,020 ft above sea level, from topographic map. Prior to June 17, 1971, at site 0.02 mi downstream at different datum. June 17, 1971, to Aug. 2, 1984, at site 0.2 mi downstream at different datum. U.S. Geological Survey data collection platform with satellite telemetry at station.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. No diversion upstream from station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e6.0 217 23 7.5 7.0 e8.7 e7.6 e7.9 2 11 e6.8 e8.3 e8.9 e7.3 e9.0 76 240 21 6.2 e7.3 9.9 e10 212 19 5.9 3 e6.9 e9.2 55 e8.5 6.8 9.2 47 5.8 e7.3 e11 5 8.7 e8.2 e8.3 e8.9 e7 9 e7.7 e12 41 110 16 6.6 6.3 6 e8.7 e8.5 e13 42 111 16 7.2 7 7 e7.6 e7.7 e8 7 e8 6 e7.3 e8 6 e12 49 133 15 11 7 0 8 9.0 e7.0 e8.5 e12 67 8.9 9.0 e8.3 e8.5 140 20 e8.1 e8.2 e12 e7.8 91 143 15 9.7 8.7 10 8.5 e8.0 e8.6 e9.2 e6.8 e7.3 e11 130 138 14 11 7.7 7.1 11 e8.2 e9.2 e7.0 e11 157 131 26 7 7 12 e8.9 8.5 e7.5 e8.1 e7.2 e7.1 e13 189 109 17 6.8 13 8.2 e8.2 e8.4 e8.9 e7.2 e7.3 e12 234 88 15 6.9 6.5 e8.6 9.6 12 14 8.4 e8.6 e9.0 e7.9 e11 280 72 13 7.9 15 9.3 e8.9 e8.9 e8.6 e7.1 e7.9 e12 362 84 13 7.8 16 9 6 e8 7 e8.8 e8 4 e7.1 e7.7 e11 500 73 12 8.4 7 7 17 9.8 7.4 8.4 e7.1 e7.1 e14 408 65 10 e8.6 e8.4 e7.9 e7.7 e7.2 e7.4 67 18 10 e8.4 e9.1 e18 293 9.5 6.8 14 e9.4 19 11 e8.5 e7.7 e7.4 e7.6 29 305 65 9 2 6 4 9.4 7.5 e7.9 27 20 11 e8.9 e7.6 e7.4 257 60 8.8 e9.4 6.8 21 9.8 ₽9 1 e9.5 e7.9 e7.6 e8 8 22 161 56 8 4 8 0 6.8 9.8 17 22 e8.9 e9.2 e7.9 137 53 9.1 6.4 e7.5 e9.1 8.0 9.6 e8.9 e7.7 e7.5 e9.5 174 6.2 23 e8.6 e7.4 e7.7 24 9.5 e8 4 e8.9 e7.3 e10 17 230 49 8.0 7 0 6.2 25 9.5 e9.5 22 246 7.7 6.1 e8.2 e8.8 e7.4 49 6.4 26 10 e8 0 e8 4 e7 6 e7 5 e9 2 31 263 45 8 0 6 2 6 1 e7.2 27 e7.7 6.0 10 e8.2 e8.7 e10 42 295 42 5.8 8.6 28 9.8 e8.3 e8.8 e7.6 e7.0 e10 51 256 35 7.6 5.7 6.0 e7.7 e7.5 29 9.7 e8 4 e8.7 e10 58 231 30 7 1 5 8 6.0 9.0 e8.5 30 e10 26 6.8 6.0 6.0 e8.4 62 31 8.6 e8.6 e7.4 e9.0 210 7.8 6.4 608.6 TOTAL 294.1 242.7 268.6 256.6 205.4 257.1 6110 2847 238.9 220.4 396.4 7.34 MEAN 9.49 8.09 8.66 8.28 8.29 20.3 197 94.9 12.8 7.71 7.35 MAX 14 9.1 9.5 9.3 7.4 10 62 500 240 26 14 14 7.7 6.0 8.1 6.7 7.1 8.6 5.8 41 AC-FT 583 481 533 509 407 510 1210 12120 5650 786 474 437 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1961 - 2001, BY WATER YEAR (WY) 258 MEAN 14.0 11.5 10.0 9.27 9.24 10.5 23.6 169 56.3 13.8 12.6 MAX 38.7 21.3 15.1 14.0 12.7 20.1 73.4 272 534 224 29.5 27.2 1966 7.77 (WY) 1962 1984 1999 1999 1966 1962 2000 1983 1983 1983 1965 7.22 6.55 53.5 7.71 7.60 6.67 6.15 6.80 12.3 57.4 MIN 11.9 1990 2000 1991 1970 1970 1970 1993 1987 1994 2001 1989 (WY)

06622700 NORTH BRUSH CREEK NEAR SARATOGA, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1961 - 2001
ANNUAL TOTAL	15486.7	11945.8	
ANNUAL MEAN	42.3	32.7	49.9
HIGHEST ANNUAL MEAN			82.0 1983
LOWEST ANNUAL MEAN			27.3 1989
HIGHEST DAILY MEAN	625 May 24	500 May 16	955 Jun 25 1983
LOWEST DAILY MEAN	6.0 Sep 7,16- Nov 1	-18, 5.7 Aug 28	4.3 Dec 21 1990
ANNUAL SEVEN-DAY MINIMUM	6.2 Sep 13	6.0 Aug 25	5,1 Oct 25 1976
MAXIMUM PEAK FLOW		696 May 16	5.1 Oct 25 1976 1360 h Jun 25 1983
MAXIMUM PEAK STAGE		4.16 May 16	5.75 ^b Jun 7 1964
ANNUAL RUNOFF (AC-FT)	30720	23690	36140
10 PERCENT EXCEEDS	122	86	160
50 PERCENT EXCEEDS	9.1	8.7	12
90 PERCENT EXCEEDS	7.5	7.0	8.1

a Gage height, 4.23 ft, site and datum then in use. b Site and datum then in use. e Estimated.

06623800 ENCAMPMENT RIVER ABOVE HOG PARK CREEK, NEAR ENCAMPMENT, WY (Hydrologic Benchmark Station)

LOCATION.--Lat $41^{\circ}01^{\circ}25^{\circ}$, long $106^{\circ}49^{\circ}27^{\circ}$, in NE $^{1}/_{4}$ SW $^{1}/_{4}$ sec.10, T.12 N., R.84 W., Carbon County, Hydrologic Unit 10180002, Medicine Bow National Forest, on left bank 0.6 mi upstream from Hog Park Creek and 13 mi south of Encampment.

DRAINAGE AREA.--72.7 mi².

PERIOD OF RECORD.--October 1964 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 8,270 ft above sea level, from topographic map. U.S Geological Survey data collection platform with satellite telemetry at station.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. No diversion upstream from station.

		DISCHAF	RGE, CUBIC	FEET PE		WATER YE Y MEAN VA		R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26	18	e20	e17	e15	e16	18	170	583	94	33	27
2	23	e18	e20	e18	e15	e16	18	165	632	87	29	20
3	22	e16	e20	e18	15	e16	e18	103	600	83	28	19
4	21	e18	e19	e18	15	e15	23	91	496	78	28	18
5	20	e24	e18	e17	16	e16	e25	89	431	74	27	19
6	19	e22	e18	e17	16	e17	29	94	430	70	26	21
7	19	e16	e19	e18	16	e18	26	110	459	69	26	20
8	19	e18	e20	e18	15	e19	24	145	461	71	27	26
9	20	e21	e21	e19	e14	e19	e20	189	466	64	36	28
10	20	e21	e20	e18	e15	17	e20	261	465	62	36	32
11	20	e17	e18	e18	e16	e17	e19	315	446	84	34	26
12	20	e16	e17	e17	e17	e17	e18	348	408	65	27	21
13	20	e19	e17	e17	e17	e18	e19	399	373	64	26	20
14	21	e19	e18	e17	e17	e17	19	451	299	64	31	21
15	21	e20	e18	e17	e16	e16	e18	539	266	61	37	22
16	22	e19	e18	e15	e15	e16	23	655	252	56	46	20
17	21	e17	e17	e16	e15	e16	29	583	249	49	30	21
18	21	e18	e18	e16	e16	18	36	529	241	45	25	31
19	20	e19	e19	e16	e16	19	50	651	224	43	23	25
20	20	e19	e19	e16	e17	20	63	554	205	41	22	21
21	19	19	e19	e17	e17	23	53	456	192	40	24	19
22	19	e19	e20	e17	e17	e25	36	410	178	38	26	18
23	19	e19	e20	e17	e16	e26	34	450	168	36	24	17
24	20	e20	e18	e16	e16	e25	32	511	156	36	21	17
25	21	e19	e18	e16	e16	20	37	525	147	35	20	17
26	21	e20	e17	e16	e16	21	51	586	142	40	19	16
27	20	e19	e18	e16	e15	e19	74	638	134	42	18	16
28	20	e20	e18	e16	e15	e19	102	608	119	34	18	16
29	20	e19	e18	e16		19	127	602	112	32	18	16
30	20	e19	e17	e15		18	123	579	101	30	18	16
31	20		e17	e15		e17		554		35	22	
TOTAL	634	568	574	520	442	575	1184	12360	9435	1722	825	626
MEAN	20.5	18.9	18.5	16.8	15.8	18.5	39.5	399	314	55.5	26.6	20.9
MAX	26	24	21	19	17	26	127	655	632	94	46	32
MIN	19	16	17	15	14	15	18	89	101	30	18	16
AC-FT	1260	1130	1140	1030	877	1140	2350	24520	18710	3420	1640	1240
STATIST	CICS OF M	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 196	5 - 2001,	BY WATER	YEAR (WY	.)			
MEAN	31.2	25.1	22.5	20.0	18.9	20.0	40.8	284	603	205	47.2	32.9
MAX	71.5	45.2	33.9	28.9	28.1	31.4	76.5	471	919	581	83.3	82.2
(WY)	1998	1998	1998	1971	1971	1997	1989	2000	1997	1995	1995	1997
MIN	17.5	15.6	11.7	10.9	10.8	10.9	19.3	120	171	46.2	25.2	18.1
(WY)	1992	1978	1969	1969	1969	1969	1975	1995	1992	1994	1977	1994

PLATTE RIVER BASIN 06623800 ENCAMPMENT RIVER ABOVE HOG PARK CREEK, NEAR ENCAMPMENT, WY (Hydrologic Benchmark Station)-Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR:	S 1965 - 2001
ANNUAL TOTAL	34266		29465			
ANNUAL MEAN	93.6		80.7		113	
HIGHEST ANNUAL MEAN					159	1982
LOWEST ANNUAL MEAN					51.2	1977
HIGHEST DAILY MEAN	1010	May 29	655	May 16	1360	Jun 25 1983
LOWEST DAILY MEAN	15	Sep 16,17	14	Feb 9	9.5	Dec 31 1968
ANNUAL SEVEN-DAY MINIMUM	16	Sep 13	15	Jan 29	10_	Mar 8 1969
MAXIMUM PEAK FLOW			874	May 16	1680 ^a h	Jun 13 1965
MAXIMUM PEAK STAGE			4.11	May 16	5.01 ^D	Jun 25 1970
ANNUAL RUNOFF (AC-FT)	67970		58440		81540	
10 PERCENT EXCEEDS	302		263		382	
50 PERCENT EXCEEDS	24		20		28	
90 PERCENT EXCEEDS	18		16		17	

- About June 13, 1965; from slope-area measurement of peak flow, gage height not determined. Highest recorded. Estimated. a b e

06625000 ENCAMPMENT RIVER AT MOUTH, NEAR ENCAMPMENT, WY

LOCATION.--Lat $41^{\circ}18^{\circ}12^{\circ}$, long $106^{\circ}42^{\circ}53^{\circ}$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec.3, T.15 N., R.83 W., Carbon County, Hydrologic Unit 10180002, on left bank 0.5 mi upstream from mouth and 8.0 mi northeast of Encampment.

DRAINAGE AREA. -- 265 mi².

PERIOD OF RECORD.--April 1940 to current year. Monthly discharge only for some periods, published in WSP 1310.

REVISED RECORDS. -- WSP 1710: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 6,970 ft above sea level, from topographic map. Prior to June 28, 1961, water-stage recorder at site 660 ft upstream at datum 2.00 ft higher. U.S Geological Survey data collection platform with satellite telemetry at station.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Five small reservoirs upstream from station for irrigation, total capacity, about 400 acre-ft. Slight regulation by Hog Park Creek Reservoir, capacity, about 2,970 acre-ft. Diversions for irrigation of about 8,800 acres upstream from station. Transbasin diversion upstream from station into Hog Park Creek (tributary to Encampment River) from North Fork Little Snake River for municipal, industrial, and irrigation uses began September 1964.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY DEC OCT NOV JAN FEB APR MAY JUL AUG SEP e89 e73 e65 e61 e74 e64 e89 e64 e91 e75 e66 e65 e75 e90 e72 e64 e74 e75 e89 e89 e74 e76 e65 e90 e74 e74 e67 e89 e74 e72 e87 e76 e69 e88 e75 e63 e80 e88 e73 e66 13 e73 e72 e69 e71 73 511 70 e78 e85 e82 e84 e81 e85 e71 e73 e79 e84 e70 e72 e79 e83 e69 e66 e79 e78 70 287 e76 e68 e62 e79 e67 e64 e86 e82 e67 e64 e88 e82 e64 e87 e82 e69 e65 97 e87 e78 e70 e66 e89 e75 e68 e67 e74 e68 e65 e89 e74 e69 e65 e75 e65 e74 e68 e62 e89 e73 e67 e89 e73 e66 ---e66 TOTAL MEAN 82.4 70.6 78.8 44.5 50.1 MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1941 - 2001, BY WATER YEAR (WY) 67.9 MEAN 79.0 78.8 69.7 62.3 63.0 70.9 55.8 MAX (WY) MTN 29.4 42.6 49.2 34.2 35.8 44.5 71.3 29.2 21.5 14.2 (WY)

06625000 ENCAMPMENT RIVER AT MOUTH, NEAR ENCAMPMENT, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEARS	3 1941 - 2001
ANNUAL TOTAL	71554		64426			
ANNUAL MEAN	196		177		245	
HIGHEST ANNUAL MEAN					375	1997
LOWEST ANNUAL MEAN					102	1977
HIGHEST DAILY MEAN	1880	May 30	1500	May 17	3640	Jun 4 1952
LOWEST DAILY MEAN	17	Aug 12,13	39	Aug 13	8.0 ^a	Sep 1 1954
ANNUAL SEVEN-DAY MINIMUM	19	Aug 7	40	Aug 4	8 ₁₅ 9	Aug 28 1954
MAXIMUM PEAK FLOW			1770	May 17	4510	Jun 1 1943
MAXIMUM PEAK STAGE			5.10	May 17	10.33	Jun 4 1952
ANNUAL RUNOFF (AC-FT)	141900		127800		177200	
10 PERCENT EXCEEDS	627		551		790	
50 PERCENT EXCEEDS	84		79		75	
90 PERCENT EXCEEDS	27		45		42	

a Minimum daily discharge for period of record, 5.2 ${\rm ft}^3/{\rm s}$, Aug. 15, 16, 1940. b Gage height, 10.25 ft, present datum. c Present datum. e Estimated.

06630000 NORTH PLATTE RIVER ABOVE SEMINOE RESERVOIR, NEAR SINCLAIR, WY

LOCATION.--Lat $41^{\circ}52^{\circ}20^{\circ}$, long $107^{\circ}03^{\circ}25^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.13, T.22 N., R.86 W., Carbon County, Hydrologic Unit 10180002, on left bank 6.5 mi northeast of Sinclair and 14 mi upstream from high-water line of Seminoe Reservoir at elevation 6,357 ft.

DRAINAGE AREA.--4,175 mi², of which 114 mi² probably is non-contributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1939 to current year. Prior to October 1943, published as "near Parco."

REVISED RECORDS. -- WDR-76-1: Drainage area.

(WY)

GAGE.--Water-stage recorder. Sharp-crested weir since Mar. 25, 1993. Datum of gage is 6,400.75 ft above sea level.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 215,000 acres upstream from station. Transbasin diversions upstream from station. State of Wyoming data collection platform with satellite telemetry at station.

COOPERATION.--Seven discharge measurements provided by the Bureau of Reclamation.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT DEC FEB MAY JUL AUG SEP e310 e320 e350 e310 e320 e330 e350 e300 e320 e310 e330 e360 e370 e320 e320 e330 e390 e270 e310 e330 e340 e300 e320 e320 e330 e400 287 e310 e320 e310 e320 e410 e300 e320 e300 e300 e420 e340 e330 e300 e280 e430 e320 e340 e310 e300 e410 e310 e300 e310 e300 e400 13 280 e270 e250 e290 e310 e420 e450 768 2180 574 263 206 e310 e320 e310 e320 e280 e320 e310 e300 e430 e310 e320 e300 e310 e420 e310 e320 e300 e310 e430 e320 e450 e320 e330 e320 e330 3750 e290 e310 e300 e460 e310 e310 e340 e480 e330 e310 e310 e350 e490 e340 e300 e310 e340 e500 e310 e330 e320 e300 e350 e600 e310 e350 e740 e300 e320 e310 e290 e350 e900 e330 e300 e300 e340 e1000 e330 e300 e300 e340 e1200 e320 e300 e310 e340 e1000 e310 e300 e320 e960 e330 e330 e290 e310 e1000 e320 e300 e310 ---TOTAL MEAN MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 - 2001, BY WATER YEAR (WY) MEAN MAX (WY) MTN 93.3

06630000 NORTH PLATTE RIVER ABOVE SEMINOE RESERVOIR, NEAR SINCLAIR, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1939 - 2001
ANNUAL TOTAL	286897		232395			
ANNUAL MEAN	784		637		1136	
HIGHEST ANNUAL MEAN					2169	1984
LOWEST ANNUAL MEAN					467	1954
HIGHEST DAILY MEAN	5310	May 30	3750	May 18	14800	Jun 11 1986
LOWEST DAILY MEAN	89	Sep 19	136	Sep 6	70	Sep 17 1944
ANNUAL SEVEN-DAY MINIMUM	96	Sep 15	148	Sep 1	77	Sep 12 1944
MAXIMUM PEAK FLOW			4120	May 17	16200	Jun 11 1986
MAXIMUM PEAK STAGE			6.05	May 17	11.30	Jun 11 1986
ANNUAL RUNOFF (AC-FT)	569100		461000		823300	
10 PERCENT EXCEEDS	2230		1590		3150	
50 PERCENT EXCEEDS	360		320		446	
90 PERCENT EXCEEDS	180		207		230	

e Estimated.

06630000 NORTH PLATTE RIVER ABOVE SEMINOE RESERVOIR, NEAR SINCLAIR, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1961-2001 (discontinued).

PERIOD OF DAILY RECORD.--WATER TEMPERATURES: March 1978 to October 1978.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
MAY 04	1640	1900	605	11.0	116	8.1	227	3.5	7.5	194		<.040	E.023
JUN													
15	1025	1260	604	10.2	117	8.1	287	20.0	11.0	186		<.040	<.050
26	1030	571	600	8.4	121	8.7	354	26.5	21.0	222	<10	<.040	<.050
JUL													
23	1015	260	606			8.4	424	23.5	20.0	261	23	<.040	E.034
AUG													
23	1030	215	607	7.7	101	8.2	424	23.0	17.0	274	64	<.040	<.050

DATE	AS N)	ORTHO, DIS- SOLVED (MG/L AS P)	MTEC MF WATER (COL/	0.7 UM-MF (COLS./ 100 ML)
MAY	. 006	. 000		
04 JUN	<.006	<.020		
15	E.004	<.020		
26	E.005	<.020		
JUL				
23	<.006	E.012	41	41
AUG				
23	<.006	<.020		

E -- Estimated value.

06632400 ROCK CREEK ABOVE KING CANYON CANAL, NEAR ARLINGTON, WY

LOCATION.--Lat $41^{\circ}35^{\circ}07^{\circ}$, long $106^{\circ}13^{\circ}20^{\circ}$, in $SE^{1}/_{4}$ SW $^{1}/_{4}$ sec. 25, T.19 N., R.79 W., Carbon County, Hydrologic Unit 10180004, on left bank 200 ft upstream from point of diversion to King Canyon Canal, 0.4 mi downstream from Overland Creek, 1.0 mi southwest of Arlington, and 6.9 mi southwest of McFadden.

DRAINAGE AREA. -- 62.9 mi².

(WY)

PERIOD OF RECORD. -- October 1965 to current year.

REVISED RECORDS.--WDR WY-86: 1985(m). WDR WY-87: 1985.

GAGE .-- Water-stage recorder. Elevation of gage is 7,790 ft above sea level, from topographic map. U.S. Geological Survey data collection platform with satellite telemetry at station.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Minor regulation by Sand Lake, capacity, 1,100 acre-ft, on Deep Creek, 12 mi upstream. No diversion upstream from station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY AUG SEP 9.2 9.7 e9.2 9.1 e7.2 e6.2 82 498 1 14 6.1 69 16 2 12 7.2 e7.2 e9.0 9.1 e7.4 10 8.9 e6.6 93 534 63 15 71 3 11 93 9.4 e7.6 e6.6 12 489 58 15 9.0 8.9 e7.8 e7.6 370 4 10 e6.4 13 64 54 8.6 15 5 9.8 9.0 8.8 e7.2 287 8.7 e6.4 15 66 50 14 6 9.2 e8.8 8.6 7.0 6.9 16 61 280 48 8.8 e8.4 14 8.5 9.3 e8.0 e8.6 6.6 e8.2 14 55 316 46 15 9.5 8 e8.0 e8.4 6.6 e8.6 14 60 329 51 15 14 9.0 9.1 327 13 e8.6 e8.6 6.0 e8.0 82 55 13 10 10 e8.4 9.5 e8.8 e6.0 13 124 321 79 16 16 11 9.5 e8.0 e9.2 8.4 6.5 e7.2 12 170 312 101 14 14 12 13 9.3 8.2 e7.2 e7.4 277 221 e8.0 e9.0 6.6 16 237 65 13 11 e8.6 e9.4 6.5 14 317 59 13 10 14 9.0 e9.0 e9.6 8.0 6.3 e7.8 13 439 169 51 11 e9.2 15 9.4 e9.4 8.0 6.4 e7.8 14 645 161 49 16 11 9.6 8.0 12 895 11 16 e9.2 e9.4 6.5 e7.6 40 15 17 10 9.9 e9.0 e8.8 e9.0 e9.4 7.8 8.1 6.3 6.4 e7.2 e7.6 15 722 159 35 32 14 13 11 18 22 534 163 18 10 e9.4 e10.5 8.1 6.3 e7.8 30 9.8 20 e9.6 e10.5 8.2 6.5 7.6 30 503 169 28 12 12 21 9.9 8.0 9.8 24 347 12 10 10 11 e6.4 9.5 9.5 9.8 9.2 7.7 7.5 6.6 13 17 9.8 9.4 22 11 10 20 289 154 24 23 10 11 22 339 145 23 9.5 8.9 9.5 22 431 22 13 9.2 25 9.6 8.9 9.5 7.8 e6.6 11 23 467 136 20 11 8.9 26 9.7 8.9 9.2 7.6 6.8 10 29 522 123 20 10 8.8 7.7 7.4 9.3 9.8 9.4 6.4 e6.2 12 12 8.7 8.6 27 8.9 36 636 111 21 10 28 9.0 46 556 19 9.9 9.6 8.6 29 10 9.0 9.0 7.5 12 61 507 85 17 9 8 ---30 8 9 8 9 e7.4 12 63 513 75 17 93 8.6 e7.0 10 31 268.3 TOTAL 258.8 292.4 252.3 653.2 10866 6928 1289 320.5 304.4 186.0 412.8 9.82 9.43 8.14 6.64 8.65 21.8 231 10.7 8.63 351 41.6 13.3 9.4 MAX 14 10 11 7.6 12 63 895 534 101 17 18 7.7 9.2 9.3 6.1 8.8 6.2 8.6 MIN 6.0 55 75 17 604 513 369 21550 13740 2560 819 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1966 - 2001, BY WATER YEAR (WY) 10.4 17.0 ME AN 16.9 13.8 11.8 10.8 10.6 23.0 223 499 129 31.0 21.1 40.0 409 MAX 23.3 18.8 15.3 15.6 45.8 1024 420 66.9 40.1 (WY) 1983 1999 1973 1966 1974 1979 1989 1974 1971 1982 1982 1971 MTN 9.57 8.63 6.81 7.74 6.64 7.08 10.9 59.3 158 27.3 11.0 10.3 1990 2001 1968 1969 2001 1969 1995 1968 1987 2000 2000 1994

06632400 ROCK CREEK ABOVE KING CANYON CANAL, NEAR ARLINGTON, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1966 - 2001
ANNUAL TOTAL	20237.5	22031.7	a
ANNUAL MEAN	55.3	60.4	84.2 ^a
HIGHEST ANNUAL MEAN			142 1971
LOWEST ANNUAL MEAN			48.9 1977
HIGHEST DAILY MEAN	750 May 24	895 May 16	1690 Jun 19 1971
LOWEST DAILY MEAN	6.1 Nov 1	6.0 Feb 9	4.8 Nov 2 1991
ANNUAL SEVEN-DAY MINIMUM	7.6 Nov 1	6.3 Feb 9	6,0 Oct 29 1991 2590 Jun 19 1971
MAXIMUM PEAK FLOW		1310 May 16	2590 ^D Jun 19 1971
MAXIMUM PEAK STAGE		4.65 May 16	5,92 Jun 24 1983
ANNUAL RUNOFF (AC-FT)	40140	43700	60980 ^a
10 PERCENT EXCEEDS	180	169	277
50 PERCENT EXCEEDS	10	10	15
90 PERCENT EXCEEDS	8.6	7.2	8.9

Mean, water years 1955-2001, $81.5 \text{ ft}^3/\text{s}$; runoff, water years 1955-2001, 59,030 acre-feet; includes records for station 06632500, Rock Creek at Arlington for water years 1955-1965, adjusted for diversion by King Canyon Canal. Gage height, 5.83 ft. Estimated. b

06634620 LITTLE MEDICINE BOW RIVER AT BOLES SPRING, NEAR MEDICINE BOW, WY

LOCATION.--Lat $41^{\circ}57^{\circ}40^{\circ}$, long $106^{\circ}12^{\circ}31^{\circ}$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.17, T.23 N., R.78 W., Carbon County, Hydrologic Unit 10180005, on right bank 50 ft downstream from Boles Spring, 3.9 mi downstream from State Highway 487, 4.3 mi north of Medicine Bow, and 8.7 mi downstream from Muddy Creek.

DRAINAGE AREA.--969 mi².

PERIOD OF RECORD.--October 1973 to current year. Records for October 1973 to September 1984 at site 5.5 mi upstream published as "near Medicine Bow" (station 06634600) do not include flow of Boles Spring. Discharge records considered equivalent except for low flow.

GAGE.--Water-stage recorder. Elevation of gage is 6,570 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform with satellite telemetry at station.

		DISCHA	RGE, CUBI	C FEET PER		, WATER YE LY MEAN VA	EAR OCTOBER ALUES	2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11 9.7 8.9 8.8 8.2	13 10 5.4 4.9 5.0	1.4 1.1 1.1 1.2	.90 .75 .66 .66	.56 .57 .58 .58	.47 .91 2.1 5.0 8.2	72 e65 e75 e85 168	355 351 361 276 247	70 60 55 51 46	5.0 4.5 4.0 3.7 3.6	10 8.9 7.8 6.6 5.5	3.4 3.3 3.5 3.6 3.7
6 7 8 9 10	8.2 8.0 7.7 7.8 7.9	4.5 4.0 6.8 7.9 3.7	1.1 1.1 1.1 1.2	.79 .76 .64 .49	.58 .49 .62 .57	11 13 15 19	246 274 264 233 217	272 251 214 192 194	42 39 37 32 28	3.3 3.6 4.3 4.1	4.7 4.3 4.1 5.7 7.2	3.7 3.4 3.9 4.5 4.4
11 12 13 14 15	7.7 7.3 7.2 7.7 7.9	3.7 3.4 3.7 3.4 3.1	1.1 1.1 1.1 1.2 1.3	.59 .57 .64 .57	.50 .41 .41 .43 .45	18 18 17 17	182 154 138 128 128	206 215 209 200 185	24 22 20 19 17	18 18 45 46 34	6.2 5.9 5.4 6.1 7.0	4.3 4.2 4.5 5.0 5.5
16 17 18 19 20	7.3 7.6 8.0 8.5 8.6	2.5 1.9 1.5 1.2	1.4 1.3 1.3 1.3	. 43 . 44 . 43 . 43	.47 .49 .46 .44	16 16 16 19 24	123 116 125 146 182	175 165 154 138 126	16 15 14 13	27 21 17 14 11	9.7 7.8 9.7 6.9 5.8	7.1 6.9 7.3 6.6 5.7
21 22 23 24 25	8.5 8.6 8.7 9.2 9.3	1.4 1.5 1.8 1.8	.95 .98 1.0 1.0	. 43 . 40 . 42 . 44 . 44	.42 .41 .44 .43	31 47 44 49 59	203 206 181 167 217	118 109 103 96 86	11 10 9.7 8.6 8.2	9.7 8.5 7.1 62 161	5.1 4.6 4.4 4.2 4.1	5.0 4.5 4.3 4.1 4.0
26 27 28 29 30 31	9.6 9.7 10 10 10	1.5 1.6 1.4 1.5	.93 .95 .91 .98 .93	.41 .46 .50 .64 .61	.40 .39 .41 	54 56 e75 100 81 72	227 236 261 302 351	78 74 72 70 80 86	7.2 6.9 7.6 6.4 5.5	67 42 28 20 15 12	4.0 3.8 3.6 3.5 3.3	4.0 3.9 4.0 3.8 3.6
TOTAL MEAN MAX MIN AC-FT	268.6 8.66 11 7.2 533	106.7 3.56 13 1.2 212	34.26 1.11 1.4 .91 68	17.36 .56 .90 .40 34	13.50 .48 .64 .39 27	940.68 30.3 100 .47 1870	5472 182 351 65 10850	5458 176 361 70 10830	713.1 23.8 70 5.5 1410	732.4 23.6 161 3.3 1450	178.9 5.77 10 3.0 355	135.7 4.52 7.3 3.3 269
STATIST	TICS OF M	ONTHLY MEA	AN DATA F	OR WATER Y	EARS 19	85 - 2001,	, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	9.35 18.0 1985 3.51 1997	10.5 36.0 1999 3.56 2001	4.71 11.5 1987 1.11 2001	2.33 7.50 1997 .56 2001	12.2 110 1986 .48 2001	68.0 286 1997 15.0 1993	126 246 1988 28.5 1992	171 388 1995 21.2 1992	84.4 419 1995 5.96 1994	17.6 46.0 1995 3.76 1996	7.60 22.1 1990 1.33 2000	6.73 19.5 1985 .89 1994

06634620 LITTLE MEDICINE BOW RIVER AT BOLES SPRING, NEAR MEDICINE BOW, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1985 - 2001
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE	15858.66 43.3 1060 Apr 24 .61 Jan 7 .71 Jan 6	14071.20 38.6 361 May 3 .39 Feb 25,27 .41 Feb 22 391 May 3 3.80 May 3	43.5 ^a 90.1 1999 12.7 1992 1450 Mar 20 1997 .12 ^b Jan 24 1998 .16 Jan 23 1998 9500 May 17 1978 14.10 May 17 1978
ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS	31460 131	27910 157	31490 134
50 PERCENT EXCEEDS	7.7	6.9	8.7
90 PERCENT EXCEEDS	.97	.55	1.4

- Average discharge, water years 1974-2001, 52.0 ft³/s, unadjusted for flow from Boles Spring. No flow at times, water years 1974-84, site and datum then in use. From slope-area mesurement of peak flow. From floodmarks in gage well, site and datum then in use. Fetimated
- a b c d e

- Estimated.

06635000 MEDICINE BOW RIVER ABOVE SEMINOE RESERVOIR, NEAR HANNA, WY

LOCATION.--Lat $42^{\circ}00'35$ ", long $106^{\circ}30'45$ ", in $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec.34, T.24 N., R.81 W., Carbon County, Hydrologic Unit 10180004, on left bank 25 ft upstream from county highway bridge, 2.0 mi upstream from Troublesome Creek, 9.0 mi upstream from high-water line of Seminoe Reservoir at elevation 6,357 ft, and 10 mi north of Hanna.

DRAINAGE AREA. -- 2,338 mi², of which 396 mi² probably is non-contributing.

1979

1979

1949

1944

1995

1954

1954

1939

2000

1956

(WY)

1957

1940

PERIOD OF RECORD. -- July 1939 to current year.

REVISED RECORDS.--WSP 956: 1941(M). WSP 1440: 1940(M), 1941. WSP 1710: Drainage area. WDR WY-83-1: 1943.

GAGE.--Water-stage recorder. Concrete control since Nov. 20, 1990. Datum of gage is 6,415.40 ft above sea level. State of Wyoming data collection platform with satellite telemetry at station.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Many small reservoirs upstream from station, total capacity, about 6,000 acre-ft, for irrigation. Diversions for irrigation of about 43,000 acres upstream from station.

COOPERATION.--Ten discharge measurements provided by the Wyoming State Engineer's Office and seven discharge measurements provided by the Bureau of Reclamation.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY AUG SEP 9.5 42 e23 e18 226 556 440 20 37 e24 e14 21 1 2 e24 e21 e19 e13 213 17 8.9 36 543 434 16 3 35 21 e26 e23 ₽19 e15 208 565 395 16 11 8.4 395 32 23 e26 e25 e18 e20 218 565 8.4 8.1 15 5 30 24 e27 e20 13 6.8 8.3 e24 436 420 6 29 24 e23 e26 e19 e40 365 441 374 12 8.7 28 21 e23 e25 e19 e36 436 478 296 11 5.0 8.8 27 e20 230 8 e24 e22 e16 e42 464 451 12 4.6 9.7 27 e24 e25 e18 e12 e50 406 192 7.6 9.6 e25 e15 10 27 e22 e20 e46 361 353 189 18 6.9 8.9 11 28 e20 e22 e22 e17 e40 325 376 199 25 7.3 9.0 12 13 26 25 e22 e21 297 264 9.6 e18 e19 e20 e38 447 192 40 9.0 168 e20 e21 e19 508 30 8.9 e36 26 e24 e22 e20 e18 e47 41 13 10 15 28 e23 e24 e18 e17 e40 230 541 130 62 11 11 27 11 16 e23 e22 e19 e18 222 594 13 e24 216 213 647 723 17 27 e23 e17 e21 e40 100 46 13 12 25 e19 73 18 e22 e22 48 14 14 e18 e45 26 e23 e22 e19 e18 e50 41 11 e60 20 27 e21 e22 e19 e19 252 568 45 35 12 14 21 26 e22 e20 e20 e18 e56 303 582 37 11 13 22 25 e22 e22 e21 e18 e70 354 609 32 27 9 6 13 12 23 28 e22 351 29 23 e23 e20 e17 e90 539 8.9 24 28 e21 e18 e18 e150 317 425 29 19 12 25 29 e21 e20 e19 e17 e250 315 333 29 66 8 1 11 26 29 e22 e19 e19 e15 311 427 277 28 126 7.8 11 7.4 7.2 27 28 e22 e20 e17 e16 435 466 265 31 72 11 28 28 e23 e18 398 474 289 28 46 11 e22 e14 29 28 e22 e21 e19 298 479 348 24 33 6.9 11 30 29 e25 e22 e18 ---263 506 388 22 26 8.5 11 37 22 414 14889 4898 1067 TOTAL 888 693 696 631 494 3298 9633 297.1 319.3 MEAN 23.1 22.5 20.4 17.6 106 321 480 163 10.6 MAX 37 25 42 26 27 17 21 435 506 723 440 126 20 14 19 12 208 22 4.6 8.1 MIN 18 13 265 11 980 29530 $21\overline{20}$ 1760 1370 1380 1250 6540 19110 9720 633 589 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 - 2001, BY WATER YEAR (WY) MEAN 43.4 132 51.3 38.7 32.5 49.3 143 328 570 670 179 54.2 29.2 121 72.9 69.0 397 516 950 3059 2076 1030 246 236 MAX 1997 7.76 (WY) 1963 1999 1974 1962 1943 1983 1973 1983 1983 1983 1973 MTN 9.65 16.3 8.70 10.0 20.4 66.4 81.5 58.6 5.71 1.53 3.78

06635000 MEDICINE BOW RIVER ABOVE SEMINOE RESERVOIR, NEAR HANNA, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1939 - 2001
ANNUAL TOTAL	39733.68	37803.4	
ANNUAL MEAN	109	104	183
HIGHEST ANNUAL MEAN			531 1973
LOWEST ANNUAL MEAN			43.7 1954
HIGHEST DAILY MEAN	1120 Apr 25	723 May 18	5330 May 11 1973
LOWEST DAILY MEAN	.18 Aug 25	4.6 Aug 8	.18 Aug 25 2000
ANNUAL SEVEN-DAY MINIMUM	.33 Aug 19	6.3 Aug 5	.33 Aug 19 2000
MAXIMUM PEAK FLOW		976 Mar 27	6010 ^a _h May 12 1973
MAXIMUM PEAK STAGE		4.08 Mar 27	8.20 Feb 26 1986
ANNUAL RUNOFF (AC-FT)	78810	74980	132400
10 PERCENT EXCEEDS	379	395	534
50 PERCENT EXCEEDS	37	24	53
90 PERCENT EXCEEDS	4.2	11	15

- a Gage height, 6.74 ft. b From floodmarks, backwater from ice. e Estimated.

06635500 SEMINOE RESERVOIR NEAR LEO, WY

LOCATION.--Lat $42^{\circ}09^{\circ}21^{\circ}$, long $106^{\circ}54^{\circ}29^{\circ}$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec.8, T.25 N., R.84 W., Carbon County, Hydrologic Unit 10180003, on upstream side near center of dam on North Platte River, 6.0 mi upstream from high-water line of Pathfinder Reservoir at elevation 5,850.1 ft, and 9.0 mi southwest of Leo.

DRAINAGE AREA. --7,230 mi², of which 589 mi² is probably noncontributing.

PERIOD OF RECORD.--February 1939 to current year. Monthend figures only for February, March 1939, October 1940 to September 1950, published in WSP 1310.

REVISED RECORDS. -- WDR WY-76-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 6,190.00 ft above sea level (levels by Bureau of Reclamation). Prior to Apr. 20, 1939, nonrecording gage at same site and datum.

REMARKS.--Reservoir is formed by concrete-arch dam. Storage began Apr. 1, 1939, but some regulation for power development during period Jan. 1 to Mar. 31, 1939. Capacity, 1,017,000 acre-ft below elevation 6,357 ft, top of spillway gates. Figures given herein represent total contents, of which 31,700 acre-ft, capacity below elevation 6,239 ft, minimum operating level for power development, are not available for power development and 533 acre-ft, below elevation 6,185.09 ft, penstock invert, is dead storage. Water is used for irrigation and power development.

COOPERATION .-- Records provided by Bureau of Reclamation

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 1,073,000 acre-ft, June 20, 1949, elevation, 6,359.29 ft; minimum daily contents (since appreciable storage was attained), 19,040 acre-ft, Sept. 1, 1939, elevation, 6,228.00 ft.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 828,000 acre-ft, Oct. 1, maximum daily elevation, 6,346.98 ft, Oct. 1; minimum daily contents, 619,000 acre-ft, Sept. 29, minimum daily elevation, 6,333.22 ft, Sept. 30.

Capacity table (elevation, in feet, and contents, in acre-feet)

6,330 575,000 6,350 883,000 6,360 1,080,000 6,340 716,000

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	828000 828000 827000 825000 824000	790000 789000 788000 787000 785000	752000 751000 750000 749000 748000	717000 716000 715000 714000 712000	680000 679000 678000 677000 676000	650000 649000 648000 647000 646000	647000 647000 648000 649000 650000	665000 668000 671000 673000 674000	755000 756000 759000 761000 764000	747000 745000 744000 742000 742000	703000 702000 701000 698000 697000	658000 656000 655000 653000 652000
6 7 8 9 10	823000 821000 820000 819000 818000	784000 783000 781000 780000 779000	747000 746000 745000 743000 742000	711000 710000 709000 707000 707000	674000 673000 673000 672000 670000	645000 644000 644000 643000 642000	652000 654000 655000 656000	675000 676000 677000 678000 679000	765000 766000 767000 767000 768000	740000 739000 737000 735000 737000	695000 693000 692000 690000 688000	651000 649000 648000 646000 644000
11 12 13 14 15	818000 816000 814000 812000 811000	778000 776000 774000 773000 772000	741000 740000 739000 738000 737000	705000 704000 703000 702000 700000	669000 668000 666000 667000 665000	642000 641000 641000 640000	657000 658000 657000 656000 656000	680000 682000 685000 688000 691000	768000 769000 768000 768000 767000	735000 734000 733000 732000 731000	687000 686000 684000 683000 681000	643000 641000 640000 639000 637000
16 17 18 19 20	810000 808000 807000 805000	771000 770000 768000 766000 765000	736000 735000 733000 732000 730000	699000 698000 697000 696000	663000 662000 661000 660000 658000	639000 638000 638000 637000	657000 657000 657000 657000 658000	695000 701000 708000 713000 718000	767000 766000 765000 764000 762000	730000 728000 727000 726000 724000	681000 679000 679000 677000 675000	636000 635000 634000 632000 631000
21 22 23 24 25	803000 801000 800000 799000 798000	764000 762000 761000 760000 759000	730000 728000 727000 726000 725000	694000 692000 691000 690000 688000	658000 656000 656000 655000 654000	637000 637000 637000 638000 639000	659000 661000 662000 662000 661000	723000 727000 730000 733000 735000	760000 759000 757000 756000 754000	722000 721000 719000 717000 715000	674000 673000 671000 670000 668000	630000 628000 627000 626000 625000
26 27 28 29 30 31	796000 795000 794000 793000 791000 791000	758000 757000 756000 755000 753000	724000 724000 722000 721000 719000 718000	687000 686000 685000 684000 683000 681000	652000 652000 651000 	641000 642000 643000 645000 645000 647000	661000 662000 662000 662000 664000	737000 739000 742000 745000 749000 752000	753000 752000 750000 749000 748000	714000 712000 710000 709000 707000 705000	667000 666000 664000 663000 661000	623000 622000 621000 619000 618000
MAX MIN (#) (*)	828000 791000 6344.73 -3,800	790000 753000 6342.42 -3,800	752000 718000 6340.18 -3,500	717000 681000 6337.72 -3,700	680000 651000 6335.61 -30,000	650000 637000 6335.31 -4,000	664000 647000 6336.52 +17,000	752000 665000 6342.31 +88,000	769000 748000 6342.07 -4,000	747000 705000 6339.31 -43,000	703000 660000 6336.22 -45,000	658000 618000 6333.22 -42,000

WTR YR 2001 MAX 854.000 MIN 619.000 (*) -209.000

^(#) Elevation, in feet, at end of month.
(*) Change in contents, in acre-feet.

06635500 SEMINOE RESERVOIR NEAR LEO, WY--Continued

06639000 SWEETWATER RIVER NEAR ALCOVA, WY

LOCATION.--Lat $42^{\circ}29^{\circ}24^{\circ}$, long $107^{\circ}08^{\circ}00^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.16, T.29 N., R.86 W., Natrona County, Hydrologic Unit 10180006, on left bank 270 ft upstream from State Highway 220, 0.2 mi southwest of Independence Rock, 7 mi upstream from high-water line of Pathfinder Reservoir at elevation 5,850 ft, and 22 mi southwest of Alcova.

DRAINAGE AREA. -- 2,338 mi². Area at site prior to Apr. 1, 1992, 2,327 mi².

PERIOD OF RECORD.--August 1913 to September 1924, October 1938 to current year (no winter records during 1974, 1975, 1977-81, and since 1983). Monthly discharge only for some periods, published in WSP 1310.

REVISED RECORDS.--WSP 1310: 1921, 1923-24. WSP 1710: Drainage area.

GAGE.--Water-stage recorder and sharp-crested weir. Elevation of gage is 5,890 ft above sea level, from topographic map. Aug. 28, 1913, to Sept. 30, 1924, nonrecording gages at site 7.0 mi upstream at different datums. Oct. 1, 1938, to Mar. 31, 1992, at site 6.6 mi upstream at different datum. Bureau of Reclamation data collection platform with satellite telemetry at station.

REMARKS.--Records good. Several small reservoirs upstream from station, combined capacity, about 5,000 acre-ft, for irrigation. Diversions for irrigation of about 24,000 acres upstream from station.

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY DEC FEB MAY AUG SEP OCT NOV JAN MAR APR 189 9.5 151 76 13 12 ------2 ------176 190 70 12 12 9.2 ---___ 3 174 184 70 11 12 9.3 68 9.3 190 178 11 11 5 182 11 11 8.8 173 58 6 7 191 167 55 11 11 8.8 ---------___ ___ ___ 194 158 54 11 10 9.9 ---------8 188 147 51 15 11 14 184 146 49 10 12 10 ___ ___ ___ ___ ___ 174 145 46 20 11 12 12 11 167 135 41 23 11 12 ___ ___ ___ ___ ___ ___ 157 115 39 23 10 12 12 13 ___ ---------------151 25 10 104 34 10 14 15 ___ ___ ___ ___ ___ ___ 132 90 32 26 11 16 88 29 11 16 17 ___ ___ ___ ___ ___ ___ 120 86 30 29 11 15 18 ___ 116 94 30 27 10 15 19 108 30 20 ___ ___ ___ ___ ___ ___ 111 127 28 25 10 15 9.7 21 114 181 24 16 ___ 22 ___ ___ ___ ___ ___ 146 166 23 22 9.6 16 23 152 19 23 9.3 16 9.0 24 ---------226 143 17 21 16 ___ ___ ___ 25 ___ ___ ___ 204 133 15 19 9 1 15 26 183 116 15 18 9.2 15 ___ 27 ---------------173 108 16 18 9.0 14 28 ------___ ___ ---___ 15 15 104 ---29 ------------171 102 14 15 8.9 15 ---------------30 ---186 100 14 14 8.7 15 31 ___ ___ 12 TOTAL 4925 4110 1096 587 398.8 315.4 ------MEAN ------------164 133 10.2 18.9 13.3 ------------29 11 MAX 226 190 76 12 16 8.6 8.8 111 14 MIN 84 9770 8150 2170 1160 626 791 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1914 - 2001, BY WATER YEAR (WY)* MEAN 45.8 50.2 38.7 31.6 36.9 80.0 248 413 391 110 42.2 29.8 83.3 59.4 54.5 69.1 210 1869 1296 1130 436 104 114 MAX 86.6 (WY) 1916 1972 1972 1953 1968 1916 1924 1980 1983 1995 1998 1973 20.7 MTN 16.0 20.0 20.0 10.8 12.3 33.0 74.4 12.6 5.01 . 92 1.90 1977 1940 1941 1962 1949 1924 1963 1940 1940 (WY) 1961

06639000 SWEETWATER RIVER NEAR ALCOVA, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1914 - 2001*
HIGHEST DAILY MEAN LOWEST DAILY MEAN	226 Apr 24 8.6 Aug 31	4290 Apr 13 1924 .50 Jul 30 to Aug 12 1940
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE	237 Apr 23 2.73 Apr 23	4290 Apr 13 1924 9.90 Apr 27 1983

^{*} For period of operation.

06640500 PATHFINDER RESERVOIR NEAR ALCOVA, WY

LOCATION.--Lat $42^{\circ}28^{\circ}06^{\circ}$, long $106^{\circ}51^{\circ}12^{\circ}$, in $NW^{1}/_{4}$ sec.24, T.29 N., R.84 W., Natrona County, Hydrologic Unit 10180003, in gatehouse near left end of dam on North Platte River and 9.0 mi southwest of Alcova.

DRAINAGE AREA. -- 10,711 mi², of which 700 mi² probably is non-contributing.

PERIOD OF RECORD.--January 1909 to current year. Month end figures only for some periods, published in WSP 1310.

REVISED RECORDS. -- WDR WY-76-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 5,678.1 ft above sea level. Prior to Apr. 12, 1950, nonrecording gages near present site, and Apr. 12 to Sept. 30, 1950, water-stage recorder at present site, all at Bureau of Reclamation datum which was 1.9 ft lower.

REMARKS.--Reservoir is formed by masonry dam. Storage began in April 1909. Capacity, 1,016,000 acre-ft between elevations 5,668.1 ft, north outlet trashrack sill, and 5,850.1 ft, crest of spillway. No dead storage. Figures given herein represent total contents. Water is used to irrigate lands in Wyoming and Nebraska under the North Platte project. Since December 1960, water has been diverted directly through a tunnel to Fremont Canyon Powerplant, bypassing a section of river channel immediately below Pathfinder Dam.

COOPERATION. -- Records provided by Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 1,182,000 acre-ft, June 25-27, 1917, elevation, 5,858.86 ft, present datum; no storage at times during 1909-12, 1931, 1958-59.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 799,000 acre-ft, June 3-4, maximum daily elevation, 5,839.43 ft, June 4; minimum daily contents, 423,000 acre-ft, Sept. 28-29, minimum daily elevation, 5,813.51 ft., Sept. 28.

Capacity table (elevation, in feet, and contents, in acre-feet)

5,810 387,000 5,825 565,000 5,815 440,000 5,830 638,000 499,000 5,835 720,000 5,820

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	611000 612000 613000 614000 616000	651000 652000 653000 654000	674000 675000 675000 676000 677000	701000 702000 703000 704000 705000	728000 729000 730000 731000 732000	754000 755000 756000 757000 758000	771000 773000 774000 775000 775000	774000 777000 778000 779000 780000	798000 797000 799000 799000 798000	722000 718000 714000 710000 706000	603000 599000 596000 591000 587000	477000 473000 469000 465000 460000
6 7 8 9 10	617000 618000 620000 622000 624000	655000 656000 657000 657000 659000	678000 679000 680000 680000 682000	706000 707000 708000 709000 709000	733000 735000 735000 736000 737000	759000 759000 760000 761000 762000	777000 778000 778000 777000 775000	781000 783000 784000 785000 787000	796000 795000 793000 790000 787000	702000 699000 695000 691000 688000	582000 579000 574000 570000 567000	457000 454000 450000 446000 442000
11 12 13 14 15	626000 628000 629000 631000 633000	660000 660000 660000 661000	683000 684000 685000 685000	710000 711000 712000 713000 714000	738000 739000 740000 741000 742000	763000 764000 763000 763000 762000	775000 776000 775000 775000 774000	788000 789000 791000 792000 793000	784000 781000 777000 774000 772000	685000 681000 677000 673000 669000	562000 559000 555000 551000 547000	440000 437000 434000 431000 430000
16 17 18 19 20	634000 635000 637000 638000 640000	663000 663000 664000 664000 665000	686000 687000 688000 689000 690000	715000 715000 716000 717000 718000	743000 744000 745000 746000 747000	761000 762000 762000 762000 764000	773000 772000 772000 770000 770000	794000 795000 796000 797000 797000	769000 766000 763000 760000 757000	667000 661000 657000 653000 650000	543000 539000 534000 530000 525000	429000 429000 428000 427000 427000
21 22 23 24 25	640000 642000 643000 643000 645000	665000 666000 667000 668000 669000	691000 692000 693000 694000 695000	719000 720000 721000 722000 722000	748000 749000 750000 750000 751000	764000 765000 766000 766000 767000	770000 770000 770000 772000 773000	797000 798000 797000 797000 797000	754000 752000 748000 745000 741000	646000 642000 638000 634000 630000	522000 518000 513000 509000 505000	426000 426000 426000 426000 424000
26 27 28 29 30 31	645000 645000 646000 647000 648000 650000	670000 670000 671000 673000 673000	696000 697000 698000 698000 699000 700000	723000 724000 726000 727000 727000 728000	752000 753000 753000 	768000 768000 769000 769000 770000 771000	774000 774000 774000 775000 774000	797000 798000 798000 798000 798000 798000	740000 736000 732000 729000 726000	627000 623000 619000 614000 611000 606000	501000 497000 493000 488000 485000 481000	424000 424000 423000 423000 424000
MAX MIN (#) (*)	650000 611000 5830.73 +40,000		700000 674000 5,833.84 +27,000				778000 770000 5,838.07 +3,000		799000 726000 5,835.33 -72,000			

WTR YR 2001 MAX 799,000 MIN 423,000 (*) -473,000

^(#) Elevation, in feet, at end of month.
(*) Change in content, in acre-feet.

06640500 PATHFINDER RESERVOIR NEAR ALCOVA, WY--Continued

06641500 ALCOVA RESERVOIR AT ALCOVA, WY

LOCATION.--Lat $42^{\circ}32^{\circ}52^{\circ}$, long $106^{\circ}43^{\circ}08^{\circ}$, in $SE^{1}/_{4}$ $SE^{2}/_{4}$ sec.24, T.30 N., R.83 W., Natrona County, Hydrologic Unit 10180007, in elevator shaft at right end of dam on North Platte River and 0.2 mi southwest of Alcova.

DRAINAGE AREA. -- 10,766 mi², of which 700 mi² probably is non-contributing.

PERIOD OF RECORD.--February 1938 to current year. Prior to October 1950 monthend figures only, published in WSP 1310.

REVISED RECORDS. -- WDR WY-76-1: Drainage area.

GAGE.--Water-stage recorder for elevations above 5,447.00 ft. Datum of gage is 5,320 ft above sea level (levels by Bureau of Reclamation). Prior to June 27, 1955, nonrecording gages near present site at same datum.

REMARKS.--Reservoir is formed by rock-fill dam completed in January 1938; storage began Feb. 8, 1938. Capacity, 184,300 acre-ft at elevation 5,500.00 ft, top of spillway gates. Dead storage, 100 acre-ft. Figures given herein represent total contents. Usable contents published prior to October 1956. Water is used for irrigation in North Platte River basin.

COOPERATION. -- Records provided by Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 190,000 acre-ft, Aug. 14, 15, 1952, elevation, 5,499.92 ft; minimum daily contents (since appreciable storage was attained), 2,000 acre-ft, Sept. 30, 1940, elevation, 5,353.56 ft. No usable storage prior to February 1938.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 181,000 acre-ft, June 11-29, maximum daily elevation, 5,498.81 ft, June 18; minimum daily contents, 155,000 acre-ft, Nov. 11; minimum daily elevation, 5,487.70 ft, Nov. 11.

Capacity table (elevation, in feet, and contents, in acre-feet)

5,485 149,000 5,495 172,000 5,490 160,000 5,500 184,000

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	179000	157000	157000	156000	157000	157000	156000	178000	180000	180000	179000	180000
2	178000	156000	157000	156000	157000	157000	157000	178000	180000	180000	179000	180000
3	178000	157000	157000	156000	157000	157000	157000	179000	180000	180000	179000	180000
4	176000	156000	157000	156000	157000	157000	157000	179000	179000	180000	179000	180000
5	175000	156000	157000	156000	157000	157000	157000	179000	179000	180000	179000	180000
6	175000	156000	157000	156000	157000	157000	157000	179000	179000	179000	179000	180000
7	174000	156000	156000	156000	157000	157000	157000	179000	179000	180000	179000	180000
8	173000	156000	156000	156000	157000	157000	157000	179000	179000	180000	179000	180000
9	172000	156000	156000	156000	157000	157000	159000	179000	179000	180000	179000	180000
10	171000	156000	156000	156000	157000	157000	161000	179000	180000	180000	179000	180000
11	170000	155000	156000	156000	157000	157000	162000	179000	181000	180000	179000	179000
12	169000	156000	156000	157000	157000	157000	162000	179000	181000	180000	179000	179000
13	168000	156000	156000	156000	157000	157000	163000	179000	181000	181000	179000	179000
14	167000	156000	157000	156000	157000	156000	164000	179000	181000	181000	179000	179000
15	165000	157000	157000	156000	157000	156000	166000	178000	181000	181000	179000	179000
16	163000	157000	157000	156000	157000	156000	167000	178000	181000	181000	179000	179000
17	161000	156000	157000	156000	157000	156000	168000	178000	181000	181000	179000	179000
18	158000	157000	157000	156000	157000	156000	169000	178000	181000	180000	179000	179000
19	157000	157000	156000	156000	156000	156000	170000	178000	181000	180000	179000	179000
20	156000	157000	156000	157000	156000	156000	171000	179000	181000	180000	179000	179000
21 22 23 24 25	156000 156000 156000 156000 156000	157000 157000 157000 157000 157000	156000 156000 156000 156000 156000	157000 157000 157000 157000 157000	156000 156000 156000 156000	156000 157000 156000 156000 156000	171000 171000 172000 172000 173000	179000 180000 180000 180000 180000	181000 181000 181000 181000 181000	179000 179000 179000 179000 179000	179000 179000 179000 179000 179000	179000 179000 178000 178000 179000
26 27 28 29 30 31	156000 156000 157000 157000 156000	157000 157000 157000 157000 157000	156000 156000 156000 156000 157000	157000 156000 156000 157000 157000 157000	157000 157000 157000 	156000 156000 156000 157000 156000	173000 175000 176000 177000 178000	180000 180000 180000 180000 180000	181000 181000 180000 181000 180000	179000 179000 179000 179000 179000 179000	179000 179000 179000 180000 180000 180000	179000 179000 179000 180000 180000
MAX	179000	157000	157000	157000	157000		178000	180000	181000	181000	180000	180000
MIN	156000	155000	156000	156000	156000		156000	178000	179000	179000	179000	178000
(#)	5,488.20	5,488.21	5,488.37	5,497.55	5,498.41		5,488.53	5,488.29	5,488.20	5,498.26	5,497.85	5,498.30
(*)	-24,000	1,000	0	0	0		+22,000	2,000	0	-1,000	1,000	0

WTR YR 2001 MAX 181,000 MIN 155,000 (*) 0

^(#) Elevation, in feet, at end of month.

^(*) Change in contents, in acre-feet.

06641500 ALCOVA RESERVOIR AT ALCOVA, WY--Continued

06645000 NORTH PLATTE RIVER BELOW CASPER, WY

LOCATION.--Lat $42^{\circ}51^{\circ}40^{\circ}$, long $106^{\circ}12^{\circ}53^{\circ}$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec.4, T.33 N., R.78 W., Natrona County, Hydrologic Unit 10180007, at New Mystery Bridge, 0.1 mi upstream from Claude Creek, 0.6 mi north of U.S. Highways 20 and 87, 5.8 mi east of city hall in Casper, and 9.5 mi downstream from Casper Creek.

DRAINAGE AREA.--12,574 mi^2 , of which 831 mi^2 probably is noncontributing.

PERIOD OF RECORD.--Water years 1947-52, 1957-59, 1968-89, October 1990 to current year.

REVISED RECORDS.--WDR WY-76-1: Drainage area.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
DEC 28 MAR	1050	728	644	9.9	80	8.0	708	.5	.00	.072	.364	.016	.021
30 JUN	1315	887	628	12.1	120	8.0	691	5.5	6.5	.126	.255	.015	.035
26	0945	3500	636	8.3	101	8.3	492	17.0	16.0	<.040	.059	.008	E.017
AUG 28	1005	2580	635	8.0	102	8.1	497	21.0	18.0	<.040	E.035	<.006	E.013
DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
DEC 28	2	.17	2.0	51.9	<.06	86	<.04	.19	1.6	<10	<.08	40.8	11.4
MAR 30	2	<.05	2.5	48.1	<.06	78	.05	.15	2.0	<10	<.08	29.1	13.9
JUN 26	1	.14	2.1	45.1	<.06	51	<.04	.15	1.6	<10	<.08	25.8	3.2
AUG 28	3	.14	2.0	55.6	<.06	51	.21	.12	2.1	<10	<.08	22.9	4.1

									OIL AND	
		MOLYB-		SELE-		STRON-	VANA-		GREASE,	URANIUM
	MERCURY	DENUM,	NICKEL,	NIUM,	SILVER,	TIUM,	DIUM,	ZINC,	TOTAL	NATURAL
	DIS-	RECOV.	DIS-							
	SOLVED	GRAVI-	SOLVED							
DATE	(UG/L	METRIC	(UG/L							
	AS HG)	AS MO)	AS NI)	AS SE)	AS AG)	AS SR)	AS V)	AS ZN)	(MG/L)	AS U)
	(71890)	(01060)	(01065)	(01145)	(01075)	(01080)	(01085)	(01090)	(00556)	(22703)
DEC										
28	<.23	2.7	.75	4.4	<1.0	693	<8.0	1	<1	9.19
MAR										
30	<.23	2.4	. 68	4.5	<1.0	556	<8.0	4	<1	9.15
JUN										
26	<.23	2.4	1.18	1.3	<1.0	409	E5.7	1	<1	6.12
AUG								_	_	
28	<.01	2.4	<.06	1.0	<1.0	388	<8.0	5	2	6.22

E -- Estimated value.

06646000 DEER CREEK IN CANYON, NEAR GLENROCK, WY

LOCATION.--Lat $42^{\circ}42^{\circ}42^{\circ}42^{\circ}$, long $106^{\circ}01^{\circ}43^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ Sec.26, T.32 N., R.77 W., Converse County, Hydrologic Unit 10180007, on left bank 500 ft upstream from VR Ditch and 14 mi southwest of Glenrock.

DRAINAGE AREA. -- 139 mi².

(WY)

PERIOD OF RECORD. -- May 1946 to September 1951, March 1985 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 5,640 ft above sea level, from topographic map. May 1946 to September 1951, at same site and datum.

REMARKS.--Records good except those for April to July, and those for estimated daily discharges, which are poor. No diversion upstream from station. U.S. Geological Survey data collection platform with satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 12, 1970, reached a discharge of $14,200~{\rm ft}^3/{\rm s}$ at Deer Creek below Millar Wasteway, at Glenrock (station 06646600), $16.5~{\rm mi}$ downstream.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAY AUG SEP 5.1 e12 e14 9.1 e12 e13 71 8.9 5.3 8.8 9.6 e11 e14 9 0 8 4 5 3 9.8 5.0 8.8 e12 e14 8.0 6.9 7.8 4.8 e12 e13 7.0 4.7 7.4 17 9.0 e13 e13 6.8 5.3 e14 e12 e250 8.3 9.9 e280 e11 9.9 e12 e12 e290 e13 e13 e300 8.9 13 97 7.8 e10 e14 e13 e310 8.9 e10 e13 8.0 e10 e14 e13 7.6 e11 e13 e13 8.1 e12 e13 e13 8.4 10 e12 13 e13 20 173 23 8.4 9.1 9.3 e13 e13 9.9 e13 6.5 7.6 9.9 7.2 e13 6.3 e30 6.8 e35 6.8 e40 5.9 e13 e44 5.8 6.6 e13 5.6 6.5 5.4 5.3 $\begin{smallmatrix}6.4\\6.4\end{smallmatrix}$ e13 e12 e12 5.2 6.3 ___ 5 1 6.5 TOTAL 319.0 928.2 238.0 223.6 10.3 13.0 12.9 29.9 7.68 MAX 9.6 4.7 5.1 MIN 6.8 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1946 - 2001, BY WATER YEAR (WY) 10.2 21.5 ME AN 11.3 14.6 10.5 9.38 35.0 88.5 15.7 6.08 6.00 73.9 34.2 92.4 MAX 64.1 26.0 57.4 15.5 11.8 (WY) MTN 3.85 6.04 3.38 3.85 3.44 9.77 44.8 46.5 14.2 3.04 2.47 2.10

06646000 DEER CREEK IN CANYON, NEAR GLENROCK, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1946 - 2001
ANNUAL TOTAL	20658.3	18928.8	
ANNUAL MEAN	56.4	51.9	57.5
HIGHEST ANNUAL MEAN			124 1995
LOWEST ANNUAL MEAN			13.9 1989
HIGHEST DAILY MEAN	581 Apr 23	678 Apr 29	1920 Jun 10 1986
LOWEST DAILY MEAN	4.4 Sep 11,12	4.7 Sep 6	1.1 Sep 17 1990
ANNUAL SEVEN-DAY MINIMUM	4.7 Aug 10	5.0 Aug 31	1.4 Sep 12 1990
MAXIMUM PEAK FLOW		845 Apr 28	3200 Jun 10 1986
MAXIMUM PEAK STAGE		6.45 Apr 28	9.42 Jun 10 1986
ANNUAL RUNOFF (AC-FT)	40980	37550	41620
10 PERCENT EXCEEDS	218	160	169
50 PERCENT EXCEEDS	13	13	11
90 PERCENT EXCEEDS	5.8	7.5	4.0

e Estimated.

06647500 BOX ELDER CREEK AT BOXELDER, WY

LOCATION.--Lat $42^{\circ}36^{\circ}44^{\circ}$, long $105^{\circ}51^{\circ}29^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $SW^{1}/_{4}$ sec.32, T.31 N., R.75 W., Converse County, Hydrologic Unit 10180007, on left bank at Echo Mountain Ranch (old Boxelder Post Office), 0.8 mi downstream from Snowshoe Creek, and 17 mi south of Glenrock.

DRAINAGE AREA. -- 63.0 mi².

PERIOD OF RECORD.--April 1946 to September 1951, October 1961 to September 1967, October 1971 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,710 ft above sea level, from topographic map. Prior to June 7, 1946, non-recording gage, and June 8, 1946, to July 21, 1976, water-stage recorder at site 400 ft downstream at different datum. U.S. Geological Survey data collection platform with satellite telemetry at station.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 60 acres, of which about 40 acres are downstream from station.

		DISCHAR	GE, CUBIC	FEET PEF		WATER YE Y MEAN VA	AR OCTOBER	2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.0 3.2 2.9 2.6 2.8	4.0 e3.5 e3.0 e3.1 3.2	2.7 2.6 2.7 2.7 2.7	e3.0 e2.9 2.9 3.0 3.1	e2.6 e2.6 e2.6 e2.6 e2.6	e2.8 e2.5 e2.6 2.7 2.9	20 25 34 45 57	330 303 247 232 220	39 35 33 34 33	5.4 4.8 4.6 4.3 e4.0	e2.0 e1.8 e1.6 e1.5	.21 .20 .16 .16
6 7 8 9 10	2.8 2.6 2.5 2.5 2.6	3.1 3.1 3.2 3.2 3.3	2.9 3.0 3.0 3.0 2.9	3.3 3.3 3.3 3.1 2.9	e2.6 e2.5 e2.4 e2.3 e2.5	3.9 4.4 4.5 4.5 4.9	77 79 74 66 63	208 187 186 203 227	26 24 21 19 17	3.7 3.6 6.3 22 26	e1.3 e1.2 e1.3 e1.8 e2.5	.12 e.15 e.25 e.40 e.60
11 12 13 14 15	2.5 2.4 2.2 2.2 2.5	3.1 2.8 2.6 2.8 3.1	3.0 2.8 2.8 2.8 2.9	2.9 2.9 3.0 3.0	e2.6 e2.6 e2.5 e2.4 e2.4	4.8 4.9 4.8 4.9 5.3	58 59 55 53 52	248 261 269 274 267	15 14 13 13	41 22 21 17 16	e1.0 e.80 e.64 e.54 e.60	e1.0 e.80 e.70 e.80 e1.0
16 17 18 19 20	2.9 2.7 2.6 2.4 2.3	3.1 2.9 2.7 2.7 2.6	2.9 2.8 e2.7 e2.8 e2.8	e2.9 e2.8 e2.9 e2.9 e3.0	e2.5 e2.5 e2.6 2.6 2.7	6.3 6.1 5.5 5.7 7.5	53 58 80 110 121	253 215 180 152 133	12 10 9.0 8.9 9.7	14 11 9.2 8.1 7.2	e.45 e.40 e.37 e.33 e.30	e1.0 e1.1 e.90 e.70 e.60
21 22 23 24 25	2.3 2.4 2.5 2.5 2.6	2.7 2.7 2.7 2.7 2.7	e2.6 e2.8 e3.0 e3.0 e2.8	e3.1 e3.5 e3.4 e3.0 e2.8	2.8 2.8 3.3 e3.0 e2.8	12 16 20 22 21	107 98 103 116 145	123 105 89 76 67	9.5 9.0 8.2 7.5 7.2	6.4 5.7 5.2 7.2 5.4	e.28 e.26 e.25 e.24 e.23	e.55 e.50 e.48 e.49 e.43
26 27 28 29 30 31	2.8 2.9 2.8 2.7 2.5 2.6	2.6 2.8 2.9 2.8 2.8	e2.8 3.6 3.8 e3.4 e3.2 e3.1	e2.7 e2.7 e2.6 e2.7 e2.7	e2.9 e2.9 e2.7 	26 24 26 24 21 21	176 216 266 314 316	61 60 70 58 55 46	7.5 9.3 8.3 7.0 6.1	4.3 4.0 3.7 3.3 e2.7 e2.3	e.22 e.21 e.21 e.21 .20	e.42 e.41 e.40 e.40
TOTAL MEAN MAX MIN AC-FT	81.8 2.64 4.0 2.2 162	88.5 2.95 4.0 2.6 176	90.6 2.92 3.8 2.6 180	92.0 2.97 3.5 2.6 182	73.9 2.64 3.3 2.3 147	324.5 10.5 26 2.5 644	3096 103 316 20 6140	5405 174 330 46 10720	479.2 16.0 39 6.1 950	301.4 9.72 41 2.3 598	24.35 .79 2.5 .20 48	15.48 .52 1.1 .12 31
STATIST	rics of M	ONTHLY MEA	N DATA FO	OR WATER Y	EARS 194	6 - 2001,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	2.70 20.8 1999 .24 1965	3.82 29.7 1999 .60 1964	2.86 15.0 1996 .46 1964	2.53 8.12 1997 .66 1981	2.82 9.25 1962 .093 1966	9.18 31.8 1997 1.47 1981	80.9 220 1962 9.33 1981	240 562 1973 39.5 1989	78.7 332 1995 8.28 1985	9.02 48.8 1947 .21 1989	1.70 12.3 1998 .021 1989	.88 4.11 1973 .058 1981

06647500 BOX ELDER CREEK AT BOXELDER, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1946 - 2001
ANNUAL TOTAL	13263.64	10072.73	
ANNUAL MEAN	36.2	27.6	36.4
HIGHEST ANNUAL MEAN			85.8 1983
LOWEST ANNUAL MEAN			6.95 1989
HIGHEST DAILY MEAN	458 May 20	330 May 1	2460 May 14 1965
LOWEST DAILY MEAN	.05 Many days	.12 Sep 6	.00 Several days,
			some years
ANNUAL SEVEN-DAY MINIMUM	.05 Aug 12	.16 Sep 1	.00 Some years
MAXIMUM PEAK FLOW		363 May 1	4530 May 14 1965
MAXIMUM PEAK STAGE		3.92 May 1	8.58 ^a May 14 1965
ANNUAL RUNOFF (AC-FT)	26310	19980	26400
10 PERCENT EXCEEDS	136	79	110
50 PERCENT EXCEEDS	2.9	3.0	3.0
90 PERCENT EXCEEDS	.11	.58	.40

a Site and datum then in use. e Estimated.

06652000 NORTH PLATTE RIVER AT ORIN, WY

LOCATION.--Lat $42^{\circ}39^{\circ}10^{\circ}$, long $105^{\circ}09^{\circ}32^{\circ}$, in $NE^{1}/_{4}$ $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.17, T.31 N., R.69 W., Converse County, Hydrologic Unit 10180008, on right bank 0.5 mi downstream from bridge on State Highway 319, 0.1 mi downstream from Shawnee Creek, and 1.5 mi east of Orin. Prior to Mar. 6, 1994, at site 0.3 mi upstream.

DRAINAGE AREA. -- 15,025 mi², of which 1,203 mi² probably is noncontributing.

PERIOD OF RECORD.--January, April to November 1895, April to October 1896, January 1897 to December 1898, April to November 1899, April to September 1917, April to September 1918, May to September 1924, April 1958 to current year. Monthly discharge only for some periods, published in WSP 1310. Published as "at Orin Junction" 1895, 1897-99 and as "at McKinley" 1917-18.

REVISED RECORDS.--WSP 1310: 1896, 1899. WDR WY-76-1: Drainage area.

GAGE.--Water-stage recorder, and concrete weir since Mar. 6, 1994. Elevation of gage is 4,660 ft above sea level, from topographic map. Jan. 1, 1895, to Nov. 30, 1899, and May 1 to Sept. 30, 1924, nonrecording gage at railroad bridge just upstream from State Highway 319 at different datum. Apr. 1, 1917, to Sept. 30, 1918, nonrecording gage at site 1.9 mi downstream at different datum. Apr. 1958 to Mar. 5, 1994, at site 0.3 mi upstream at different datum.

REMARKS.-- Records good except those for estimated daily discharges, which are poor. Major regulation began after completion of Pathfinder Reservoir in April 1909. Natural flow of stream affected by storage reservoirs, power development, diversions for irrigation, and return flow from irrigated areas. U.S. Geological Survey data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

COOPERATION.--Twelve discharge measurements provided by the Wyoming State Engineer's Office.

		DISC	HARGE, CUI	DIC FEET F		, WAIER II LY MEAN VA		5K 2000 I	J SEFIEMD	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	958	1030	824	e780	702	730	1120	2680	1160	2400	2440	2610
2	804	939	767	e780	694	781	1120	2630	1090	2360	2450	2650
3	735	825	705	e780	699	827	1170	2560	1060	2360	2460	2640
4	701	771	788	e760	737	872	1240	2410	1180	2320	2470	2630
5	717	768	805	e740	744	964	1360	2450	1150	2500	2480	2620
6	709	756	768	e740	782	1300	1490	2470	1300	2470	2490	2640
7	706	754		e760	764	1270	1720	2410	1560	2460	2500	2660
8	698	773		771	665	1230	1800	2240	1800	2480	2550	2720
9	700	752		757	e600	1130	1740	2090	2080	2380	2580	2760
10	698	759	787	743	e620	1030	1630	2040	2340	2440	2580	2710
11	696	724	655	796	644	910	1610	1900	2280	2600	2670	2690
12	684	656	513	782	756	887	1560	1740	2240	2660	2620	2620
13	680	524		781	831	872	1540	1660	2260	2580	2560	2350
14	684	536		801	770	1320	1510	1600	2330	2610	2580	2360
15	682	574	e820	749	e640	1590	1470	1520	2420	2530	2540	2410
16	685	646	e800	744	e700	1580	1480	1440	2420	2660	2580	2370
17	793	e690		714	e720	1560	1480	1400	2420	2650	2630	1890
18	1550	e750	e820	668	725	1480	1470	1310	2440	2700	2650	1590
19	1570	e810	e760	658	761	1100	1540	1200	2430	2680	2610	1320
20	1440	e750	e800	720	773	1080	1690	1130	2470	2630	2580	1200
21	825	e810	e760	723	761	1090	1830	1080	2620	2560	2590	1160
22	763	e850		715	775	1140	1910	1110	2650	2610	2580	1140
23	745	827		724	857	1190	1880	1090	2550	2580	2620	1110
24	755	815	e760	757	895	1200	1940	1060	2500	2500	2560	1090
25	748	793	e760	732	829	1190	2100	1130	2490	2480	2560	1090
26	737	816		728	794	1180	2280	1090	2440	2490	2590	1080
27	730	798		764	790	1180	2510	1120	2470	2490	2560	1050
28	739	819		723	771	1180	2530	1150	2440	2490	2560	1030
29	746	816		755		1130	2780	1170	2410	2500	2560	1010
30	737	714		737		1140	2830	1260	2400	2480	2550	911
31	754		e760	709		1140		1240		2470	2560	
TOTAL	25169	22845	23526	23091	20799	35273	52330	51380	63400	78120	79310	58111
MEAN	812	762		745	743	1138	1744	1657	2113	2520	2558	1937
MAX	1570	1030		801	895	1590	2830	2680	2650	2700	2670	2760
MIN	680	524		658	600	730	1120	1060	1060	2320	2440	911
AC-FT	49920	45310	46660	45800	41250	69960	103800	101900	125800	155000	157300	115300
STATIST	rics of	MONTHLY I	MEAN DATA	FOR WATER	YEARS 18	95 - 2001	, BY WATER	R YEAR (W	Y)			
MEAN	1177	1064	890	902	988	1225	1923	3312	3233	2647	2299	1628
MAX	1708	2191		1171	1472	2911	4578	9274	14430	9970	5258	4150
(WY)	1986	1987	1974	1986	1980	1984	1974	1973	1917	1917	1924	1917
MIN	571	639	544	600	594	618	670	839	958	982	583	399
(WY)	1961	1959	1991	1992	1993	1981	1981	1992	1990	1967	1898	1898

06652000 NORTH PLATTE RIVER AT ORIN, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 W	ATER YEAR	WATER YEARS	S 1895 - 2001
ANNUAL TOTAL	587542		533354			
ANNUAL MEAN	1605		1461		1646	
HIGHEST ANNUAL MEAN					3110	1984
LOWEST ANNUAL MEAN					935	1961
HIGHEST DAILY MEAN	5550	May 18	2830	Apr 30	20300	Jun 27 1917
LOWEST DAILY MEAN	513	Dec 12	513	Dec 12	140	Dec 21 1990
ANNUAL SEVEN-DAY MINIMUM	621	Nov 11	621	Nov 11	324	Sep 25 1966
MAXIMUM PEAK FLOW			3430 ^a	_ Apr 29	23800 ^D	May 15 1965
MAXIMUM PEAK STAGE			6.73	3 Nov 18	10.45 ^{ct}	Jun 12 1970
ANNUAL RUNOFF (AC-FT)	1165000		1058000		1192000	
10 PERCENT EXCEEDS	2960		2580		3760	
50 PERCENT EXCEEDS	1250		1140		1290	
90 PERCENT EXCEEDS	740		714		700	

a b c d e

Gage height, 5.26 ft.
Gage height, 10.00 ft, site and datum then in use.
Backwater from ice.
Site and datum then in use.
Estimated.

06652700 GLENDO RESERVOIR NEAR GLENDO, WY

LOCATION.--Lat $42^{\circ}28^{\circ}21^{\circ}$, long $104^{\circ}57^{\circ}28^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.24, T.29 N., R.68 W., Platte County, Hydrologic Unit 10180008, on right bank in gate shaft house on North Platte River, 0.5 mi southwest of Glendo Dam, and 5.0 mi southeast of Glendo.

DRAINAGE AREA.--15,545 mi^2 , of which 1,215 mi^2 probably is noncontributing.

PERIOD OF RECORD. -- October 1957 to current year.

REVISED RECORDS. -- WDR WY-76-1: Drainage area.

GAGE.--Water-stage recorder for elevations above 4,543.50 ft. Datum of gage is 4,543.50 ft above sea level (levels by Bureau of Reclamation).

REMARKS.--Reservoir is formed by rock-fill dam completed in October 1957. Storage began Oct. 17, 1957. Capacity, 789,400 acre-ft at elevation 4,653.00 ft, spillway crest. Dead storage, 11,030 acre-ft. Figures given herein represent total contents. Water is used for irrigation in North Platte River basin, and for power generation.

COOPERATION. -- Records provided by Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 758,800 acre-ft, May 28, 1973, elevation, 4,650.94 ft; minimum daily contents(since appreciable storage was attained), 15,140 acre-ft, Sept. 28, 1966, elevation, 4,548.10 ft.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 508,000 acre-ft, May 13, 14, maximum daily elevation, 508,290 ft; minimum daily contents, 81,100 acre-ft, Sept. 14, minimum daily elevation, 81,103 ft, Sept. 14.

Capacity table (elevation in feet, and contents, in acre-feet)

4,570	63,100	4,610	274,000
4,580	98,800	4,620	358,000
4,590	144,000	4,630	459,000
4,600	202,000	4,640	583,000

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	106000	161000	205000	249000	296000	339000	408000	481000	455000	404000	254000	102000
2	108000	163000	207000	251000	297000	340000	411000	483000	454000	398000	249000	98500
3	109000	164000	208000	252000	299000	342000	413000	487000	453000	392000	243000	95400
4	111000	166000	210000	254000	300000	344000	416000	489000	452000	386000	238000	92100
5	112000	167000	212000	256000	302000	345000	418000	492000	451000	380000	232000	89600
6	113000	169000	213000	257000	304000	348000	421000	494000	451000	380000	226000	87500
7	115000	170000	215000	259000	305000	351000	424000	497000	451000	383000	220000	85500
8	116000	171000	217000	261000	306000	353000	427000	499000	453000	386000	215000	83900
9	118000	173000	218000	262000	307000	355000	431000	502000	455000	388000	210000	82500
10	119000	175000	220000	264000	308000	358000	434000	504000	457000	383000	204000	81700
11	120000	176000	220000	265000	309000	359000	437000	506000	460000	380000	199000	81900
12	122000	177000	221000	267000	311000	361000	439000	507000	462000	376000	194000	82000
13	123000	178000	221000	268000	312000	363000	442000	508000	464000	372000	189000	81600
14	124000	179000	222000	270000	314000	365000	445000	508000	466000	369000	184000	81100
15	125000	180000	223000	271000	315000	368000	447000	507000	468000	365000	179000	82400
16	129000	181000	225000	273000	317000	371000	450000	505000	470000	360000	174000	84900
17	131000	183000	226000	274000	318000	374000	451000	501000	470000	357000	169000	87900
18	133000	184000	228000	275000	320000	377000	452000	497000	468000	352000	164000	90300
19	137000	186000	230000	277000	322000	379000	452000	493000	466000	348000	159000	92400
20	140000	187000	231000	278000	323000	382000	454000	489000	463000	343000	154000	94500
21	142000	188000	232000	280000	325000	384000	456000	485000	460000	339000	150000	96700
22	144000	190000	234000	281000	327000	386000	458000	482000	456000	334000	145000	98900
23	145000	191000	235000	283000	329000	388000	459000	477000	452000	329000	140000	101000
24	147000	193000	237000	284000	330000	390000	461000	472000	446000	319000	136000	104000
25	150000	195000	238000	286000	332000	393000	463000	469000	440000	309000	131000	106000
26 27 28 29 30 31	150000 151000 152000 153000 154000 156000	197000 199000 200000 202000 204000	240000 242000 243000 245000 246000 248000	287000 289000 290000 292000 293000 295000	334000 335000 337000 	395000 397000 400000 402000 404000 407000	466000 468000 471000 474000 478000	465000 462000 459000 457000 457000	434000 428000 422000 416000 410000	299000 289000 279000 269000 264000 259000	127000 122000 117000 113000 109000 105000	108000 110000 112000 114000 116000
MAX MIN (#) (*)	156000 106000 4,592.19 +52,000	204000 161000 4,600.19 +48,000			337000 296000 4,617.62 +42,000					404000 259000 4,608.11 -151,000	254000 105000 4,581.57 -154,000	

WTR YR 2001 MAX 508,000 MIN 81,100 (*) +60,000

- (#) Elevation, in feet, at end of month.
 (*) Change in elevation, in acre-feet.

06652700 GLENDO RESERVOIR NEAR GLENDO, WY--Continued

06652800 NORTH PLATTE RIVER BELOW GLENDO RESERVOIR, WY

LOCATION.--Lat $42^{\circ}27^{\circ}25^{\circ}$, long $104^{\circ}56^{\circ}50^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.30, T.29 N., R.67 W., Platte County, Hydrologic Unit 10180008, on right bank opposite Sand Draw, 1.3 mi upstream from Horseshoe Creek, 3.1 mi downstream from Glendo Dam, and 5.2 mi southeast of Glendo.

DRAINAGE AREA.--15,548 mi², of which 1,215 mi² probably is non-contributing.

PERIOD OF RECORD. -- October 1957 to current year.

REVISED RECORDS. -- WDR WY-76-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 4,488.94 ft above sea level (levels by Bureau of Reclamation).

REMARKS.--Records good except those less than 500 ft³/s, which are fair and those for estimated daily discharges, which are poor. Flow completely regulated by Glendo Reservoir since Oct. 17, 1957 (station 06652700). Natural flow of stream affected by transbasin diversions, storage reservoirs, power generation, ground-water withdrawals and diversions for irrigation, and return flow from irrigated areas. Bureau of Reclamation data collection platform with satellite telemetry at station.

COOPERATION. -- Seventeen discharge measurements provided by the Bureau of Reclamation.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY AUG SEP e24 e27 e23 e24 e27 e27 e24 e27 e27 e25 e25 e23 27 24 e27 e27 e23 e26 e27 e24 e27 e26 e24 e27 e27 e25 13 28 e25 26 28 38 1120 2540 e24 e25 e25 e25 e25 e26 e25 e25 e27 e25 e25 e27 e24 e26 e26 e25 e25 e26 e25 e25 e24 e25 e26 e25 e25 e26 23 e27 e25 e25 e27 e25 e27 e26 e27 e26 e24 e28 e26 e28 e26 e26 e24 ---TOTAL MEAN 26.2 24.8 25.5 25.9 30.2 MAX 25 24 23 27 MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1958 BY WATER YEAR (WY) - 2001, MEAN 67.3 30.2 16.9 15.0 MAX (WY) MTN 1.51 1.09 1.00 1.30 1.33 1.58 15.4 66.1 (WY)

06652800 NORTH PLATTE RIVER BELOW GLENDO RESERVOIR, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALE	NDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1958 - 2001
ANNUAL TOTAL	609467		523790			
ANNUAL MEAN	1665		1435		1622	
HIGHEST ANNUAL MEAN					3126	1984
LOWEST ANNUAL MEAN					920	1961
HIGHEST DAILY MEAN	8000	Jul 25	7620	Jul 25	10300	Jun 30 1984
LOWEST DAILY MEAN	24	Sep 30	23	Several days	.41	Oct 17 1977
ANNUAL SEVEN-DAY MINIMUM	24	Nov 28	23	Jan 31	.64	Dec 20 1990
MAXIMUM PEAK FLOW			7710	Jul 24	10300	Jun 29 1984
MAXIMUM PEAK STAGE			10.04	Jul 24	11.16	Jun 29 1984
ANNUAL RUNOFF (AC-FT)	1209000		1039000		1175000	
10 PERCENT EXCEEDS	5170		5050		4950	
50 PERCENT EXCEEDS	46		30		218	
90 PERCENT EXCEEDS	25		25		2.2	

e Estimated.

06655500 GUERNSEY RESERVOIR NEAR GUERNSEY, WY

LOCATION.--Lat $42^{\circ}17^{\circ}23^{\circ}$, long $104^{\circ}45^{\circ}48^{\circ}$, in NE $^{1}/_{4}$ NW $^{1}/_{4}$ sec.27, T.27 N., R.66 W., Platte County, Hydrologic Unit 10180008, on gate structure at right end of dam on North Platte River and 1.2 mi northwest of Guernsey.

DRAINAGE AREA.--16,224 mi², of which 1,216 mi² probably is non-contributing.

PERIOD OF RECORD.--January 1928 to current year. Prior to October 1950 monthend figures only, published in WSP 1310.

REVISED RECORDS.--WDR WY-76-1: Drainage area. WDR WY-82-1: 1981 (capacity).

GAGE.--Water-stage recorder. Datum of gage is 4,370.00 ft above sea level (levels by Bureau of Reclamation). Prior to Sept. 20, 1966, nonrecording gages at same datum.

REMARKS.--Reservoir is formed by rock-fill dam completed in July 1927. Capacity, 45,600 acre-ft, at elevation 4,420 ft, top of spillway gate. Dead storage is negligible. Figures given herein represent total contents. Usable contents published prior to October 1956. Water is used for irrigation in eastern Wyoming and western Nebraska and for power generation.

COOPERATION. -- Records provided by Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 73,240 acre-ft, Oct. 17, 1929, elevation, 4,420.95 ft, no storage Oct. 11, 1982, Oct. 6, 7, Oct. 10 to Dec. 4, 1983, Oct. 19, Oct. 25, 1984 to Jan. 14, 1985, Dec. 6-7, 1986; minimum daily elevation, 4,361.50 ft, Oct. 5, 6, 1958.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 36,000 acre-ft, May 28, maximum daily elevation, 4,415.77 ft, May 29; minimum daily contents, 840 acre-ft, July 23, minimum daily elevation, 4,383.20 ft, July 23.

> Capacity table (elevation in feet, and contents, in acre-feet)

4,380	375	4,395	5,360	4,410	24,070
4,385	1,200	4,400	9,690	4,415	34,300
4.390	2.170	4.405	16.000	4.420	45.600

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8320	4460	7390	10200	12800	15400	18700	27100	35600	34300	30000	32000
2	6460	4600	7480	10300	13000	15500	18900	27600	35300	34200	29800	31900
3	4690	4720	7590	10400	13000	15600	19000	28500	35300	34200	29800	31900
4	2900	4820	7680	10500	13200	15700	19200	29400	35100	34400	30000	31700
5	1510	4950	7780	10600	13200	15800	19500	30400	35100	34200	30200	31700
6	1230	5050	7870	10600	13300	15900	19900	31400	35000	31000	30500	31600
7	1390	5050	7980	10700	13400	16000	20000	32500	35100	22400	30700	31400
8	1550	5160	8080	10800	13500	16100	20400	33600	35000	13800	31100	31200
9	1690	5280	8190	10900	13600	16200	20600	34400	34800	4820	31200	31100
10	1820	5410	8280	11000	13700	16300	21000	34500	34500	2000	31400	30700
11	1960	5480	8360	11100	13800	16400	21300	34500	34300	1660	31900	29500
12	2080	5570	8430	11200	13800	16500	21500	34800	34200	1440	32100	28300
13	2200	5680	8520	11300	13900	16600	21700	35000	34100	1300	32400	27400
14	2310	5760	8600	11400	14000	16800	22000	33900	34100	1340	32400	26500
15	2440	5860	8710	11400	14100	16800	22300	33500	34300	1200	32400	25400
16	2550	5970	8800	11500	14200	16800	21700	34100	34200	1140	32500	23600
17	2660	6050	8880	11700	14200	16900	21600	34200	34100	1150	32500	21200
18	2760	6120	8970	11700	14300	17000	21800	34700	33900	1140	32600	18700
19	2860	6230	9060	11800	14400	17100	21900	34900	33900	1150	32700	15000
20	2960	6340	9150	11900	14500	17200	22200	35000	33900	1210	32800	11000
21	3070	6420	9230	12000	14600	17300	22400	35100	34000	1200	32700	7840
22	3170	6480	9310	12100	14700	17400	22800	35200	34100	983	32800	5840
23	3270	6600	9400	12100	14800	17500	23100	35300	34200	840	32700	3440
24	3390	6710	9490	12200	15000	17600	23400	35500	34500	4560	32700	2140
25	3490	6800	9580	12300	15100	17700	23800	35500	34700	10000	32600	1750
26 27 28 29 30 31	3590 3680 3780 3890 3990 4180	6880 7020 7120 7200 7300	9680 9750 9840 9910 10000 10100	12400 12500 12600 12700 12700 12800	15200 15200 15300 	17900 18000 18200 18300 18500 18600	24300 24900 25500 26000 26600	35400 35400 35700 36000 35900 35900	35000 35000 34800 34600 34400	14800 19400 24200 29100 30300 30200	32500 32500 32500 32500 32200 32000	1740 1910 2080 2230 2380
MAX	8320	7300	10100	12800	15300	18600	26600	36000	35600	34400	32800	32000
MIN	1230	4460	7390	10200	12800	15400	18700	27100	33900	840	29800	1740
(#)	4393.10	4397.52	4400.40	4402.66	4404.54	4406.70	4411.19	4415.74	4415.05	4413.03	4413.90	4389.09
(*)	-6,020	+3,120	+2,800	2,700	2,500	3,300	8,000	-5,970	+9,300	-1,500	-4,200	-29,620

WTR YR 2001 MAX 36,000 MIN 840 (*) 22,250

^(#) Elevation, in feet, at end of month.
(*) Change in elevation, in acre-feet.

06655500 GUERNSEY RESERVOIR NEAR GUERNSEY, WY--Continued

06657000 NORTH PLATTE RIVER BELOW WHALEN DIVERSION DAM, WY

LOCATION.--Lat $42^{\circ}14^{\circ}17^{\circ}$, long $104^{\circ}37^{\circ}41^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.11, T.26 N., R.65 W., Goshen County, Hydrologic Unit 10180009, on left bank 0.7 mi downstream from Whalen diversion dam, and 6.0 mi northwest of Fort Laramie.

DRAINAGE AREA.--16,237 mi², of which 1,219 mi² probably is noncontributing.

PERIOD OF RECORD.--May 1909 to current year. Monthly discharge only, prior to January 1915, published in WSP 1910. Prior to Apr. 16, 1938, published as "below Whalen", and Apr. 16, 1938, to Sept. 30, 1974, as "at recorder station, below Whalen".

REVISED RECORDS. -- WSP 1310: 1924. WDR WY-76-1: Drainage area.

GAGE.--Water-stage recorder and sheet piling weir since Apr. 25, 1994. Elevation of gage is 4,280 ft above sea level, from topographic map. Prior to Apr. 16, 1938, nonrecording gages at Whalen Diversion Dam and canals 0.7 mi upstream at different datums. Apr. 16, 1938, to Nov. 17, 1955, water-stage recorder at site 1.9 mi downstream, and Nov. 18, 1955, to Apr. 25, 1994, at site 1.8 mi downstream at different datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by Whalen Diversion Dam 0.7 mi upstream. Natural flow of stream affected by storage reservoirs, transbasin diversions, power development, ground-water withdrawals and diversions for irrigation, and return flow from irrigated areas. Bureau of Reclamation data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

COOPERATION.--Six discharge measurements provided by the Wyoming State Engineer's Office, and nine discharge measurements provided by Bureau of Reclamation.

DAILY MEAN VALUES DAY OCT NOV DEC .TAN FEB MAR APR MAY .TTTN TTTT. ATIG SEP e10 8.8 9.9 8.5 e11 8.2 e12 8.8 9.5 e13 e13 8.8 8.6 e14 e13 6.9 e13 7 8.4 e15 8.5 9.8 e12 e12 6.8 _ 1740 9.1 e9.6 e10 7.0 9.1 e9.0 e10 7.5 e12 e10 e7.0 ₽14 e11 3.7 7 6 7.5 e14 e12 e6.4 3.6 e6.8 e13 e12 9.1 e7.4 3.4 e12 e11 e9.0 e11 e8.0 8 6 e10 e10 9.6 e9.8 e9.4 e11 9.6 9.3 e10 e12 9 9 9 0 e11 e13 9.3 9.6 e12 e12 9 5 8 6 e12 e12 9.5 9.8 e13 9.2 9.9 e14 9 1 9 6 ₽14 9.0 9.8 e13 9.0 e14 9.0 e13 9.0 e13 9.2 9.4 8.5 e12 ---9.3 9.0 e11 8.0 e10 ------375.4 TOTAL 362.7 275.9 324.0 462.3 13619.6 ME AN 39.7 12.1 8.90 12.1 11.6 12.0 15.4 MAX 8.5 9.6 9.0 3.4 6.4 MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1917 - 2001, BY WATER YEAR (WY)* MEAN 60.9 54 2 79 3 MAX (WY) 4.20 . 24 .000 2.83 13.6 86.6 MIN .71 .30 .013 43.8 (WY)

06657000 NORTH PLATTE RIVER BELOW WHALEN DIVERSION DAM, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1917 - 2001*
ANNUAL TOTAL	172213.9	145322.9	
ANNUAL MEAN	471	398	705
HIGHEST ANNUAL MEAN			2992 1917
LOWEST ANNUAL MEAN			178 1954
HIGHEST DAILY MEAN	1800 Jun 25	1860 Jul 10	19500 Jun 28 1917
LOWEST DAILY MEAN	5.9 Jan 3	3.4 Apr 14	.00 Many days,
			several years
ANNUAL SEVEN-DAY MINIMUM	6.3 Jan 1	5.2 Apr 9	00 Several years 22000 a Jun 26 1955
MAXIMUM PEAK FLOW		2020 Jul 10	22000° _h Jun 26 1955
MAXIMUM PEAK STAGE		6.89 Jul 10	9.85 ^b Jun 26 1955
ANNUAL RUNOFF (AC-FT)	341600	288200	510500
10 PERCENT EXCEEDS	1510	1440	1880
50 PERCENT EXCEEDS	40	15	141
90 PERCENT EXCEEDS	8.6	9.0	4.0

Estimated.

Period of record to 1917 not used in computations, monthly and seasonal records only. From rating curve extended above $4,500 \text{ ft}^3/\text{s}$ on basis of peak-flow measurement of upstream floods. Site and datum then in use.

06659500 LARAMIE RIVER AND PIONEER CANAL NEAR WOODS, WY

LOCATION.--River: Lat $41^{\circ}08^{\circ}17^{\circ}$, long $105^{\circ}58^{\circ}49^{\circ}$, in $NW^{1}/_{4}$ Sec.36, T.14 N., R.77 W., Albany County, Hydrologic Unit 10180010, on left bank 100 ft upstream from diversion dam for Pioneer Canal, 2.2 mi downstream from Fox Creek, 2.5 mi northeast of Woods, and 23 mi southwest of Laramie.

Canal: Lat $41^{\circ}08^{\circ}21^{\circ}$, long $105^{\circ}58^{\circ}45^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec.36, T.14 N., R.77 W., Albany County, on left bank 400 ft downstream from headgate.

DRAINAGE AREA. -- 434 mi².

PERIOD OF RECORD.--April 1912 to September 1924, October 1926 to September 1927, October 1931 to current year (no winter records for river since 1972; no winter records for canal 1972 to 1996). Monthly discharge only for some periods, published in WSP 1310

REVISED RECORDS.--WSP 1310: 1918-20, 1922, 1924. WSP 1710: Drainage area. WDR WY-84-1: 1983.

GAGE.--River: Water-stage recorder and concrete control. Datum of gage is 7,388.99 ft above sea level. Apr. 16 to Nov. 15, 1912, nonrecording gage and Nov. 16, 1912, to Sept. 22, 1915, water-stage recorder 90 ft downstream between dam crest and canal headgates at datum 1.00 ft higher. Sept. 23, 1915, to Sept. 30, 1924, Apr. 19 to Sept. 30, 1927, and Apr. 11, 1932, to Sept. 30, 1935, water-stage recorder at site 50 ft downstream at datum 1.00 ft higher. Oct. 1, 1935, to July 13, 1950, water-stage recorder at site 50 ft downstream at present datum.

Canal: Water-stage recorder and Parshall flume. Elevation of gage is 7,390 ft above sea level, from topographic map. Apr. 16, 1912, to Apr. 10, 1923, nonrecording gage; Apr. 11, 1923, to Sept. 30, 1924, and Apr. 19 to June 9, 1927, water-stage recorder; June 10 to Sept. 30, 1927, and Apr. 11, 1932, to May 8, 1938, nonrecording gage; May 9, 1938, to Apr. 26, 1966, water-stage recorder at site 1.5 mi downstream at different datums. Apr. 27, 1966, to May 8, 1967, at present site, at datum 0.06 ft lower.

REMARKS.--Records good. Pioneer Canal diverts from left bank of river at diversion dam 100 ft downstream for irrigation in vicinity of Laramie. Records show combined flow of river and canal. Three small reservoirs upstream from station in Wyoming, total capacity, about 600 acre-ft for irrigation, stock water, and domestic use. Diversions for irrigation of about 5,200 acres upstream from station. Transbasin diversions upstream from station to Cache la Poudre River and tributaries. National Weather Service, in cooperation with State of Wyoming, has data collection platform with satellite telemetry at station.

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCHA	RGE, CUBIO	C FEET PE		WATER YE MEAN VA		R 2000 TC	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							56	284	362	52	22	33
2							63	341	360	49	28	36
3							69	294	357	50	28	38
4							71	246	342	49	28	40
5							71 75			56	28 27	39
5							/5	227	294	56	21	39
6							83	231	244	60	30	38
7							80	223	246	59	29	38
8							77	216	288	57	33	38
9							68	255	311	77	56	48
10							62	349	321	76	61	56
11							65	479	301	84	54	64
12							53	516	252	66	47	59
13							60	568	229	70	39	52
14							57	611	201	72	37	48
15							56	671	181	75	40	49
1.0									155			
16							62	745	155	72	63	52
17							71	761	135	53	66	52
18							87	780	117	44	49	56
19							107	841	101	40	39	65
20							118	862	101	39	34	61
0.1							105	724	70	20	25	Ε.4
21							105	734	78	30	35	54
22							96	633	79	30	36	46
23							79	575	76	30	43	43
24							91	550	75	31	42	44
25							98	456	70	27	35	44
26							108	406	66	27	30	45
27							134	432	104	27	27	43
28							181	449	82	28	26	40
29							240	411	67	24	25	39
30							266	402	60	21	26	39
31							200	390		22	28	
31								330		22	20	
TOTAL							2838	14938	5655	1497	1163	1399
MEAN							94.6	482	188	48.3	37.5	46.6
MAX							266	862	362	84	66	65
MIN							53	216	60	21	22	33
AC-FT							5630	29630	11220	2970	2310	2770
STATIST	rics of M	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 1912	2 - 2001,						
MEAN	63.4	51.9	42.0	38.5	40.1	51.0	127	559	801	202	79.9	58.3
MAX	160	94.9	77.4	57.1	74.5	84.9	355	1131	2441	1019	194	190
(WY)	1962	1962	1966	1966	1962	1966	1962	1984	1983	1983	1983	1997
MIN	33.7	32.0	28.3	24.3	24.6	27.7	51.7	233	62.9	20.2	24.8	15.1
(WY)	1953	1934	1961	1961	1955	1964	1995	1953	1934	1934	1954	1934

06659500 LARAMIE RIVER AND PIONEER CANAL NEAR WOODS, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1912 - 2001*
ANNUAL MEAN		170
HIGHEST ANNUAL MEAN		319 1957
LOWEST ANNUAL MEAN		64.9 1934
HIGHEST DAILY MEAN	862 May 20	3320 Jun 14 1957
LOWEST DAILY MEAN	21 Jul 30	.00 May 1 1912
MAXIMUM PEAK FLOW	910 May 19	5060 Jun 10 1923
ANNUAL RUNOFF (AC-FT)		123100

 \star For period of operation.

06659580 SAND CREEK AT COLORADO-WYOMING STATE LINE

LOCATION.--Lat $40^{\circ}59^{\circ}37^{\circ}$, long $105^{\circ}45^{\circ}35^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec.24, T.12 N., R.75 W., Larimer County, CO, Hydrologic Unit 10180010, on right bank 1,200 ft south of Colorado-Wyoming State line and 17 mi southwest of Tie Siding, WY.

DRAINAGE AREA. -- 29.2 mi².

PERIOD OF RECORD. -- October 1968 to current year (no winter records since 1971).

GAGE.--Water-stage recorder. Elevation of gage is 7,580 ft above sea level, from topographic map. Prior to July 19, 1977, gage at site 700 ft upstream at different datum. State of Colorado data collection platform with satellite telemetry at station.

REMARKS.--Records good. Natural flow affected by diversion upstream from station to Cache la Poudre River basin through Wilson Supply ditch. Water imported upstream from station from Deadman Creek in Laramie River basin is rediverted through Wilson Supply ditch, but is wasted down Sand Creek at times. Diversions for irrigation of about 170 acres upstream from station. Result of discharge measurement, in cubic feet per second, made during period when station was not in operation, is given below:

Mar. 26 . . . 2.59

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCHA	RGE, CUBI	C REET PE		WATER YE Y MEAN VA	LUES	R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							2.0	13	18	2.5	.26	.15
2							2.8	14	14	2.3	.18	.13
3							3.2	16	11	2.4	.15	.12
4							3.7	14	11	2.8	.12	.11
5							3.9	15	10	2.6	.12	.11
6							4.3	15	10	2.8	.11	.13
7							4.0	15	9.3	2.5	.16	.16
8							3.5	13	8.3	2.4	.21	.54
9							3.2	13	5.8	3.1	.33	1.1
10							3.1	15	5.1	2.9	1.0	1.9
11							3.9	18	4.9	2.7	2.2	1.6
12							3.3	22	4.6	3.1	2.0	1.4
13							3.0	19	4.3	5.4	1.0	1.1
14							3.1	18	4.5	5.0	.85	.95
15							3.1	17	4.4	3.7	.90	.97
16							3.5	16	4.2	3.0	2.2	1.2
17							4.3	27	3.9	2.2	2.3	1.1
18							6.4	31	3.6	1.7	1.7	1.4
19							7.4	38	3.6	1.3	1.2	1.6
20							7.3	30	3.6	1.0	.82	1.4
21							6.7	28	3.6	. 79	.67	1.2
22							6.9	27	3.5	.64	.70	.93
23							5.1	26	3.5	.57	.92	.86
24							5.6	25	3.5	.46	.90	.71
25							7.7	26	3.5	.42	.67	.69
26							7.7	25	3.5	.42	.49	.66
27							8.0	28	3.5	.55	.41	.63
28							9.1	26	3.2	.54	.32	.66
29							11	24	3.0	.46	.34	.71
30							12	21	2.8	.35	.25	.78
31								22		.30	.19	
TOTAL							158.8	657	177.7	60.90	23.67	25.00
MEAN							5.29	21.2	5.92	1.96	.76	.83
MAX							12	38	18	5.4	2.3	1.9
MIN							2.0	13	2.8	.30	.11	.11
AC-FT							315	1300	352	121	47	50
STATIST	rics of Mo	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 1969	9 - 2001,	BY WATER	YEAR (WY	*) *			
MEAN	3.13	3.34	2.66	2.27	2.46	2.73	8.55	38.8	50.1	9.35	2.33	1.76
MAX	3.68	4.41	2.97	2.53	3.19	2.85	18.7	95.0	234	72.6	8.58	6.85
(WY)	1971	1971	1971	1971	1971	1971	1986	1984	1983	1977	1983	1997
MIN	2.75	2.47	2.39	1.83	1.84	2.65	2.90	17.9	5.92	1.33	.24	.32
(WY)	1970	1969	1970	1970	1969	1969	1995	1977	2001	1989	2000	1978

06659580 SAND CREEK AT COLORADO-WYOMING STATE LINE--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1969 - 2001*
ANNUAL MEAN		12.7
HIGHEST ANNUAL MEAN		18.0 1971
LOWEST ANNUAL MEAN		6.41 1969
HIGHEST DAILY MEAN	38 May 19	1500 Jul 19 1977
LOWEST DAILY MEAN	.11 Aug 6, Sep 4,5	.03 Aug 13 2000
MAXIMUM PEAK FLOW	43 May 19	6710 ^a b Jul 19 1977
MAXIMUM PEAK STAGE	1.20 May 19	6.65 ^D Jul 19 1977
INSTANTANEOUS LOW FLOW		.13 Jul 26 1972
ANNUAL RUNOFF (AC-FT)		9240

- * For period of operation.
 a From slope-area measurement of peak flow.
 b From floodmarks.

06661000 LITTLE LARAMIE RIVER NEAR FILMORE, WY

LOCATION.--Lat $41^{\circ}17^{\circ}42^{\circ}$, long $106^{\circ}02^{\circ}03^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $SE^{1}/_{4}$ sec.4, T.15 N., R.77 W., Albany County, Hydrologic Unit 10180010, on right bank 40 ft downstream from State Highway 130, 1.2 mi west of Filmore, and 4.4 mi downstream from North Fork

DRAINAGE AREA. --157 mi². Area at site used prior to Sept. 8, 1976, 156 mi².

PERIOD OF RECORD.--July 1902 to September 1903 (published as "near Hatton"), May 1911 to November 1926, October 1932 to current year (no winter records since 1971). Monthly discharge only for some periods, published in WSP 1310.

REVISED RECORDS.--WSP 1310: 1903, 1914, 1922-26. WSP 1440: 1902. WSP 1730: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 7,610 ft above sea level, from topographic map. Prior to Sept. 16, 1938, nonrecording gages, and Sept. 16, 1938 to Sept. 7, 1976, water-stage recorder, at sites 0.7 mi upstream at different datums.

REMARKS.--Records good. At least ten small reservoirs upstream from station, combined capacity, more than 160 acre-ft, for irrigation, stock water, recreation, and domestic use. Diversions upstream from station for irrigation of about 11,020 acres, of which about 20 acres are downstream from station.

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP			DISCHAR	GE, CUBIC	C FEET PEF		WATER YEA		R 2000 TO	SEPTEMBER	R 2001		
2 31 95 451 81 26 17 3 37 777 453 75 26 17 4 34 89 370 74 24 16 5 33 101 304 71 24 17 6 33 101 304 71 24 17 6 33 101 304 71 24 17 7 33 11 95 293 71 24 17 8 33 1125 293 71 24 19 7 33 1124 336 77 25 21 8 33 1124 336 77 25 23 9 35 87 311 71 29 24 10 29 90 327 69 30 22 11 27 120 316 78 29 19 12 27 164 319 69 30 22 11 27 164 319 69 27 18 13 27 164 319 69 27 18 14 27 183 227 29 16 27 18 15 28 264 246 87 28 16 15 28 264 246 87 28 16 16 28 264 55 194 67 29 19 17 29 495 175 49 25 22 19 17 29 495 175 49 25 22 29 19 37 304 152 40 23 17 23 37 304 152 40 23 17 24 37 304 152 40 23 17 25 37 304 152 40 23 17 23 37 304 152 40 23 17 23 37 304 152 40 23 17 24 37 304 152 40 23 17 25 37 304 152 40 23 17 26 37 304 152 40 23 17 23 37 304 152 40 23 17 24 37 304 152 40 23 17 25 37 304 152 40 23 17 25 37 304 152 40 23 17 26 37 304 152 40 23 17 27 19 15 26 47 430 151 35 20 61 26 47 430 151 35 20 61 26 47 430 151 35 19 14 28 48 58 48 116 50 27 18 27 47 430 151 35 19 14 28 47 430 151 35 19 14 28 47 426 27 19 27 47 426 27 19 28	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
22 31 95 451 81 26 17 3 37 777 453 75 26 17 4 34 89 370 74 24 16 5 33 101 304 71 24 17 6 32 125 293 71 24 17 7 33 1125 293 71 24 17 8 33 1125 293 71 24 19 7 33 1125 293 77 25 21 8 33 1124 336 77 25 21 8 35 87 331 71 29 24 10 29 90 377 69 30 22 11 29 90 377 69 30 22 11 27 120 316 78 29 19 12 27 120 316 78 29 19 12 27 164 319 69 57 18 13 27 343 228 125 29 18 16 27 343 228 125 29 18 16 28 24 24 248 87 23 17 14 27 343 228 125 29 18 16 29 44 24 24 87 22 12 17 29 44 117 44 22 19 18 37 30 117 14 12 22 19 17 37 30 117 14 12 22 19 18 37 30 117 14 12 22 19 21 37 30 117 14 12 22 19 21 37 30 117 14 12 22 19 21 37 30 117 14 12 22 19 21 37 30 117 14 12 22 19 21 37 30 117 14 13 5 19 14 22 37 30 15 145 37 24 15 25 47 430 151 35 20 18 EACH TO SENDAR SENDAR DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* WEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.7 18 MAX 66 583 453 125 30 24 MAX 67 69 583 453 125 30 30 EACH TO SENDAR DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)*	1							27	66	421	90	27	19
3								31			81		
4 34 89 370 74 24 16 5 33 101 304 71 24 17 6 32 125 293 71 24 17 7 32 125 293 71 24 19 7 29 139 332 71 25 21 8 33 112 332 71 25 21 8 35 87 331 71 29 24 10 35 87 331 71 29 24 10 29 9 90 327 69 30 22 11 27 120 316 78 29 19 12 27 164 319 69 27 18 13 28 227 278 76 23 17 14 28 264 246 87 26 18 15 28 264 246 87 26 18 15 27 34 228 125 29 18 16 26 455 194 67 29 19 18 26 455 194 67 29 19 18 29 495 175 49 25 22 19 29 495 175 49 25 22 19 37 301 171 41 22 19 21 37 301 162 40 22 17 23 35 381 166 40 22 17 23 37 301 151 35 20 e14 24 37 301 151 35 20 e14 25 41 482 141 35 19 14 28 41 482 141 35 19 14 28 41 482 141 35 19 14 28 41 482 141 35 19 14 29 69 583 453 126 32 18 e14 29 69 583 453 126 32 18 e14 29 69 583 453 126 32 18 e14 29 69 583 453 125 29 18 MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MMX 7-2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1963 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 71.6 69.5 48.3 17.9 126 8.80													
The color of the													
6 32 125 293 71 24 19 77 29 139 332 71 25 21 8 29 139 332 71 25 21 9 35 87 331 71 29 24 10 35 87 331 71 29 24 10 35 87 331 71 29 24 10 35 87 331 71 29 24 10 35 87 331 71 29 24 10 35 87 331 71 29 24 10 35 87 331 71 29 24 10 35 87 331 71 29 24 10 35 87 331 71 29 24 10 29 90 327 69 30 22 11 27 164 319 69 27 18 13 3 27 164 319 69 27 18 13 31 31 31 31 31 31 31 31 31 31 31 31													
The second color of the	Э							33	101	304	/1	24	17
8 33 124 336 77 25 23 29 9										293	71		
9 35 87 331 71 29 24 10 29 90 327 69 30 22 11 27 120 316 78 29 19 122 27 164 319 69 27 18 13 28 227 278 76 23 17 14 28 227 278 76 23 17 15 28 227 278 76 23 17 15 28 227 278 76 23 17 15 28 227 278 76 23 17 15 28 227 278 76 23 17 15 28 227 278 76 23 17 16 28 227 278 76 23 17 17 28 227 278 76 23 17 18 28 28 27 278 78 76 23 18 16 28 28 27 28 125 29 18 16 26 583 186 54 29 19 17 26 583 186 54 29 19 18 29 495 175 49 25 22 19 35 481 179 44 22 21 20 35 481 179 44 22 21 20 37 304 152 40 23 17 23 37 304 152 40 23 17 23 37 304 152 40 23 17 23 69 392 185 35 22 15 26 69 392 185 35 22 15 26 69 392 185 35 22 15 26 69 392 185 35 22 15 26 69 392 185 35 22 15 26 69 392 185 35 22 15 26 69 392 185 35 29 18 28 69 392 185 35 20 e14 28 1800 9124 7339 1813 754 536 MEAN 1800 9124 7339 1813 754 536 MEAN 1800 9124 7339 1813 754 536 MEAN 26 66 103 27 18 14 AC-FT 26 69 583 455 58.5 24.3 17.9 MAX 27 26 66 103 27 18 14 AC-FT 27 26 26 217 572 126 74.7 (WY) 1913 1913 1913 1913 1913 1913 1913 191	7							29	139	332	71	25	21
10	8							33	124	336	77	25	23
10	9							35	87	331	71	29	24
12	10										69		
12													
13													
14 27 343 228 125 29 18 16 27 343 228 125 29 18 16 26 583 186 54 29 19 18 29 495 175 49 25 22 19 35 481 179 44 22 21 20 37 501 171 41 22 19 21 37 304 152 40 22 17 22 37 304 152 40 23 17 23 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
15													
16	14							28	264	246	87	26	18
17	15							27	343	228	125	29	18
17 26 583 186 54 29 19 18 29 495 175 49 25 22 19 35 481 179 44 22 21 20 37 501 171 41 22 19 21 37 501 171 41 22 19 21 37 304 152 40 23 17 22 34 305 144 36 29 16 24 51 358 145 37 24 15 25 59 392 185 35 22 15 26 59 392 185 35 22 15 26 47 430 151 35 20 e14 27 47 430 151 35 20 e14 28 41 482 141 35 19 14 28 41 482 141 35 19 14 28 43 518 126 32 18 e14 30 52 445 116 29 18 e14 30 61 457 103 27 19 15 31 61 457 103 27 19 15 31 66 66 103 27 19 15 31 66 66 103 27 19 15 31 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 66 66 103 27 18 14 AC-FT 66 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80	16							26	455	10/	67	20	10
18 29 495 175 49 25 22 19 35 481 179 44 22 21 20 37 501 171 41 22 21 21 37 304 152 40 23 17 22 37 304 152 40 23 17 23 34 305 144 36 29 16 24 51 358 145 37 24 15 25 47 430 151 35 20 e14 27 47 430 151 35 20 e14 <td></td>													
19 35 481 179 44 22 21 20 37 501 171 41 22 19 21 35 381 166 40 22 17 22 37 304 152 40 23 17 23 34 305 144 36 29 16 24 51 358 145 37 24 15 25 69 392 185 35 22 15 26 47 430 151 35 20 e14 28 47 430 151 35 19 14 28 41 482 141 35 19 14 28 43 518 126 32 18 e14 29 43 518 126 32 18 e14 29 52 445 116 29 18 e14 30 52 445 116 29 18 e14 30 61 457 103 27 19 15 31 61 457 103 27 19 15 TOTAL 61 457 103 27 19 15 MEAN 66 66 103 27 18 14 MAX 69 583 453 125 30 MAX 69 583 453 125 30 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
20 37 501 171 41 22 19 21 35 381 166 40 22 17 22 37 304 152 40 23 17 23 34 305 144 36 29 16 24 51 358 145 37 24 15 25 69 392 185 35 22 15 26 47 430 151 35 20 e14 27 41 482 141 35 19 14 28 41 482 141 35 19 14 29 43 518 126 32 18 e14 29 52 445 116 29 18 e14 30 52 445 116 29 18 e14 AC-FT 26 66 133 27 19 15 MEAN 26 66 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
21 35 381 166 40 22 17 22 37 304 152 40 23 17 23 34 305 144 36 29 16 24 51 358 145 37 24 15 25 69 392 185 35 22 15 26 47 430 151 35 20 e14 27 41 482 141 35 19 14 28 41 482 141 35 19 14 28 43 518 126 32 18 e14 29 52 445 116 29 18 e14 29 61 457 103 27 19 15 31 61 457 103 27 19 15 31 61 457 103 27 19 15 31 60 583 453 125 30 24 MEAN 60 583 453 125 MAX 60 583 453 125 MAX 26 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
22 37 304 152 40 23 17 23 34 305 144 36 29 16 24 51 358 145 37 24 15 25 69 392 185 35 22 15 26 47 430 151 35 20 e14 27 41 482 141 35 19 14 28 43 518 126 32 18 e14 29 52 445 116 29 18 e14 30 52 445 116 29 18 e14 30 61 457 103 27 19 15 31 61 457 103 27 19 15 31 66 457 103 27 19 TOTAL 61 457 103 27 19 TOTAL 66 583 453 125 30 24 MEAN 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 26 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80	20							37	501	171	41	22	19
22 37 304 152 40 23 17 23 34 305 144 36 29 16 24 51 358 145 37 24 15 25 69 392 185 35 22 15 26 47 430 151 35 20 e14 27 41 482 141 35 19 14 28 43 518 126 32 18 e14 29 52 445 116 29 18 e14 30 52 445 116 29 18 e14 30 52 445 116 29 18 e14 30 61 457 103 27 19 15 31 61 457 103 27 19 15 31 661 457 103 27 19 TOTAL 61 457 103 27 19 TOTAL 661 457 103 27 19 TOTAL 69 583 453 125 30 24 MEAN 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 26 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80	21							35	381	166	40	22	17
23 34 305 144 36 29 16 24 51 358 145 37 24 15 25 69 392 185 35 22 15 26 47 430 151 35 20 e14 28 41 482 141 35 19 14 28 43 518 126 32 18 e14 29 52 445 116 29 18 e14 30 61 457 103 27 19 15 31 61 457 103 27 19 TOTAL 1080 9124 7339 1813 754 536 MEAN 1080 9124 7339 1813 754 536 MEAN 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 26 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
24 51 358 145 37 24 15 25 69 392 185 35 22 15 26 47 430 151 35 20 e14 27 41 482 141 35 19 14 28 43 518 126 32 18 e14 29 52 445 116 29 18 e14 30 61 457 103 27 19 15 31 61 457 103 27 19 TOTAL 1080 9124 7339 1813 754 536													
25 69 392 185 35 22 15 26 47 430 151 35 20 e14 27 41 482 141 35 19 14 28 43 518 126 32 18 e14 29 52 445 116 29 18 e14 30 61 457 103 27 19 15 31 61 457 103 27 19 15 31 61 457 103 27 19 15 31 66 66 27 19 TOTAL 1080 9124 7339 1813 754 536 MEAN 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 26 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
26 47 430 151 35 20 e14 27 41 482 141 35 19 14 28 43 518 126 32 18 e14 29 52 445 116 29 18 e14 30 61 457 103 27 19 15 31 61 457 103 27 19 TOTAL 1080 9124 7339 1813 754 536 MEAN 36.0 294 245 58.5 24.3 17.9 MAX 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 26 66 103 27 18 14 AC-FT 26 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
27 41 482 141 35 19 14 28 43 518 126 32 18 e14 29 52 445 116 29 18 e14 30 61 457 103 27 19 15 31 61 457 103 27 19 15 31 61 457 103 27 19 TOTAL 1080 9124 7339 1813 754 536 MEAN 36.0 294 245 58.5 24.3 17.9 MAX 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 26 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80	23							09	394	103	33	22	13
27 41 482 141 35 19 14 28 43 518 126 32 18 e14 29 52 445 116 29 18 e14 30 61 457 103 27 19 15 31 61 457 103 27 19 15 31 1080 9124 7339 1813 754 536 MEAN 1080 9124 7339 1813 754 536 MEAN 69 583 453 125 30 17.9 MAX 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80	26							47	430	151	35	20	e14
28 43 518 126 32 18 e14 29 52 445 116 29 18 e14 30 52 445 116 29 18 e14 31 61 457 103 27 19 15 31 426 27 19 TOTAL 1080 9124 7339 1813 754 536 MEAN 36.0 294 245 58.5 24.3 17.9 MAX 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 26 66 103 27 18 14 AC-FT 26 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80	27							41	482		35	19	
29 52 445 116 29 18 e14 30 61 457 103 27 19 15 31 61 457 103 27 19 TOTAL 1080 9124 7339 1813 754 536 MEAN 1080 9124 7339 1813 754 536 MEAN 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 26 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
30 61 457 103 27 19 15 31 61 457 103 27 19 TOTAL 1080 9124 7339 1813 754 536 MEAN 36.0 294 245 58.5 24.3 17.9 MAX 69 583 453 125 30 24 MIN 69 583 453 125 30 24 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
31 426 27 19 TOTAL 1080 9124 7339 1813 754 536 MEAN 36.0 294 245 58.5 24.3 17.9 MAX 69 583 453 125 30 24 MIN 26 66 103 27 18 14 AC-FT 26 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
TOTAL 1080 9124 7339 1813 754 536 MEAN 36.0 294 245 58.5 24.3 17.9 MAX 69 583 453 125 30 24 MIN 26 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
MEAN 36.0 294 245 58.5 24.3 17.9 MAX 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 26 66 61 03 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80	31								420		21	19	
MEAN 36.0 294 245 58.5 24.3 17.9 MAX 69 583 453 125 30 24 MIN 69 583 453 125 30 24 MIN 26 66 61 03 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80	TOTAL							1080	9124	7339	1813	754	536
MAX 69 583 453 125 30 24 MIN 26 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80	MEAN							36.0	294	245	58 5	24 3	17 9
MIN 26 66 103 27 18 14 AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
AC-FT 2140 18100 14560 3600 1500 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1903 - 2001, BY WATER YEAR (WY)* MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
MEAN 31.1 28.2 23.9 19.6 20.5 26.4 53.8 235 530 159 50.8 29.2 MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80	AC-F1							2140	18100	14560	3600	1500	1000
MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80	STATIST	TICS OF MO	ONTHLY MEA	N DATA FO	OR WATER Y	EARS 1903	3 - 2001,	BY WATER	YEAR (WY) *			
MAX 77.2 50.0 40.0 35.0 53.8 47.9 136 502 1217 572 126 74.7 (WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80	MEAN	31.1	28.2	23.9	19.6	20.5	26.4	53.8	235	530	159	50.8	29.2
(WY) 1913 1913 1913 1913 1962 1971 1924 1926 1903 1917 1984 1912 MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
MIN 13.2 10.0 10.0 8.76 8.00 9.97 17.6 69.5 48.3 17.9 12.6 8.80													
(MX) 1930 1930 1934 1955 1955 1955 1968 1934 1934 1934 1913													
	(WY)	1936	1920	1934	1955	1955	1955	1955	1968	1934	1934	1934	1913

06661000 LITTLE LARAMIE RIVER NEAR FILMORE, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1903 - 2001*
ANNUAL MEAN		103
HIGHEST ANNUAL MEAN		184 1917
LOWEST ANNUAL MEAN		32.7 1934
HIGHEST DAILY MEAN	583 May 17	2400 Jun 1 1914
LOWEST DAILY MEAN	14 Sep 26-29	1.0 Sep 17-20 1913
MAXIMUM PEAK FLOW	646 May 17	3450 Jun 10 1965
MAXIMUM PEAK STAGE	3.32 May 17	5.33 Jun 10 1965
ANNUAL RUNOFF (AC-FT)		74380

^{*} For period of operation. e Estimated.

06661585 LARAMIE RIVER NEAR BOSLER, WY

LOCATION.--Lat $41^{\circ}33^{\circ}17^{\circ}$, long $105^{\circ}40^{\circ}58^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec.10, T.18 N., R.74 W., Albany County, Hydrologic Unit 10180010, on left bank 50 ft upstream from bridge on U.S. Highways 30 and 287, 0.2 mi northwest of Bosler Junction, 1.7 mi south of Bosler, and 2.0 mi downstream from Soil Bank Boughton Canal diversion dam.

DRAINAGE AREA.--1,790 mi², of which 283 mi² probably is noncontributing.

PERIOD OF RECORD. -- October 1972 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 7,030 ft above sea level, from topographic map.

REMARKS.--Records good except those for periods of estimated daily discharge, which are poor. Natural flow of stream affected by transbasin diversions, storage reservoirs, diversion upstream from station for irrigation of about 54,700 acres, of which about 2,300 acres are downstream from station, and return flow from irrigated areas. National Weather Service data collection platform with satellite telemetry at station.

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

		DISCHA	RGE, CUBI	C FEET PI		WATER YE Y MEAN V		R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	53 51 47 42 41	72 e60 e46 e38 e40	e34 e35 e37 e36 e35	e27 e27 e29 e32 e32	e31 e32 e31 e29 e30	e22 e21 e25 e33 e43	e155 147 133 127 113	67 66 85 106 151	235 303 293 284 289	28 22 18 14 13	3.1 2.5 2.2 1.9	.73 .47 .31 .30
6 7 8 9 10	42 41 42 41 38	e35 e32 e32 e37 e34	e32 e31 e31 e32 e33	e30 e28 e25 e23 e24	e29 e29 e25 e15 e25	e54 e52 e56 e64 e60	106 105 99 92 90	173 169 154 134 109	256 205 185 178 176	12 14 18 25 25	1.4 .87 .68 1.4 1.0	.65 1.3 2.6 2.6 2.1
11 12 13 14 15	37 38 37 35 35	e30 e28 e30 e27 e26	e31 e28 e28 e31 e29	e29 e29 e27 e25 e24	e29 e32 e31 e27 e29	e54 e56 e74 e110 e94	95 93 95 93 90	92 81 74 110 129	171 163 168 194 182	29 43 46 40 37	.66 .49 .56 2.4 2.3	1.7 1.5 1.6 2.5 4.9
16 17 18 19 20	36 36 37 38 39	e26 e26 e25 e26 e24	e31 e32 e29 e29 e29	e24 e25 e26 e27 e29	e31 e33 e30 e28 e29	e86 e88 e96 e102 e116	87 83 84 81 76	144 176 239 326 370	149 119 102 89 72	38 38 28 22 16	2.3 3.4 3.6 4.3 4.7	5.6 5.9 6.6 6.0 4.9
21 22 23 24 25	42 43 44 39 44	e25 e25 e26 e24 e27	e27 e28 e29 e28 e26	e29 e29 e27 e25 e25	e31 e29 e27 e28 e26	e110 e130 e170 e255 e240	71 80 78 97 119	402 458 442 345 269	67 63 55 50	13 11 9.3 8.7 7.8	4.6 3.7 2.8 2.1 1.7	5.1 4.4 4.3 4.4 3.7
26 27 28 29 30 31	62 56 56 54 52 55	e29 e38 e36 e35 e33	e23 e24 e26 e25 e25 e26	e25 e23 e26 e27 e32 e30	e25 e23 e24 	e225 e210 e195 e185 e175 e165	138 122 98 82 72	202 157 170 170 186 196	49 50 47 41 35	6.9 6.6 6.5 5.9 4.7 4.0	1.2 .94 .93 .73 .67	3.7 4.3 4.5 4.6 4.6
TOTAL MEAN MAX MIN AC-FT	1353 43.6 62 35 2680	992 33.1 72 24 1970	920 29.7 37 23 1820	840 27.1 32 23 1670	788 28.1 33 15 1560	3366 109 255 21 6680	3001 100 155 71 5950	5952 192 458 66 11810	4320 144 303 35 8570	610.4 19.7 46 4.0 1210	61.60 1.99 4.7 .49 122	96.11 3.20 6.6 .25 191
MEAN MAX (WY) MIN (WY)	58.1 196 1985 3.26 1993	75.2 155 1987 7.37 1995	56.7 101 1984 8.09 1995	47.4 92.7 1986 18.8 1991	YEARS 197 57.1 120 1986 28.1 2001	109 209 1986 44.0 1995	154 531 1984 10.3 1995	283 1198 1984 17.0 1990	709 2512 1983 86.4 1994	250 1529 1983 9.45 1994	79.4 428 1984 1.99 2001	31.0 140 1984 .96 1994

06661585 LARAMIE RIVER NEAR BOSLER, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1973 - 2001
ANNUAL TOTAL	28927.2	22300.11	
ANNUAL MEAN	79.0	61.1	159
HIGHEST ANNUAL MEAN			475 1983
LOWEST ANNUAL MEAN			39.4 1977
HIGHEST DAILY MEAN	570 Jun 3	458 May 22	4390 Jun 28 1983
LOWEST DAILY MEAN	1.1 Sep 19	.25 Sep 5	.00 Oct 10 1987
ANNUAL SEVEN-DAY MINIMUM	1.8 Sep 15	.50 Aug 31	.03 Oct 9 1987
MAXIMUM PEAK FLOW		478 ^c May 22	4480 ^a _b Jun 11 1986
MAXIMUM PEAK STAGE		3.41 Mar 22	8.40 Apr 22 1973
ANNUAL RUNOFF (AC-FT)	57380	44230	115200
10 PERCENT EXCEEDS	140	169	358
50 PERCENT EXCEEDS	46	32	65
90 PERCENT EXCEEDS	9.1	2.6	14

Gage height, 7.39 ft. Ice jam. Gage height, 2.78 ft. Estimated.

a b c e

06664400 SYBILLE CREEK ABOVE MULE CREEK, NEAR WHEATLAND, WY

LOCATION.--Lat $41^{\circ}50'39"$, long $105^{\circ}13'15"$, in $NE^{1}/_{4}$ $SE^{1}/_{4}$ sec.27, T.22 N., R.70 W., Platte County, Hydrologic Unit 10180011, on right bank just upstream from bridge on U.S. Highway 34, 900 ft upstream from Mule Creek, 2.9 mi upstream from Bluegrass Creek, and 20 mi southwest of Wheatland.

DRAINAGE AREA. -- 194 mi².

1989

(WY)

PERIOD OF RECORD. -- April 1974 to current year (no winter records).

GAGE.--Water-stage recorder. Elevation of gage is 5,340 ft above sea level, from topographic map.

REMARKS.--Records fair. Seven small diversions upstream from station, combined capacity, about 400 acre-ft, for irrigation. Diversions upstream from station for irrigation of about 2,020 acres, of which about 80 acres are downstream from station.

COOPERATION.--Station operated and record provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY AUG SEP 1 ---18 69 50 34 8.4 3.1 2 ---71 47 33 7.8 2.7 ___ ___ ---___ ___ 2.6 3 27 73 45 32 33 2.5 69 48 32 4 6.9 5 37 71 54 32 6.8 2.3 6 40 88 50 30 2.5 6.1 ------------------5.1 41 111 48 61 2.8 4.0 8 41 117 47 28 4.8 39 47 23 117 4.4 10 39 114 45 23 8.0 3.9 11 38 102 44 23 3.3 12 13 ------------3.1 ___ ___ 37 99 44 18 6.9 ------36 90 44 18 6.4 14 80 45 15 ___ ___ ___ ___ ___ 35 77 47 15 5.5 4.4 37 73 44 16 14 6.5 4.6 17 ___ ___ ___ ___ ___ ___ 38 39 71 42 41 13 12 6.5 4.5 18 ___ ___ ---------68 66 42 4.6 20 ___ ___ ___ ___ ___ ___ 47 63 41 11 5.4 4.3 21 48 65 41 12 3.9 4.4 3.9 3.7 22 ___ ___ ___ ___ ___ ___ 49 66 39 11 23 47 62 39 11 48 59 38 3.9 25 ___ ___ ___ ___ ___ ___ 53 56 38 13 3.2 4.1 26 57 58 37 11 3.8 ___ ___ 2.7 3.8 3.8 3.7 27 ___ ___ ___ ___ 60 56 37 10 28 67 36 9.3 56 29 ------72 53 35 10 3.2 ___ ___ ___ ___ 9 3 3.7 30 ___ ___ 69 52 34 3 0 31 3.1 53 2325 TOTAL 1289 1289 599.0 169.7 109.2 ------------------5.47 ------------------43.0 75.0 19.3 3.64 MEAN 43.0 ------54 34 8.4 MAX ------------72 117 61 4.9 ---8.4 ------------18 52 MIN ---2.3 2560 4610 2560 1190 337 217 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1974 - 2001, BY WATER YEAR (WY)* 32.2 23.7 13.5 62.7 ME AN 4.24 7.75 66.6 44.9 6.14 4.24 ------7.75 533 ___ 193 MAX 382 23.3 ------(WY) 1989 ------1987 1983 1983 1983 1983 1983 1983 MTN 4.24 ------7.75 2.27 4.14 2.67 .89 . 65 .92

1987

1977

1977

1989

1989

1989

1977

06664400 SYBILLE CREEK ABOVE MULE CREEK, NEAR WHEATLAND, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEA	RS 1974 -	2001*
HIGHEST DAILY MEAN LOWEST DAILY MEAN	117 May 8,9 2.3 Sep 5	1280	Aug 20 Sep 18	2000
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE	203 Jul 7 3.59 Jul 7	19900 ^a 15.60 ^b	Aug 20 Aug 20	

- For period of operation. On basis of slope-area measurement of peak flow at site 1.2 mi upstream. From floodmarks.

06665790 SYBILLE CREEK ABOVE CANAL NO. 3, NEAR WHEATLAND, WY

LOCATION.--Lat $45^{\circ}54^{\circ}40^{\circ}$, long $105^{\circ}07^{\circ}36^{\circ}$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 4, T.22 N., R.69 W., Platte County, Hydrologic Unit 10180011, on right bank 100 ft upstream from State Highway 34, 200 ft downstream from Deadhead Creek, 2.7 mi upstream from Canal No. 3, and 19.7 mi southwest of Wheatland.

PERIOD OF RECORD. -- April 1980 to current year (no winter records).

GAGE.--Water-stage recorder. Elevation of gage is 5,040 ft above sea level, from topographic map.

REMARKS.--Records good, except for June 12-28, which is fair. Most of flow during irrigation season is water released from Wheatland Reservoir No. 2, capacity 98,930 acre-ft, on the Laramie River and diverted down Bluegrass Creek for irrigation of land near Wheatland. Diversions for irrigation of about 4,400 acres upstream from station.

COOPERATION.--Station operated and recorded provided by the Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

		DISCHAR	GE, CUBIC	FEET PER		WATER YEA	AR OCTOBER	R 2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							28	97	53	57	93	46
2							29	103	53	56	94	33
3							35	107	48	56	98	32
4							48	99	48	59	92	31
5							67	107	57	59 57		32
5							67	107	5/	57	86	32
6							125	134	55	52	80	33
7							118	158	49	70	80	57
8							90	157	49	50	104	47
9							75	146	49	42	79	44
10							66	144	46	46	63	32
11							68	130	44	118	60	29
12							62	124	41	27	59	26
13							58	119	38	21	57	45
14							55	104	38	20	55	42
15							53	92	38	19	69	29
16							55	90	34	18	52	23
17							58	90	32	17	48	22
18							59	89	30	16	40	22
19							67	87	28	22	36	19
20							82	87	28	24	34	17
21							80	73	27	23	36	15
22							77	39	25	23	35	13
23							73	30	23	24	57	12
24							74	27	22	26	34	11
25							80	24	23	44	33	10
26							90	32	30	38	32	9.5
27							95	58	39	33	32	8.4
28							100	60	35	33	32	7.8
29							109	56	31	33	31	7.9
30							103	40	38	32	31	8.0
31								55		64	32	
TOTAL							2179	2758	1151	1220	1764	763.6
MEAN							72.6	89.0	38.4	39.4	56.9	25.5
MAX							125	158	57	118	104	57
MTN							28	24	22	16	31	7.8
AC-FT							4320	5470	2280	2420	3500	1510
STATIST	TICS OF MO	NTHLY MEA	N DATA FO	OR WATER Y	EARS 1980	0 - 2001,	BY WATER	YEAR (WY) *			
MEAN	29.0					25.5	56.7	111	85.0	85.2	72.2	36.0
MAX	29.0					25.5	260	665	347	191	192	68.3
(WY)	1989					1987	1983	1983	1983	1983	1983	1983
MIN	29.0					25.5	7.85	16.5	20.2	34.5	31.8	3.09
(WY)	1989					1987	1982	1989	1992	1992	1981	1989
(NA T)	エクロク					1201	1202	エクロク	エフフム	エフフム	エクひエ	エラロラ

06665790 SYBILLE CREEK ABOVE CANAL NO. 3, NEAR WHEATLAND, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1980 - 2001*
HIGHEST DAILY MEAN	158 May 7	1280 May 22 1983
LOWEST DAILY MEAN	7.8 Sep 28	00 Sep 1 1981
MAXIMUM PEAK FLOW	342 Jul 11	6900 Aug 20 1990
MAXIMUM PEAK STAGE	2.12 Jul 11	8.35 Aug 20 1990

* For period of operation. a From rating curve extended above 1,300 ${\rm ft}^3/{\rm s}$ on basis of contracted opening measurement of peak flow. b From floodmarks.

06669050 WHEATLAND CREEK BELOW WHEATLAND, WY

LOCATION.--Lat $42^{\circ}05^{\circ}05^{\circ}$, long $104^{\circ}57^{\circ}02^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.1, T.24 N., R.68 W., Platte County, Hydrologic Unit 10180011, 50 ft upstream from bridge on U.S. Highway 87, 50 ft downstream from sewage lagoons, and 1.6 mi north of Wheatland city limits.

PERIOD OF RECORD. -- Water years 1983 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DIS-	BARO-		OXYGEN,	PH				NITRO-	NITRO-	NITRO-	PHOS-
		CHARGE,	METRIC		DIS-	WATER	SPE-			GEN,	GEN,	GEN,	PHORUS
		INST.	PRES-		SOLVED	WHOLE	CIFIC			AMMONIA	NO2+NO3	NITRITE	ORTHO,
		CUBIC	SURE	OXYGEN,	(PER-	FIELD	CON-	TEMPER-	TEMPER-	DIS-	DIS-	DIS-	DIS-
		FEET	MM)	DIS-	CENT	(STAND-	DUCT-	ATURE	ATURE	SOLVED	SOLVED	SOLVED	SOLVED
DATE	TIME	PER	OF	SOLVED	SATUR-	ARD	ANCE	AIR	WATER	(MG/L	(MG/L	(MG/L	(MG/L
		SECOND	HG)	(MG/L)	ATION)	UNITS)	(US/CM)	(DEG C)	(DEG C)	AS N)	AS N)	AS N)	AS P)
		(00061)	(00025)	(00300)	(00301)	(00400)	(00095)	(00020)	(00010)	(00608)	(00631)	(00613)	(00671)
NOV													
28	0940	2.5	651	12.7	109	8.7	1220	2.0	2.5	.633	4.32	.023	.308
MAR													
02	0950	1.8	640	8.8	75	8.3	1240	8.0	1.5	4.45	2.14	.016	.706
JUN													
12	1250	.62	636	12.6	171	8.6	1240	24.0	21.0	1.50	3.14	.206	.864
SEP													
05	0915	.87	645	4.2	53	8.2	1290	21.0	18.0	.453	2.63	.095	.665

DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	0.7 UM-MF (COLS., 100 ML
NOV 28	E29k	61
MAR		
02	240	E310k
JUN 12	1200	1200
SEP		
05	340	210

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

06670500 LARAMIE RIVER NEAR FORT LARAMIE, WY

LOCATION.--Lat $42^{\circ}12^{\circ}02^{\circ}$, long $104^{\circ}32^{\circ}16^{\circ}$, in $NE^{1}/_{4}$ $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec.28, T.26 N., R.64 W., Goshen County, Hydrologic Unit 10180011, on right bank 600 ft upstream from bridge on county road, 0.6 mi upstream from mouth, and 1.1 mi southwest of Fort Laramie.

DRAINAGE AREA.--4,564 mi², of which 631 mi² probably is non-contributing. Drainage area at mouth, 4,565 mi².

PERIOD OF RECORD.--April 1915 to current year (no winter records prior to 1927). Monthly discharge only for some periods, published in WSP 1310. Records for water years 1926-39, previously published including diversions to Gering-Fort Laramie Canal, were adjusted to exclude flow in the canal in WSP 1310. Prior to October 1931, published as "at Fort Laramie." No diversion to Gering-Fort Laramie Canal since 1956.

REVISED RECORDS. -- WSP 1918: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 4,257.04 ft above sea level, from topographic map. Apr. 4, 1915, to Mar. 31, 1925, nonrecording gage at site 0.1 mi downstream at different datum. Apr. 1, 1925, to Sept. 30, 1932, nonrecording gage and Oct. 1, 1932, to Aug. 20, 1935, water-stage recorder at site 4.3 mi upstream at different datum. Aug. 21, 1935, to Nov. 2, 1970, water-stage recorder at site 0.3 mi upstream at different datum. Nov. 3, 1970, to May 9, 1973, water-stage recorder 0.1 mi downstream at different datum. May 10, 1973, to Apr. 5, 1977, water-stage recorder 4.3 mi upstream at different datum.

REMARKS.--Records good except for dates Oct. 1 to Feb. 28, which are poor. Major regulation began after completion of Grey Rocks Reservoir in 1980. Diversion, at times, to Gering-Fort Laramie Canal, 5.4 mi upstream. Natural flow of stream affected by transbasin diversions, storage reservoirs, ground-water withdrawals and diversions for irrigation of about 176,000 acres upstream from station, and return flow from irrigated areas. U.S. Army Corps of Engineers data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

COOPERATION.--Five discharge measurements provided by the Wyoming State Engineer's Office.

		DIBCHI	KOD, CODIK		DAIL)	Y MEAN VA		10 2000 10	ODI IBNDE	10 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	60	65	46	45	48	49	54	169	160	48	66	46
2	60	53	46	48	46	49	53	191	127	47	68	44
3	59	52	46	45	46	49	54	200	114	44	69	43
4	58	51	46	47	46	49	54	200	106	45	66	43
5	59	51	46	47	47	49	53	203	99	52	65	42
6	57	50	47	46	46	49	53	190	94	48	61	43
7	57	50	46	45	47	48	54	194	99	48	51	45
8	57	50	46	46	42	48	53	216	97	47	36	47
9	57	50	45	e45	48	47	52	234	76	40	42	48
10	57	51	41	e43	56	48	53	227	67	58	43	49
11	54	51	42	e41	55	48	57	216	64	105	43	49
12	53	50	52	42	52	48	54	216	62	183	40	55
13	52	56	55	42	49	47	53	218	60	133	37	51
14	52	58	51	42	47	46	53	226	58	72	37	50
15	48	56	46	44	51	46	53	230	56	69	40	59
16	46	53	46	44	56	46	53	215	54	103	53	61
17	47	53	50	45	51	47	53	216	54	70	56	62
18	49	54	47	42	52	47	53	210	53	63	58	61
19	50	52	51	43	51	47	52	207	65	60	57	63
20	49	52	45	42	50	47	53	205	71	55	54	62
21	49	54	49	41	49	47	54	176	68	55	57	62
22	46	51	45	41	49	46	60	163	67	55	55	60
23	45	49	44	41	49	49	57	127	72	60	56	59
24	46	49	43	40	50	50	56	120	70	58	55	58
25	62	49	44	40	49	50	55	106	66	57	55	53
26	56	50	48	40	48	51	55	93	62	57	48	48
27	53	49	55	44	49	50	54	76	53	57	49	47
28	53	48	46	45	50	50	54	60	42	58	45	45
29	51	46	50	45		50	54	56	45	60	44	47
30	52	46	46	45		51	78	48	46	63	44	47
31	53		46	45		54		113		63	45	
TOTAL	1647	1549	1456	1351	1379	1502	1644	5321	2227	2033	1595	1549
MEAN	53.1	51.6	47.0	43.6	49.2	48.5	54.8	172	74.2	65.6	51.5	51.6
MAX	62	65	55	48	56	54	78	234	160	183	69	63
MIN	45	46	41	40	42	46	52	48	42	40	36	42
AC-FT	3270	3070	2890	2680	2740	2980	3260	10550	4420	4030	3160	3070
STATIST	rics of Mo	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 1957	7 - 2001,	BY WATER	YEAR (WY)			
MEAN	70.1	81.6	87.9	86.2	91.1	106	153	393	314	133	65.4	62.4
MAX	350	388	464	360	418	425	1056	3145	2967	1925	390	245
(WY)	1985	1985	1985	1985	1984	1984	1984	1973	1983	1983	1984	1973
MIN	13.9	10.4	6.35	6.32	17.3	21.7	37.5	25.3	17.3	23.1	8.73	15.0
(WY)	1965	1981	1981	1981	1981	1983	1981	1963	1966	1966	1975	1964

06670500 LARAMIE RIVER NEAR FORT LARAMIE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAS	TER YEAR	WATER YEAR	S 1957 - 2001
ANNUAL TOTAL	36946		23253			
ANNUAL MEAN	101		63.7		137	
HIGHEST ANNUAL MEAN					672	1983
LOWEST ANNUAL MEAN					26.1	1981
HIGHEST DAILY MEAN	950	May 22	234	May 9	5810	May 10 1973
LOWEST DAILY MEAN	36	Sep 16	36	Aug 8	2.0 ^a	Jan 23 1981
ANNUAL SEVEN-DAY MINIMUM	45	Dec 5	40	Aug 8	3.1	Jan 21 1981
MAXIMUM PEAK FLOW			243	May 15	6260 _b	May 10 1973#
MAXIMUM PEAK STAGE			3.45	May 15	9.40 ^b	May 10 1973#
ANNUAL RUNOFF (AC-FT)	73280		46120		99370	
10 PERCENT EXCEEDS	141		98		220	
50 PERCENT EXCEEDS	63		51		64	
90 PERCENT EXCEEDS	48		44		30	

For period of record, 1915-2001.

No flow Jan. 31 to Mar. 20, Oct. 24 to Dec. 17, 1926, Mar. 1-26, 1927, Apr. 14, 1938; all flow directed by Gering-Fort Laramie Canal.

Site and datum then in use.
Estimated.

06674500 NORTH PLATTE RIVER AT WYOMING-NEBRASKA STATE LINE

LOCATION.--Lat $41^{\circ}59^{\circ}19^{\circ}$, long $104^{\circ}03^{\circ}10^{\circ}$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.3, T.23 N., R.60 W., Goshen County, Hydrologic Unit 10180009, on right bank 2000 ft upstream from bridge on NE State Highway 86, 250 ft upstream from Wyoming-Nebraska State line, and 0.7 mi southeast of Henry, NE.

DRAINAGE AREA. -- 22,218 mi², of which 1,929 mi² probably is non-contributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1929 to current year.

REVISED RECORDS. -- WDR WY-76-1: Drainage area.

GAGE.--Water-stage recorder. Sheet-piling control since Mar. 9, 1994. Datum of gage is 4,025 ft above sea level, from topographic map. Prior to Nov. 6, 1929, non-recording gage and Nov. 6, 1929, to Sept. 30, 1959, water-stage recorder at site 0.2 mi upstream at different datum. Oct. 7, 1959 to Feb. 22, 1972 water-stage recorder at site 0.2 mi upstream at different datum. Feb. 22, 1972 to Mar. 9, 1994, water-stage recorder at site 0.3 mi downstream at different datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, transbasin diversions, power development, ground-water withdrawals and diversions for irrigation, and return flow from irrigated areas. Gering-Mitchell Canal diverts from right bank 0.5 mi upstream. U.S. Army Corps of Engineers data collection platform with satellite telemetry at station.

COOPERATION.--Seven discharge measurements provided by Wyoming State Engineer's Office. Ten discharge measurements provided by U.S. Bureau of Reclamation and four discharge measurements provided by Nebraska Department of Natural Resources.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES DAY OCT NOV DEC FEB MAY SEP JAN APR AUG 205 243 e175 175 317 722 e170 e240 e175 e230 e225 370 175 1260 576 e310 e230 e305 e175 e225 e215 e190 e290 e220 e205 e210 e205 e180 TOTAL MEAN MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1929 - 2001, BY WATER YEAR (WY) MEAN MAX (WY) 43.9 MTN 49.1 (WY)

06674500 NORTH PLATTE RIVER AT WYOMING-NEBRASKA STATE LINE--Continued

SUMMARY STATISTICS	FOR 2000 CALENDA	AR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR:	S 1929 - 2001
ANNUAL TOTAL	227858		193230			
ANNUAL MEAN	623		529		791	
HIGHEST ANNUAL MEAN					2863	1984
LOWEST ANNUAL MEAN					388	1992
HIGHEST DAILY MEAN	1810	May 25	2540	Jul 10	17600	Jun 2 1929
LOWEST DAILY MEAN	195	Apr 7	159	Apr 16	3.9	May 13 1992
ANNUAL SEVEN-DAY MINIMUM	200	Apr 1	162	Feb 23	4.4	Jun 20 1992
MAXIMUM PEAK FLOW			2860	Jul 10	17900 ^a h	Jun 2 1929
MAXIMUM PEAK STAGE			3.93	Jul 10	7.04 ^b	Jun 2 1929
ANNUAL RUNOFF (AC-FT)	452000		383300		572900	
10 PERCENT EXCEEDS	1340		1360		1470	
50 PERCENT EXCEEDS	376		310		485	
90 PERCENT EXCEEDS	216		170		206	

- a Maximum observed.b Site and datum then in use.e Estimated.

06674500 NORTH PLATTE RIVER AT WYOMING-NEBRASKA STATE LINE--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1966 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
NOV 09 JAN 09	0730 1230	309 210	652 662	11.2	99 108	8.2 8.1	912 956	-4.0 3.5	3.5 3.5	E.040	2.32	.021	E.014
JUN 27 AUG 30	1335 0955	1500 1180	663 662	8.6 7.6	114 95	8.1 7.8	707 658	34.0 22.0	22.0 19.0	<.040 <.040	.118 E.481	.009 E.003	<.020 <.020

DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	
NOV 09	129	108
JAN 09	95	54
JUN 27	224	907
AUG		
30	124	395

E -- Estimated value.

06755960 CROW CREEK AT 19TH STREET, AT CHEYENNE, WY

LOCATION.--Lat $41^{\circ}07^{\circ}52^{\circ}$, long $104^{\circ}49^{\circ}41^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec.6, T.13 N., R.66 W., Laramie County, Hydrologic Unit 10190009, on right bank at upstream side of 19th Street, at Cheyenne, and 0.5 mi upstream from Clear Creek.

DRAINAGE AREA.--257 mi².

PERIOD OF RECORD.--October 1993 to current year.

REVISED RECORDS.--WDR WY-96-1: 1994; WDR WY-99-1: 1997.

GAGE.--Water-stage recorder. Elevation of gage is 6,050 ft above sea level, from topographic map.

REMARKS.--Records fair, except for August through September and estimated daily discharges, which are poor.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 20, 1904, stage unknown, estimated 8,500 ft³/s; flood of August 1, 1985, reached a stage of 9.6 ft, present datum, from floodmarks, discharge, 2,980 ft³/s, on basis of indirect measurement of peak flow.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	1.9 1.6 1.5 1.5	8.8 5.2 5.0 4.5 4.7	e2.0 e2.0 2.1 e2.1 e2.1	e2.0 e2.0 e2.1 e2.2 e2.3	e1.5 e1.6 1.6 e1.8 2.8	e2.4 e2.7 e2.9 e3.3 3.5	3.1 3.1 3.9 3.2 2.7	6.5 12 11 12 23	6.0 5.7 7.1 11 7.2	3.4 2.6 2.2 2.0 1.8	3.9 3.9 4.0 3.8 3.8	3.6 3.6 3.7 3.7	
6 7 8 9 10	1.5 1.4 1.3 1.3	4.5 3.8 2.3 2.2 2.1	e2.2 e2.2 e2.2 e2.2 e2.1	e2.2 e2.1 e2.0 e2.0 e2.0	e2.3 e2.2 e1.8 e1.7	3.8 4.1 3.8 3.5 2.7	3.2 2.8 2.4 2.6 3.6	23 23 19 18 18	6.4 9.1 6.7 5.2 4.2	2.0 1.8 3.4 3.1 3.1	7.3 4.4 6.5 6.4 5.4	5.0 3.9 4.0 4.3 4.3	
11 12 13 14 15	1.3 1.6 2.6 1.4 1.3	1.9 1.7 1.9 2.0 1.9	e2.0 e2.1 e2.1 e2.2 e2.2	e2.0 e2.1 e2.0 e2.0 e1.9	2.1 e2.3 e2.2 e2.0 e1.8	2.8 2.4 2.3 2.2 2.4	6.4 7.8 6.8 6.0 5.1	16 14 13 12 12	3.9 3.6 3.2 2.8 2.5	4.1 3.4 25 27 10	5.2 4.7 3.9 3.6 3.5	4.1 3.6 3.2 5.7 7.1	
16 17 18 19 20	1.7 1.6 1.5 1.4	1.9 2.0 e1.8 2.0 2.0	e2.1 e2.2 e2.2 e2.3 e2.2	e1.8 e1.6 e1.5 e1.7 e1.8	e1.7 e1.7 e1.8 1.9 e2.1	2.7 2.5 2.4 2.4 2.5	4.3 3.1 3.3 3.1 2.7	9.9 8.6 9.3 12	2.3 2.1 2.0 1.9 2.1	6.3 4.7 3.9 3.5 3.7	3.6 3.1 3.0 3.4 3.6	7.6 3.9 2.8 2.2 1.6	
21 22 23 24 25	1.4 2.9 2.3 1.6 1.4	2.0 2.0 e2.4 e2.7 e2.1	e2.1 e2.2 e2.3 e2.2 e2.1	e1.9 e2.0 e1.9 e1.8 e1.8	2.2 e2.6 e2.5 e2.4 e2.4	3.0 3.3 3.0 2.9 2.7	4.5 7.5 12 9.8	11 11 10 9.3 9.0	2.3 4.0 2.8 2.2 2.1	3.8 3.9 4.5 4.9 4.5	3.3 4.8 7.7 6.2 5.3	1.6 1.2 .66 .65	
26 27 28 29 30 31	1.3 1.3 1.5 1.4 1.3	2.0 2.0 2.1 e2.0 e2.1	e2.1 e2.2 e2.2 e2.1 e2.1 e2.0	e1.8 e1.7 1.7 e1.7 e1.6 e1.5	e2.3 e2.2 e2.3 	2.7 2.9 2.9 3.4 3.6 3.5	12 11 9.9 9.2 7.6	8.7 12 9.2 7.8 8.4 7.0	2.2 2.6 2.7 4.8 5.2	4.6 3.9 3.8 3.6 3.1 3.6	4.1 2.7 3.2 3.4 3.2 3.3	.79 1.3 1.7 1.8 2.1	
TOTAL MEAN MAX MIN AC-FT	52.8 1.70 5.8 1.2 105	83.6 2.79 8.8 1.7 166	66.4 2.14 2.3 2.0 132	58.7 1.89 2.3 1.5 116	57.7 2.06 2.8 1.5 114	91.2 2.94 4.1 2.2 181	174.7 5.82 12 2.4 347	386.7 12.5 23 6.5 767	125.9 4.20 11 1.9 250	161.2 5.20 27 1.8 320	134.2 4.33 7.7 2.7 266	94.02 3.13 7.6 .65 186	
STATIST	TICS OF M	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 1994	- 2001,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	6.79 26.3 1998 1.70 2001	8.35 29.7 1998 1.46 1995	6.85 19.9 1998 1.39 1995	6.57 14.8 1998 1.48 1995	7.31 13.0 1998 1.61 1995	8.68 17.5 1998 1.60 1995	12.4 27.3 1999 1.95 1995	43.1 252 1999 2.90 2000	28.0 90.1 1999 .90 2000	8.07 26.7 1995 1.43 2000	7.13 30.0 1997 1.65 1994	5.13 19.4 1997 1.07 1998	

06755960 CROW CREEK AT 19TH STREET, AT CHEYENNE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1994 - 2001
ANNUAL TOTAL	1718.69	1487.12	
ANNUAL MEAN	4.70	4.07	12.4
HIGHEST ANNUAL MEAN			37.4 1999
LOWEST ANNUAL MEAN			2.64 1994
HIGHEST DAILY MEAN	15 Mar 30	27 Jul 14	579 May 1 1999
LOWEST DAILY MEAN	.38 Aug 8	.65 Sep 24	.38 Aug 8 2000
ANNUAL SEVEN-DAY MINIMUM	.48 Sep 12	.99 Sep 21	.48 Sep 12 2000
MAXIMUM PEAK FLOW		147 Jul 13	687 Apr 30 1999
MAXIMUM PEAK STAGE		3.41 Jul 13	5.56 Apr 30 1999
ANNUAL RUNOFF (AC-FT)	3410	2950	8970
10 PERCENT EXCEEDS	12	9.0	23
50 PERCENT EXCEEDS	2.2	2.7	5.4
90 PERCENT EXCEEDS	.56	1.6	1.4

e Estimated.

06756060 CROW CREEK NEAR ARCHER, WY

LOCATION.--Lat $41^{\circ}07^{\circ}35^{\circ}$, long $104^{\circ}39^{\circ}04^{\circ}$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $NW^{1}/_{4}$ sec.3, T. 13 N., R.65 W., Laramie County, Hydrologic Unit 10190009, 0.4 mi upstream from highwater line of Wyoming Hereford Ranch Reservoir No. 2, and 2.3 mi southeast of Archer.

PERIOD OF RECORD.--November 1990 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE TIME PER OF SOLVED SATUR- ARD ANCE AIR WATER (MG/L (MG/	
NOV 28 1420 8.8 620 7.4 70 7.9 810 2.0 4.0 15.3 1.00 .079 2	17
MAR	
02 1420 13 610 9.3 97 8.1 884 9.0 7.5 11.9 1.17 .111 1.9	}4
JUN	
	090
SEP 05 1320 7.2 618 8.6 118 8.1 740 26.0 20.0 1.86 2.88 .345 .0	599

DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	0.7 UM-MF (COLS./
NOV 28	150	170
02 UN	100	140
12 SEP	620	590
05	270	220

362 COLORADO RIVER BASIN

GREEN RIVER BASIN

09188500 GREEN RIVER AT WARREN BRIDGE, NEAR DANIEL, WY

LOCATION.--Lat $43^{\circ}01^{\circ}08^{\circ}$, long $110^{\circ}07^{\circ}03^{\circ}$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec.8, T.35 N., R.111 W., Sublette County, Hydrologic Unit 14040101, on right bank 100 ft upstream from bridge on U.S. Highways 189 and 191, 3.4 mi upstream from Beaver Creek, and 12 mi north of Daniel.

DRAINAGE AREA. -- 468 mi².

PERIOD OF RECORD.--October 1931 to September 1992, October 1993 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS. -- WSP 979: 1932(M).

GAGE.--Water-stage recorder. Datum of gage is 7,468.09 ft above sea level. Prior to Oct. 6, 1977, on left bank at same datum.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 10,200 acres, of which about 6,100 acres are downstream from station. National Weather Service data collection platform with satellite telemetry at station.

DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	172	173	e100	e100	e94	e90	e140	543	836	826	244	187
2	167	166	e105	e100	e94	e95	e155	579	905	743	242	192
3	167	132	e105	e95	e92	e100	e150	438	1020	700	242	184
4	162	e130	e110	e97	e92	e105	e145	348	990	674	248	183
5	156	e120	e110	e100	e92	e110	e145	340	757	657	262	185
6	152	109	e110	e110	e90	e110	e150	402	557	646	270	188
7	147	111	e105	e105	e90	e110	e145	370	454	651	273	198
8	146 144	e110	e105	e105 e105	e90	e115	e140	363 443	412	682	276 273	204
9 10	144	e105 e100	e110 e105	e105 e110	e86 e88	e120 e125	e135 e140	443	488 649	657 604	277	205 189
11	156	e95	e100	e105	e90	e120	e155	485	854	583	275	170
12	173	e90	e93	e100	e92	e115	e165	495	964	578	261	156
13	174	e94	e96	e100	e92	e115	e170	551	951	561	248	151
14	174	e100	e105	e100	e94	e115	e165	691	809	511	241	150
15	173	e105	e110	e95	e95	e110	e175	998	626	475	234	148
16	166	e100	e105	e93	e94	e105	149	1650	514	451	231	148
17	163	e98	e105	e90	e94	e110	170	1950	457	454	229	152
18	159	e96	e110	e93	e94	e120	237	1590	442	433	221	160
19	158	e94	e110	e93	e92	e130	316	1140	451	405	213	158
20	157	e93	e105	e94	e92	e140	305	969	456	367	211	149
21	153	e96	e100	e97	e92	e145	236	829	463	328	216	145
22	153	e97	e100	e105	e94	e140	210	698	520	307	215	138
23 24	152 149	e96 e96	e105	e98 e95	e96 e96	e150 e160	222 253	618	644 835	303 303	209 202	133 130
25	156	e96	e105 e105	e95	e96 e92	e180	292	686 847	974	293	192	131
26	163	e94	e100	e94	e89	e175	361	1030	1100	284	188	128
27	159	e98	e100	e92	e89	e165	414	1200	1120	279	185	130
28	156	e98	e105	e92	e88	e155	443	1320	1050	274	183	131
29	157	e94	e105	e90		e145	514	1280	1020	260	184 189	128 129
30 31	173 174	e98 	e100 e100	e88 e92		e145 e145	533	1100 994	928	249 245	189	129
31												
TOTAL	4952	3184	3229	3028	2573	3965	6930	25428	22246	14783	7118	4780
MEAN	160	106	104	97.7	91.9	128	231	820	742	477	230	159
MAX	174	173	110	110	96	180	533	1950	1120	826	277	205
MIN	141	90	93	88	86	90	135	340	412	245	183	128
AC-FT	9820	6320	6400	6010	5100	7860	13750	50440	44120	29320	14120	9480
STATIST	rics of M	ONTHLY ME	AN DATA F	OR WATER	YEARS 1932	2 - 2001,	BY WATER	YEAR (WY)			
MEAN	200	145	125	110	111	124	288	1029	1791	1257	539	301
MAX	433	223	215	176	166	240	600	1811	3813	2424	997	592
(WY)	1984	1983	1997	1967	1967	1932	1943	1956	1986	1975	1982	1963
MIN	102	67.7	70.0	50.0	60.0	70.0	129	269	610	399	213	150
(WY)	1989	1994	1933	1933	1933	1933	1970	1977	1934	1988	1988	1988

GREEN RIVER BASIN 363

09188500 GREEN RIVER AT WARREN BRIDGE, NEAR DANIEL, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1932 - 2001
ANNUAL TOTAL	143041		102216			
ANNUAL MEAN	391		280		503	
HIGHEST ANNUAL MEAN					768	1986
LOWEST ANNUAL MEAN					280	2001
HIGHEST DAILY MEAN	1920	May 26	1950	May 17	5620	Jun 11 1997
LOWEST DAILY MEAN	90	Nov 12	86	Feb 9	36	Nov 26 1933
ANNUAL SEVEN-DAY MINIMUM	95	Nov 18	89	Feb 5	43	Nov 24 1933
MAXIMUM PEAK FLOW			2050	May 17	5930	Jun 11 1997
MAXIMUM PEAK STAGE			4.03	May 17	6.04	Jun 11 1997
ANNUAL RUNOFF (AC-FT)	283700		202700		364600	
10 PERCENT EXCEEDS	975		684		1420	
50 PERCENT EXCEEDS	180		156		200	
90 PERCENT EXCEEDS	105		94		100	

e Estimated.

364 GREEN RIVER BASIN

09196500 PINE CREEK ABOVE FREMONT LAKE, WY

LOCATION.--Lat $43^{\circ}01'50"$, long $109^{\circ}46'10"$, in $SW^{1}/_{4}$ $S^{1}/_{2}$ sec.5, T.35 N., R.108 W., Sublette County, Hydrologic Unit 14040102, Bridger National Forest, on right bank 0.5 mi upstream from Fremont Lake, 0.5 mi downstream from Fremont Creek, and 12 mi northeast of Pinedale.

DRAINAGE AREA. -- 75.8 mi².

PERIOD OF RECORD. -- October 1954 to September 1997, and October 2000 to September 2001.

REVISED RECORDS.--WSP 1443: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 7,450 ft above sea level, from topographic map. U.S. Geological Survey data collection platform with satellite telemetry at station.

REMARKS.--Records good except for those estimated daily dicharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY DEC OCT NOV JAN FEB MAY AUG SEP e720 e18 e760 72 e18 e17 e820 e700 e16 e540 e410 e15 22 e15 e16 e17 e11 e18 e13 e15 e19 13 192 37 e14 e18 e13 e12 e13 e14 33 29 e15 18 12 9.7 28 801 54 37 e16 e17 e16 e17 34 34 35 e17 e12 e17 e14 e16 e15 e17 e17 e18 e21 35 e18 e19 12 e14 e23 e21 e15 e19 e18 ___ e760 e17 TOTAL 409.4 34.2 27.4 13.2 37.3 35.9 MEAN 15.6 56.9 MAX 9.7 MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1955 - 2001, BY WATER YEAR (WY) 19.4 37.6 16.7 36.7 88.7 209 MEAN 54.8 32.8 23.9 16.7 53.0 71.8 35.0 MAX 98.4 (WY) 6.73 MTN 9.60 10.9 4.39 1977 4.66 4.03 12.0 90.3 44.0 23.0 (WY)

09196500 PINE CREEK ABOVE FREMONT LAKE, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR	WATER YEARS 1955 - 2001
ANNUAL TOTAL	44793.4	
ANNUAL MEAN	123	176
HIGHEST ANNUAL MEAN		253 1986
LOWEST ANNUAL MEAN		96.7 1977
HIGHEST DAILY MEAN	1500 May 16	2290 Jun 10 1997
LOWEST DAILY MEAN	9.7 Mar 18	3.3 Apr 4 1977
ANNUAL SEVEN-DAY MINIMUM	10 Mar 13	3.4 Mar 31 1977
MAXIMUM PEAK FLOW	1660 May 16	2550 ^a Jun 16 1959
MAXIMUM PEAK STAGE	5.98 May 16	7.65 Jun 6 1986
ANNUAL RUNOFF (AC-FT)	88850	127400
10 PERCENT EXCEEDS	410	565
50 PERCENT EXCEEDS	33	42
90 PERCENT EXCEEDS	13	13

a Gage height, 7.15 ft. e Estimated.

09197000 PINE CREEK BELOW FREMONT LAKE, WY

LOCATION.--Lat $42^{\circ}53'42"$, long $109^{\circ}50'35"$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.27, T.34 N., R.109 W., Sublette County, Hydrologic Unit 14040102, on left bank at Lot Number 93, 0.9 mi downstream from Fremont Lake, and 2.1 mi northeast of Pinedale.

DRAINAGE AREA. -- 114 mi².

PERIOD OF RECORD.--October 1910 to September 1912, October 1915 to September 1918, April 1985 to September 1986, April 1988 to current year, (no winter records since 1918). Published as "near Pinedale" prior to October 1912 and as "at Fremont Lake Outlet" October 1915 to September 1918. Records since April 1985 equivalent to earlier records if diversions to Highland Ditch (station 09196960) are added to flow past station.

GAGE.--Water-stage recorder. Elevation of gage is 7,390 ft above sea level, from topographic map. Prior to September 30, 1918, nonrecording gage at site 0.2 mi upstream at different datum.

REMARKS.--Records good. Some regulation by Fremont Lake. Fremont Ditch and Highland Ditch divert water upstream from station for irrigation downstream from station. Results of discharge measurements, in cubic feet per second, made when station was not in operation, are given below:

Oct. 9 . . . 19.3 Mar. 26 . . . 14.1

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

COOPERATION.--Station operated and record provided by Wyoming State Engineer's Office; record reviewed by U.S. Geological Survey.

		DIBCHE	CODIC	, , , , , , , , , , , , , , , , , , , ,		MEAN VA		10 2000 10	ODI IDIDO	10 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							15	17	227	159	79	58
2							15	29	248	152	79	58
3							15	52	274	147	79	57
4							15	62	289	144	79	57
5							15	62	286	141	79	57
3							13	02	200	1.11	,,	37
6							15	62	270	141	79	56
7							15	73	251	141	79	54
8							15	84	237	139	79	53
9							15	84	230	138	73	52
10							15	84	232	137	47	51
11							16	85	241	136	41	50
12							16	105	254	134	41	50
13							16	119	269	133	41	50
14							16	122	266	133	41	48
15							16	127	258	132	40	47
1.0							1.0	106	046	100	4.0	47
16							16	196	246	128	40	47
17							17	325	233	128	40	47
18							17	408	251	128	40	47
19							17	457	246	126	40	28
20							17	479	205	120	40	20
21							17	473	192	113	40	19
22							17	467	178	113	39	18
23							17	458	157	109	51	18
24							17	408	146	104	60	18
25							17	318	148	98	60	17
26							17	220	153	96	60	18
27							17	184	158	96	60	18
28							17	187	160	92	60	18
29							17	192	162	81	58	17
30							17	198	161	81	58	17
31								210		80	59	
TOTAL							484	6347	6628	3800	1761	1165
MEAN							16.1	205	221	123	56.8	38.8
MAX							17	479	289	159	79	58
MIN							15	17	146	80	39	17
AC-FT							960	12590	13150	7540	3490	2310
STATIST	rics of Mo	NTHLY MEA	N DATA FO	OR WATER Y	YEARS 1911	- 2001,	BY WATER	YEAR (WY	*) *			
MEAN	63.2	36.8	27.5	23.3	24.3	26.2	31.8	157	620	483	151	66.3
MAX	86.2	40.0	34.2	26.3	33.0	36.0	93.0	299	1273	1258	300	131
(WY)	1916	1911	1918	1918	1916	1916	1986	1997	1918	1917	1917	1917
MIN	49.9	30.0	20.0	20.0	18.0	20.0	14.9	63.3	215	95.0	43.9	22.8
(WY)	1917	1917	1917	1916	1917	1917	1988	1990	1992	1992	1988	1988
(AA T)	エノエィ	エノエリ	エノエ・	1710	エノエィ	エノエリ	1700	1770	1776	1772	1700	1,00

09197000 PINE CREEK BELOW FREMONT LAKE, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1911 - 2001*
ANNUAL MEAN		197
HIGHEST ANNUAL MEAN		211 1917
LOWEST ANNUAL MEAN		183 1912
HIGHEST DAILY MEAN	479 May 20	2330 Jun 17 1918
LOWEST DAILY MEAN	15 Apr 1-10	9.6 Apr 23 1990
MAXIMUM PEAK FLOW	479 May 19	2330 Jun 17 1918
MAXIMUM PEAK STAGE	2.79 May 19	2.79 May 19 2001
ANNUAL RUNOFF (AC-FT)		143000

* For period of operation.

09205000 NEW FORK RIVER NEAR BIG PINEY, WY

LOCATION.--Lat $42^{\circ}34^{\circ}02^{\circ}$, long $109^{\circ}55^{\circ}46^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.22, T.30 N., R.110 W., Sublette County, Hydrologic Unit 14040102, on right bank 350 ft downstream from old highway bridge, 3.4 mi upstream from mouth, and 9.5 mi northeast of Big Piney.

DRAINAGE AREA. -- 1,230 mi².

PERIOD OF RECORD.--September 1954 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,800 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, power development, and diversions for irrigation of about 62,100 acres upstream from station. National Weather Service data collection platform with satellite telemetry at station.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	294	315	e204	e188	e192	e201	386	269	1210	589	307	219
2	290	311	e198	e181	e190	e209	390	282	1130	570	317	223
3	287	e286	e201	e188	e191	e218	397	307	1120	567	317	219
4	271	e285	e207	e186	e188	e213	368	336	1140	543	317	219
5	272	291	e206	e188	e190	e213	354	335	1120	537	313	217
6	286	279	e208	e184	e191	e221	361	300	1010	554	303	223
7	290	e270	e210	e173	e187	e223	364	302	877	565	294	231
8	290	e257	e204	e172	e179	e221	364	302	765	570	290	231
9	290	e263	e213	e174	e177	e227	348	336	677	573	279	231
10	292	e270	e212	e188	e187	e232	322	401	632	587	279	227
11	314	249	e198	e182	e193	e241	313	561	609	629	275	223
12	343	197	e200	e185	e197	e236	311	722	620	625	275	216
13	336	190	e202	e185	e198	e236	299	938	866	582	265	215
14	333	e196	e207	e182	e197	e237	289	1210	1030	570	255	224
15	333	e209	e210	e177	e195	e231	277	1560	945	572	255	227
16	332	e206	e201	e167	e202	e235	268	1810	842	601	261	227
17	322	e203	e198	e168	e201	e245	272	2430	781	574	248	219
18	321	e203	e205	e171	e208	e257	287	2800	720	508	236	239
19	312	e207	e202	e182	e214	e277	294	2600	677	483	231	239
20	311	e210	e203	e187	e220	e299	280	2290	652	463	229	228
21	311	e215	e195	e183	e211	e336	273	2140	610	432	262	227
22	311	e216	e205	e186	e213	e333	264	1800	582	408	255	215
23	311	e212	e205	e186	e222	e345	255	1490	555	398	240	211
24	311	e204	e198	e182	e221	e351	262	1370	553	394	232	211
25	311	e205	e190	e185	e215	e350	265	1420	556	386	238	211
26 27 28 29 30 31	311 311 311 311 311 314	e209 e212 e204 e200 e205	e193 e193 e191 e184 e191 e189	e180 e181 e186 e183 e180 e185	e212 e207 e199 	e342 e317 e311 e325 e331 e321	256 245 245 245 251	1530 1590 1690 1680 1520 1370	562 580 605 602 597	378 396 380 363 341 317	237 231 231 226 221 219	204 201 199 199 193
TOTAL	9543	6979	6223	5625	5597	8334	9105	37691	23225	15455	8138	6568
MEAN	308	233	201	181	200	269	304	1216	774	499	263	219
MAX	343	315	213	188	222	351	397	2800	1210	629	317	239
MIN	271	190	184	167	177	201	245	269	553	317	219	193
AC-FT	18930	13840	12340	11160	11100	16530	18060	74760	46070	30650	16140	13030
STATIS	TICS OF M	ONTHLY ME	AN DATA	FOR WATER	YEARS 195	4 - 2001,	BY WATER	YEAR (WY	()			
MEAN	377	323	241	201	212	269	434	1152	3009	1639	587	374
MAX	989	608	397	277	337	597	1114	2539	7065	4155	1279	766
(WY)	1983	1984	1983	1969	1969	1972	1969	1969	1986	1982	1982	1983
MIN	171	188	139	129	135	161	181	254	699	405	225	164
(WY)	1989	1989	1989	1963	1989	1977	1981	1977	1992	1961	1988	1988

09205000 NEW FORK RIVER NEAR BIG PINEY, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENI	DAR YEAR	FOR 2001 W	ATER YEAR	WATER YEAR	S 1954 - 2001
ANNUAL TOTAL	191056		142483			
ANNUAL MEAN	522		390		736	
HIGHEST ANNUAL MEAN					1288	1986
LOWEST ANNUAL MEAN					313	1977
HIGHEST DAILY MEAN	3460	May 30	2800	May 18	9110	Jun 7 1986
LOWEST DAILY MEAN	170	Feb 19	167	Jan 16	90	Jan 13 1963
ANNUAL SEVEN-DAY MINIMUM	181	Feb 14	176	Jan 13	104	Jan 9 1963
MAXIMUM PEAK FLOW			2860 ^a	h May 18	9190	Jun 7 1986
MAXIMUM PEAK STAGE			5.66	Dec 30	8.28	Jun 7 1986
ANNUAL RUNOFF (AC-FT)	379000		282600		532900	
10 PERCENT EXCEEDS	1000		662		1840	
50 PERCENT EXCEEDS	290		262		330	
90 PERCENT EXCEEDS	191		188		190	

Gage height, 4.64 ft. Backwater from ice. Estimated. a b e

09209400 GREEN RIVER NEAR LA BARGE, WY

LOCATION.--Lat $42^{\circ}11'34"$, long $110^{\circ}09'45"$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec.33, T.26 N., R.112 W., Lincoln County, Hydrologic Unit 14040101, on right bank 1.7 mi upstream from high-water line of Fontenelle Reservoir at elevation 6,513 ft, 4.0 mi upstream from Muddy Creek, and 5.0 mi south of La Barge.

DRAINAGE AREA. -- 3,910 mi².

PERIOD OF RECORD.--October 1963 to current year. Records are equivalent to those published August 1946 to March 1965 as Green River near Fontenelle (station 09209500) average annual mean 1,557 cfs.

GAGE.--Water-stage recorder. Elevation of gage is 6,520 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs and diversions for irrigation of about 198,000 acres upstream from station. National Weather Service data collection platform with satellite telemetry at station.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	570	699	e420	e400	e390	e610	e740	882	2060	1190	524	300
2	559	694		e400	e390	e620	e720	855	1910	1120	526	319
3	543	642	e400	e390	e400	e630	e700	928	1850	1030	529	332
4	545	627	e410	e400	e410	e640	e690	822	1930	960	522	340
5	545	636	e420	e400	e420	e660	e680	700	2030	895	518	335
6	551	665		e400	e430	e680	e690	552	1910	866	526	325
7	563	614	e420	e400	e420	e700	e700	506	1630	882	517	334
8	564	639	e420	e390	e410	e720	e700	518	1350	910	509	351
9	570	630	e410	e390	e390	e750	e700	479	1150	944	545	389
10	576	623	e390	e390	e400	e770	e690	520	1010	994	541	405
11	625	566	e400	e400	e410	e770	682	655	961	1050	492	396
12	682	597	e400	e390	e430	e770	675	788	987	1190	492	382
13	712	490	e410	e390	e440	e760	670	979	1340	1130	505	352
14	697	479	e390	e380	e450	e750	642	1310	1880	1030	476	340
15	692	e475	e370	e360	e470	e750	611	1690	1850	967	472	358
16	697	e460		e340	e490	e750	591	2170	1570	1030	465	362
17	679	e465	e370	e350	e510	e775	611	3140	1330	1070	439	360
18	670	e470	e380	e360	e530	e800	634	4370	1160	991	412	365
19	654	e480	e390	e380	e550	e825	712	4120	1040	903	383	397
20	646	e480	e400	e390	e570	e850	836	3410	968	826	370	394
21	646	e485		e390	e600	e840	862	3030	906	786	398	379
22	648	e485	e400	e380	e620	e830	804	2710	842	743	450	370
23	657	e485	e390	e390	e640	e832	711	2230	769	686	439	355
24	657	e490	e400	e400	e620	e820	676	1930	749	665	418	344
25	657	e490	e400	e400	e600	e820	692	1840	816	663	404	346
26	662	e490	e400	e400	e600	e810	715	1960	929	691	370	326
27	668	e490	e395	e390	e580	e800	746	2160	1100	666	358	314
28	668	e490	e395	e390	e600	e800	806	2380	1250	663	344	312 311
29 30	668 668	e470 e450	e395 e390	e400 e410		e790 e780	847 907	2590 2560	1300 1240	626 607	334 314	311
31	677		e400	e410		e760		2310		562	299	210
TOTAL	19616	16256	12365	12050	13770	23462	21440	55094	39817	27336	13891	10509
MEAN	633	542	399	389	492	757	715	1777	1327	882	448	350
MAX	712	699	430	410	640	850	907	4370	2060	1190	545	405
MIN	543	450	360	340	390	610	591	479	749	562	299	300
AC-FT	38910	32240	24530	23900	27310	46540	42530	109300	78980	54220	27550	20840
STATIST	TICS OF	MONTHLY I	MEAN DATA	FOR WATER	YEARS 19	64 - 2001	, BY WATER	R YEAR (W	Y)			
MEAN	834	736	534	464	497	715	1397	2886	5757	3464	1465	886
MAX	2049	1306		608	681	1565	2692	5357	14230	7993	3185	1768
(WY)	1983	1984	1984	1966	1998	1972	1986	1997	1986	1982	1982	1983
MIN	368	469	367	314	270	426	469	305	1080	710	448	350
(WY)	1989	1989	1989	1989	1989	1970	1977	1977	1992	1994	2001	2001

09209400 GREEN RIVER NEAR LA BARGE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	ER YEAR	WATER YEAR	S 1964 - 2001
ANNUAL TOTAL	379918		265606			
ANNUAL MEAN	1038		728		1639	
HIGHEST ANNUAL MEAN					2908	1986
LOWEST ANNUAL MEAN					668	1977
HIGHEST DAILY MEAN	5330	May 27	4370	May 18	18800	Jun 9 1986
LOWEST DAILY MEAN	300	Feb 19	299	Aug 31	188	May 17 1977
ANNUAL SEVEN-DAY MINIMUM	324	Feb 14	320	Aug 29	215	May 13 1977
MAXIMUM PEAK FLOW			4500	May 18	18800	Jun 9 1986
MAXIMUM PEAK STAGE			7.12	May 18	10.50	Jun 9 1986
ANNUAL RUNOFF (AC-FT)	753600		526800		1187000	
10 PERCENT EXCEEDS	2240		1170		4040	
50 PERCENT EXCEEDS	636		600		800	
90 PERCENT EXCEEDS	380		370		430	

e Estimated.

09210500 FONTENELLE CREEK NEAR HERSCHLER RANCH, NEAR FONTENELLE, WY

LOCATION.--Lat $42^{\circ}05^{\circ}46^{\circ}$, long $110^{\circ}24^{\circ}57^{\circ}$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec.2, T.24 N., R.115 W., Lincoln County, Hydrologic Unit 14040101, on left bank 2.0 mi downstream from Dutch George Creek and 14 mi west of Fontenelle.

DRAINAGE AREA.--152 mi².

PERIOD OF RECORD.--August 1951 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,950 ft above sea level, from topographic map. Prior to May 5, 1970, at site 300 ft downstream at present datum. U.S. Geological Survey data collection platform with satellite telemetry at station.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Diversions for irrigation of about 780 acres upstream from station.

		DISCHAF	RGE, CUBIC	FEET PE	R SECOND, DAILY	WATER YE.		R 2000 TO	SEPTEMBER	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	25 25 25 25 25	e29 e27 e24 e22 e21	e22 e23 e24 e25 e25	e24 e24 e23 e24 e25	e24 e24 e25 e26 e29	e22 e20 19 e20 e20	50 55 50 42 46	97 122 151 e155 e125	44 39 40 41 41	26 25 25 24 24	13 13 12 15 16	15 16 14 14 14
6 7 8 9 10	25 25 25 25 26	e19 e20 e21 e20 e19	e25 e24 e25 e25 e24	e27 e25 e25 e26 e27	e27 e25 e23 e21 e22	e22 e22 e22 e21 21	49 47 45 39 34	e100 e86 e68 69 76	38 36 35 34 33	24 25 29 29 29	14 14 14 13	16 17 18 18 17
11 12 13 14 15	36 34 30 31 31	e18 e17 e18 e19 e21	e22 e21 e23 e25 e26	e26 e25 e25 e25 e24	e23 e24 e24 e23 e22	21 23 21 e22 e22	34 35 35 34 34	79 85 94 95 103	31 35 48 46 44	28 27 29 30 29	14 14 14 14	16 16 17 18 17
16 17 18 19 20	29 28 28 27 27	e20 e19 e18 e18 e19	e25 e26 e26 e25 e24	e23 e24 e25 e26 e27	e23 e23 e24 25 e22	22 e21 22 24 29	36 41 49 57 54	140 130 108 90 81	40 39 37 36 33	29 26 23 22 21	14 14 14 13	17 17 19 18 17
21 22 23 24 25	27 28 29 28 28	e19 e19 e19 e19	e24 e25 e26 e25 e24	e29 e31 e29 e28 e28	e21 21 e21 e22 e23	56 107 90 92 92	47 43 40 42 46	76 70 66 66 66	33 31 30 30 30	18 17 17 16 16	15 16 16 15 14	16 16 16 16 15
26 27 28 29 30 31	28 28 28 27 28 e29	e19 e20 e19 e20 e21	e24 e24 e25 e26 e25 e24	e27 e27 e26 e25 e24 e23	23 e23 e22 	84 64 53 53 57 55	54 64 70 79 88	61 59 57 58 51 49	29 30 28 28 26	16 16 16 15 14	13 13 12 12 12 13	15 16 16 16 16
TOTAL MEAN MAX MIN AC-FT	860 27.7 36 25 1710	603 20.1 29 17 1200	757 24.4 26 21 1500	797 25.7 31 23 1580	655 23.4 29 21 1300	1239 40.0 107 19 2460	1439 48.0 88 34 2850	2733 88.2 155 49 5420	1065 35.5 48 26 2110	698 22.5 30 13 1380	426 13.7 16 12 845	489 16.3 19 14 970
STATIST MEAN MAX (WY) MIN (WY)	32.4 55.3 1987 19.1 1978	30.1 47.1 1998 18.6 1994	26.3 42.1 1985 13.5 1990	25.8 41.3 1985 14.3 1991	YEARS 1952 26.8 51.3 1985 15.0 1958	33.0 76.3 1986 18.7 1962	99.4 280 1986 35.1 1977	YEAR (WY) 215 437 1980 32.1 1977	227 628 1986 20.3 1977	77.2 185 1975 17.2 1977	37.7 76.0 1983 10.2 1992	30.9 63.1 1997 12.7 1977

09210500 FONTENELLE CREEK NEAR HERSCHLER RANCH, NEAR FONTENELLE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR	R YEAR	FOR 2001 WA	TER YEAR	WATER YEAR	S 1952 - 2001
ANNUAL TOTAL	16951		11761			
ANNUAL MEAN	46.3		32.2		71.9	
HIGHEST ANNUAL MEAN					155	1986
LOWEST ANNUAL MEAN					24.8	1977
HIGHEST DAILY MEAN	210 N	May 26	155	May 4	865	Jun 6 1986
LOWEST DAILY MEAN	17 N	Nov 12	12	Aug 3	5.6	Aug 14 1992
ANNUAL SEVEN-DAY MINIMUM	19 N	Nov 17	13	Aug 25	6.2	Aug 10 1992
MAXIMUM PEAK FLOW			168 ^a	h May 16	907	Apr 23 1986
MAXIMUM PEAK STAGE			6.54	Feb 15	9.51	Apr 23 1986
ANNUAL RUNOFF (AC-FT)	33620		23330		52070	
10 PERCENT EXCEEDS	106		60		183	
50 PERCENT EXCEEDS	29		25		33	
90 PERCENT EXCEEDS	20		15		20	

Gage height, 6.42 ft. Backwater from ice. Estimated. a b e

09211200 GREEN RIVER BELOW FONTENELLE RESERVOIR, WY

LOCATION.--Lat $42^{\circ}01'16"$, long $110^{\circ}02'57"$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec.31, T.24 N., R.111 W., Sweetwater County, Hydrologic Unit 14040103, on right bank 1.0 mi downstream from Fontenelle Dam, 2.5 mi upstream from Slate Creek, and 6.0 mi southeast of Fontenelle.

DRAINAGE AREA. -- 4,280 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 1963 to current year.

REVISED RECORDS. -- WSP 2125: Drainage area.

 ${\tt GAGE.--Water-stage}$ recorder. Datum of gage is 6,378.13 ft above sea level.

REMARKS.--Records good. Flow completely regulated by Fontenelle Reservoir (station 09211150) 1.0 mi upstream. Natural flow of stream affected by storage reservoirs and diversions for irrigation of about 202,000 acres upstream from station. National Weather Service data collection platform with satellite telemetry at station.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	924 931 931 931 944	931 926 915 909 885	898 896 907 913 907	915 916 915 913 906	917 917 933 1000 987	555 562 561 554 551	577 609 612 627 641	1410 1430 1440 1370 1380	825 829 832 839 850	693 751 706 697 709	749 646 612 619 616	598 589 576 599 596
6 7 8 9 10	967 968 965 967 969	936 936 950 951 951	891 882 887 882 891	910 911 911 910 911	940 924 932 927 929	575 586 595 595 575	645 640 558 540 547	1390 1350 1290 1290 1260	817 729 683 685 685	716 715 704 702 707	604 606 600 605 604	591 586 572 570 564
11 12 13 14 15	961 956 953 943 937	797 553 722 817 839	894 893 885 888 885	919 930 946 937 941	938 935 939 936 912	591 570 563 563 555	534 503 491 492 495	1020 952 967 954 842	681 690 695 701 715	703 700 691 686 690	589 595 595 595 595	573 569 567 614 580
16 17 18 19 20	921 917 912 912 925	902 867 864 873 873	891 905 904 912 912	944 944 949 951 937	909 905 913 900 901	569 558 547 550 551	496 501 502 499 649	854 893 882 866 840	713 695 704 721 709	688 693 682 689	599 605 611 613 605	574 577 606 594 588
21 22 23 24 25	926 921 921 922 921	865 892 892 882 882	913 921 920 906 897	940 941 936 941 938	893 887 857 819 766	546 549 534 539 550	809 874 956 959 1120	860 881 871 877	707 695 708 705 729	707 703 705 706 713	624 635 630 608 602	589 574 588 579 571
26 27 28 29 30 31	924 933 943 951 944 931	892 894 887 887 896	892 892 892 886 899 911	931 931 926 932 924 921	711 661 603 	546 532 537 555 568 568	1320 1330 1360 1390 1410	884 898 901 896 890 896	726 726 695 686 701	719 738 741 747 733 757	604 604 602 601 599 599	549 525 500 488 506
TOTAL MEAN MAX MIN AC-FT	29071 938 969 912 57660	26266 876 951 553 52100	27852 898 921 882 55240	28777 928 951 906 57080	24791 885 1000 603 49170	17350 560 595 532 34410	22686 756 1410 491 45000	32411 1046 1440 840 64290	21876 729 850 681 43390	21990 709 757 682 43620	18971 612 749 589 37630	17152 572 614 488 34020
STATIST	rics of	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	64 - 2001,	, BY WATER	R YEAR (W)	()			
MEAN MAX (WY) MIN (WY)	1024 3138 1983 291 1989	897 1522 1984 308 1989	831 1308 1998 272 1968	844 1312 1998 273 1968	893 1818 1974 262 1968	955 1576 1986 365 1989	1480 3134 1986 370 1968	2421 5588 1985 463 1992	4508 11240 1986 465 1977	3230 8868 1986 364 1977	1620 3466 1982 367 1977	1224 7893 1965 285 1988

09211200 GREEN RIVER BELOW FONTENELLE RESERVOIR, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENI	DAR YEAR	FOR 2001 WA	TER YEAR	WATER YEARS	S 1964 - 2001
ANNUAL TOTAL	420502		289193			
ANNUAL MEAN	1149		792		1664	
HIGHEST ANNUAL MEAN					3060	1986
LOWEST ANNUAL MEAN					690	1977
HIGHEST DAILY MEAN	1720	Jun 9	1440	May 3	18600	Sep 6 1965
LOWEST DAILY MEAN	553	Nov 12	488	Sep 29	209	Nov 22 1968
ANNUAL SEVEN-DAY MINIMUM	785	Nov 11	497	Apr 13	251_	Dec 25 1967
MAXIMUM PEAK FLOW			1450	May 2	19400 ^a 2	Sep 5 1965
MAXIMUM PEAK STAGE			11.78	May 2	18.74 ^D	Sep 5 1965
ANNUAL RUNOFF (AC-FT)	834100		573600		1205000	
10 PERCENT EXCEEDS	1490		950		3610	
50 PERCENT EXCEEDS	1170		839		1120	
90 PERCENT EXCEEDS	888		562		507	

a $\,$ Caused by emergency released from Fontenelle Reservoir. b $\,$ From floodmarks.

09211200 GREEN RIVER BELOW FONTENELLE RESERVOIR, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1968 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1967 to September 1976. WATER TEMPERATURES: October 1967 to September 1976.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT													
03 NOV	1145	928	605	9.6	115	8.6	348	15.0	13.0	140	38.7	10.8	1.46
15 JAN	1545	835	598	11.2	108	8.7	356	-3.0	3.5	150	41.1	11.7	1.46
16	1255	961	604	11.6	108	8.6	436	-8.0	2.5				
MAR 28	1130	527	600			8.1	470	7.0	4.0				
MAY 07	1510	1360	610	9.1	99	8.3	442	16.0	9.0				
JUN 19	1405	728				8.4	326	25.5	15.0				
JUL 11	1410	709				8.2	338	25.5	16.0				
AUG 16	1040	593	612	9.0	119	8.2	334	22.5	18.0				
SEP 12	1400	581	610	8.5	113	8.8	393	28.0	18.0				
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)
OCT 03	.6	16.7	124		3.1	. 2	3.7	51.1	.27	501		200	<.020
NOV 15	.6	18.0		134	3.1	. 2	4.1	55.7	.29	486		215	<.041
JAN 16					3.1						282		<.041
MAR													
28 MAY											290		<.041
07 JUN											276		<.041
19 JUL											216		<.040
11 AUG											208		<.040
16 SEP											196		E.035
12											242		E.022
				GEN	,AM- G			IOS- PHO	OS- RUS THO, PH	:0S-			

DATE	MONIA + ORGANIC TOTAL (MG/L AS N)	SOLVED (MG/L AS N)	DIS-	DIS- SOLVED (MG/L AS P)	ORTHO, DIS- SOLVED (MG/L AS P)	(MG/L AS P)
OCT						
03	.23	<.050	<.010	<.050	<.010	<.050
NOV	1.0	- 000	005	0.50	010	0.50
15 JAN	.18	E.029	<.006	<.060	<.018	<.060
16	.18	<.047	<.006	<.060	<.018	<.060
MAR						
28	.16	<.047	<.006	<.060	<.018	<.060
MAY 07	.19	<.047	<.006	<.060	<.018	<.060
JUN	. 19	<.U47	<.000	<.000	<.010	<.000
19	.26	<.050	<.006	<.060	<.020	E.038
JUL						
11	.31	E.031	E.005	<.060	<.020	<.060
AUG 16	.21	.059	<.006	E.031	.024	E.031
SEP		. 555	500	2.001	.521	2.001
12	.31	E.036	E.005	<.060	E.009	<.060

E -- Estimated value.

09213500 BIG SANDY RIVER NEAR FARSON, WY

LOCATION.--Lat $42^{\circ}19^{\circ}01^{\circ}$, long $109^{\circ}29^{\circ}06^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ $NW^{1}/_{4}$ sec.17, T.27 N., R.106 W., Sublette County, Hydrologic Unit 14040104, on left upstream side of Eden Canal diversion, about 1.0 mi upstream from high-water line of Big Sandy Reservoir, 14.5 mi north of Farson, and 24.5 mi upstream from Little Sandy Creek.

DRAINAGE AREA. -- 322 mi².

MEAN

MAX

MIN

(WY)

(WY)

30.2

75.6

1928

8.90

1932

21.2

41.0

1934 9.17

1961

13.2

21.7

1969

3.00

1960

PERIOD OF RECORD.--October 1914 to September 1917, October 1920 to October 1924, October 1926 to September 1934, April 1953 to current year (no winter records since 1971). Prior to October 1968, published as Big Sandy Creek near Farson. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS. -- WSP 1733: Drainage area.

GAGE.--Water-stage recorder and concrete control. Elevation of gage is 6,770 ft above sea level, from topographic map. Prior to Apr. 28, 1921, nonrecording gage, and Apr. 28, 1921, to Aug. 3, 1934, water-stage recorder at site 0.5 mi upstream at different datum. Apr. 17, 1953, to Nov. 11, 1954, water-stage recorder at site 1.5 mi upstream at different datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Diversions for irrigation of about 1,000 acre upstream from station. The Eden Canal, which bypasses the station, has not been used since station was establish at present site in November 1954. National Weather Service data collection platform with satellite telemetry at station. Result of discharge measurement, in cubic feet per second, made during the period when station was not in operation, is given below:

Oct. 6 19.6

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							e47	132	201	75	11	6.1
2							e50	143	203	69	9.5	5.9
3							e43	156	214	62	9.0	6.4
4							e35	125	251	56	9.5	6.3
5							e37	96	205	52	8.6	6.4
3							637	50	203	32	0.0	0.4
6							e38	103	168	48	7.7	6.9
7							e38	123	139	48	8.0	13
8							e33	122	126	47	8.6	13
9							e26	137	125	53	12	14
10							e21	191	126	50	11	13
							022		120	50		13
11							e21	250	137	49	11	12
12							e22	280	142	55	14	11
13							e22	320	145	49	14	12
14							e21	376	174	45	11	12
15							e21	413	153	43	9.3	14
13							CZI	113	133	13	5.5	
16							20	417	132	42	9.9	15
17							22	483	113	42	13	15
18							29	386	97	43	12	14
19							72	322	91	36	9.9	13
20							83	253	83	30	9.8	17
20							03	255	03	50	5.0	Ξ,
21							60	278	80	27	12	16
22							49	197	78	25	11	11
23							41	176	78	21	12	9.9
24							38	201	79	20	15	9.3
25							37	264	84	20	11	8.7
23							3,	201	0.1	20		0.,
26							44	299	89	20	9.4	8.7
27							53	299	92	21	8.3	12
28							73	306	89	20	7.7	14
29							89	296	87	19	7.4	13
30							103	240	81	18	6.8	11
31								224		14	6.2	
31								224		1.1	0.2	
TOTAL							1288	7608	3862	1219	315.6	339.6
MEAN							42.9	245	129	39.3	10.2	11.3
MAX							103	483	251	75	15	17
MIN							20	96	78	14	6.2	5.9
AC-FT							2550	15090	7660	2420	626	674

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1915 - 2001, BY WATER YEAR (WY)*

22.9

1969

1960

.30

12.1

26.0

1969

1960

.10

21.8

46.7 1967

2.98

1961

60.1

1983

1975

148

238

454

1928

89.1

1933

419

905

1986

1934

176

510

1995

14.3

1934

49.3

1930

8.48

1931

155

30.6

83.9

1927 2.07

1931

09213500 BIG SANDY RIVER NEAR FARSON, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR*	FOR 2001 WAT	ER YEAR*	WATER YEARS	3 1915 - 2001*
ANNUAL MEAN					86.7	
HIGHEST ANNUAL MEAN					148	1917
LOWEST ANNUAL MEAN					33.0	1934
HIGHEST DAILY MEAN	629	May 30	483	May 17	1690	Jun 4 1986
LOWEST DAILY MEAN	12	Aug 11	5.9	Sep 2	.00	Jan 27 1963
ANNUAL SEVEN-DAY MINIMUM	13	Aug 10	6.3	Aug 30	.10	Feb 1 1960
MAXIMUM PEAK FLOW			550	May 17	1890	Jun 3 1986
MAXIMUM PEAK STAGE			6.49	May 17	8.46	Jun 3 1986
ANNUAL RUNOFF (AC-FT)					62800	
10 PERCENT EXCEEDS			234		349	
50 PERCENT EXCEEDS			41		38	
90 PERCENT EXCEEDS			9.1		10	

For period of operation. Estimated.

09213700 BIG SANDY RESERVOIR NEAR FARSON, WY

LOCATION.--Lat $42^{\circ}14^{\circ}57^{\circ}$, long $109^{\circ}25^{\circ}43^{\circ}$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec.11, T.26 N., R.106 W., Sweetwater County, Hydrologic Unit 14040104, 10.1 mi north of Farson and 20.5 mi upstream from Little Sandy Creek.

DRAINAGE AREA. -- 386 mi².

PERIOD OF RECORD. -- May 1987 to current year.

REVISED. --WDR WY-98-1: 1996, 1997.

GAGE.--Water-stage recorder. Datum of gage is 6,770.00 ft above sea level (levels by U.S. Bureau of Reclamation).

REMARKS.--Records good except those for estimated contents, which are poor. Reservoir is formed by an earthfill dam, storage began in April 1953. Total capacity, 54,385 acre-ft at elevation 6,762.8 ft, crest of spillway, including 1,425 acre-ft of dead storage in a permanent pool at elevation 6,720.0 ft, trash-rack sill. Reservoir is used for storage of irrigation water and for recreation. Figures given herein represent active storage. U.S. Geological Survey data collection platform with satellite telemetry at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents recorded, 41,400 acre-ft, June 12, 1997, elevation, 6,758.71 ft, June 12, 1997; minimum contents recorded, 322 acre-ft, Sept. 15, 2000, elevation, 6,721.85 ft.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 22,500 acre-ft, May 30, maximum daily elevation 6,750.18 ft; minimum daily contents, 358 acre-ft, Aug. 16, minimum daily elevation 6722.04 ft.

Capacity table (elevation, in feet, and contents, in acre-feet)

6,720	0	6,740	8,655	6,760	44,905
6,730	2,545	6,750	22,155		

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e630	e1500	e3710	e4540	e5140	5960	8240	11100	22000	14600	2940	664
2	e641	e1690	e3720	e4560	e5160	e5970	8390	11300	21800	14200	2480	673
3	e652	e1880	e3740	e4580	e5180	e5990	8520	11500	21600	13800	2020	681
4	e668	e2080	e3750	e4590	e5200	e6000	8660	11800	21500	13400	1580	688
5	e683	e2180	e3760	4620	e5210	e6030	8790	11900	21400	12900	1190	697
6	e696	2410	3770	e4650	e5220	e6070	8910	12100	21200	12600	826	703
7	e713	e2520	e3840	e4700	e5230	e6110	9000	12300	20900	12200	559	717
8	e724	e2590	e3890	e4720	5250	e6140	9090	12500	20500	11800	372	738
9	e737	e2660	e3940	4750	e5270	e6160	9160	12700	20200	11500	370	755
10	e756	e2730	e3990	e4780	e5290	e6200	9260	13000	19900	11200	368	772
11	e770	e2800	e4040	e4800	e5310	e6220	9330	13500	19600	11000	366	792
12	e781	e2870	e4070	e4830	5340	6260	9400	13900	19400	10800	364	806
13	e800	e2940	4120	e4840	e5360	e6280	9440	14500	19200	10500	362	831
14	e818	e3000	e4180	e4840	e5390	e6300	9490	15100	19200	10200	360	847
15	e832	e3080	e4220	e4850	e5430	e6340	9530	15900	19200	9980	358	868
16	e850	e3160	e4260	e4870	e5460	e6390	9570	16800	19100	9650	366	886
17	e866	e3230	e4280	e4900	e5490	e6430	9620	17800	19000	9320	384	913
18	e878	e3270	4330	e4920	e5510	e6430	9680	18500	18700	8960	412	934
19	e894	3370	e4360	e4940	5520	6450	9810	19100	18400	8570	434	948
20	e912	e3440	e4370	e4960	e5550	e6660	9970	19500	18100	8180	460	969
21	e926	e3510	e4380	e4960	5580	e6800	10100	20000	17800	7770	484	988
22	e944	e3540	e4380	4960	e5610	e6910	10200	20300	17500	7360	508	1010
23	e959	3600	e4390	5000	e5650	e7000	10200	20600	17100	6910	528	1020
24	e971	e3630	e4400	e5010	e5680	e7120	10300	21000	16800	6460	554	1040
25	e986	e3650	e4420	e5020	e5720	e7180	10300	21300	16400	5990	576	1050
26 27 28 29 30 31	e1000 e1020 e1040 e1060 1060 e1300	e3660 e3670 e3670 e3680 e3690	e4430 4440 4440 4440 e4500 e4520	5040 e5070 e5080 5090 e5100 e5110	e5730 5770 e5860 	7330 e7460 7690 7870 8000 8110	10400 10500 10600 10700 10900	21700 22100 22300 22500 22500 22200	16100 15900 15600 15300 15000	5510 5100 4700 4300 3910 3410	595 612 625 636 648 658	1060 1070 1080 1090 1100
MAX	1300	3690	4520	5110	5860	8110	10900	22500	22000	14600	2940	1100
MIN	630	1500	3710	4540	5140	5960	8240	11100	15000	3410	358	664
(#)						6739.4	6742.3	6750.0	6745.6	6732.1	6723.5	6725.4
(*)	+683	+2390	+830	+590	+750	+2250	+2790	+11300	-7200	-11590	-2752	+442

CAL YR 2000 MAX 36000 MIN 322 WTR YR 2001 MAX 19500 MIN 386

Elevation, in feet, at end of month.

Change in contents, in acre-feet.

Estimated.

09213700 BIG SANDY RESERVOIR NEAR FARSON, WY--Continued

09216050 BIG SANDY RIVER AT GASSON BRIDGE, NEAR EDEN, WY

LOCATION.--Lat $41^{\circ}56^{\circ}51^{\circ}$, long $109^{\circ}41^{\circ}15^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec.29, T.23 N., R.108 W., Sweetwater County, Hydrologic Unit 14040104, on right bank 20 ft downstream from Gasson Bridge and 14.5 mi southwest of Eden.

DRAINAGE AREA.--1,720 mi².

PERIOD OF RECORD. -- May 1972 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,350 ft above sea level, from topographic map. Prior to June 10, 1998, at site 1,250 ft upstream at present datum. U.S. Geological Survey data collection platform with satellite telemetry at station.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs and diversions for irrigation of about 19,300 acres upstream from station.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES												
2 41 49 e24 e22 e24 e28 e24 e28 65 31 26 19 25 25 4 4 40 42 e23 e24 e28 e65 31 26 19 25 25 5 4 40 44 e25 e23 e25 e23 e25 e30 e61 31 32 19 30 25 7 42 38 e26 e22 e25 e35 e61 27 33 20 31 23 8 42 43 e23 e24 e24 e28 e64 27 23 23 24 31 24 31 22 10 42 e41 e26 e22 e25 e35 e61 27 33 20 31 23 9 42 e41 e26 e22 e25 e24 e40 62 25 34 23 30 23 9 42 e41 e26 e22 e23 e48 56 24 31 24 31 22 31 24 31 22 11 45 e40 e42 e23 e24 e48 56 24 27 22 32 24 11 45 e40 e25 e22 e23 e48 56 24 27 22 32 24 11 45 e40 e25 e22 e23 e24 e80 50 22 23 23 27 25 47 22 12 47 e38 e24 e23 e24 e80 50 22 23 42 25 34 23 37 33 15 43 14 44 e30 e25 e23 e25 e31 e25 e100 50 22 34 26 36 31 14 44 e30 e25 e23 e25 e31 e25 e100 50 22 34 26 36 31 14 44 e30 e25 e23 e25 e31 e25 e100 50 22 34 26 36 36 31 15 43 e28 e26 e23 e25 e101 50 22 34 26 36 36 31 15 43 e28 e26 e23 e25 e100 50 22 34 26 36 36 31 15 43 e28 e26 e23 e25 e100 50 22 34 26 26 36 36 31 16 42 e29 e25 e25 e25 e44 e77 23 44 22 23 37 30 16 42 e42 e29 e25 e24 e46 60 25 e25 e23 e25 e100 50 22 34 26 36 36 31 15 43 e28 e26 e23 e25 e100 50 22 34 26 26 36 36 31 16 42 e29 e25 e22 e24 e66 e23 e25 e172 47 23 43 23 37 30 16 42 e29 e25 e24 e25 54 46 27 e23 42 22 37 33 30 16 42 e29 e24 e21 e25 54 44 45 26 30 18 37 32 19 44 e28 e24 e21 e25 44 45 26 30 18 37 32 19 44 e28 e24 e21 e25 44 45 22 27 16 30 18 37 32 29 11 44 e27 e23 e23 e23 e27 54 45 22 27 16 34 28 21 30 31 29 14 4 e28 e24 e22 e26 e25 e44 e55 e25 e25 e25 e35 e25 e25 e25 e25 e25 e25 e25 e25 e25 e2	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3 40 43 e24 e23 e24 e28 65 31 26 19 25 25 5 40 44 e25 e23 e25 e29 63 30 29 19 29 25 6 41 44 e26 e23 e25 e30 61 31 32 19 30 25 7 42 38 e26 e22 e24 e40 62 25 34 23 30 23 8 42 43 e26 e22 e24 e40 62 25 34 23 30 23 10 42 e41 e26 e22 e23 e44 e40 62 25 e23 e24 e60 52 23 27 25 47 22 11 45 e40 e25 e23 e24 e60 52 23 27	1	41	51	e25	e23	e24	e25	68	34	26	20	29	27
3 40 43 e24 e23 e24 e28 65 31 26 19 25 25 5 40 44 e25 e23 e25 e29 63 30 29 19 29 25 6 41 44 e26 e23 e25 e30 61 31 32 19 30 25 7 42 38 e26 e22 e24 e40 62 25 34 23 30 23 8 42 43 e26 e22 e24 e40 62 25 34 23 30 23 10 42 e41 e26 e22 e23 e44 e40 62 25 e23 e24 e60 52 23 27 25 47 22 11 45 e40 e25 e23 e24 e60 52 23 27	2	41	49	e24	e22	e24	e27	70	32	25	20	26	26
4 40 42 e24 e23 e24 e28 64 30 28 18 28 25 5 40 44 e25 e25 e29 e63 30 29 19 29 25 6 41 44 e26 e23 e25 e35 61 27 33 20 31 23 8 42 43 e25 e22 e24 e40 62 25 34 23 30 23 9 42 e43 e26 e22 e23 e43 58 24 31 24 31 22 21 43 124 31 22 23 24 40 60 55 58 24 31 24 31 22 22 29 26 44 22 23 22 23 22 29 26 44 28 23 e23 e23 e23		40	43		e23	e24	e28	65	31	26	19	25	
5 40 44 e25 e23 e25 e29 63 30 29 19 29 25 6 41 44 e26 e22 e25 e30 61 31 32 19 30 25 7 42 38 e26 e22 e24 e40 62 25 34 23 30 23 8 42 43 e26 e22 e23 e48 56 24 27 22 32 224 10 42 e41 e26 e22 e23 e48 56 24 27 22 32 24 11 45 e40 e25 e23 e24 e80 50 22 29 26 44 28 12 47 e38 e24 e23 e25 e100 50 22 34 26 36 31 14 44 e38 <te< td=""><td></td><td>40</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25</td></te<>		40											25
7 42 38 e26 e22 e25 e35 61 27 33 20 31 23 8 42 43 e26 e22 e23 e43 58 24 31 24 31 22 10 42 e41 e26 e22 e23 e43 58 24 31 24 31 22 11 45 e40 e25 e23 e24 e60 52 23 27 25 47 22 12 47 e38 e24 e23 e24 e80 50 22 29 26 44 28 13 45 e34 e25 e23 e25 e131 49 22 42 22 37 33 14 44 e30 e25 e23 e25 131 49 92 44 22 37 33 15 43 <t< td=""><td></td><td>40</td><td></td><td></td><td></td><td></td><td></td><td></td><td>30</td><td></td><td></td><td></td><td></td></t<>		40							30				
8 42 43 e25 e22 e24 e40 62 25 34 23 30 23 10 42 e41 e26 e22 e23 e48 56 24 27 22 32 24 11 45 e40 e25 e23 e24 e60 52 23 27 25 47 22 12 47 e38 e24 e23 e24 e80 50 22 29 26 44 28 13 45 e34 e25 e23 e25 e100 50 22 34 26 36 31 14 44 e30 e25 e23 e25 131 49 22 42 22 37 33 15 43 e28 e26 e23 e25 172 47 23 43 23 37 30 16 42		41	44	e26	e23	e25	e30	61			19	30	
9 42 e41 e26 e22 e23 e44 58 24 31 24 31 22 11 44 e26 e22 e23 e48 58 24 37 22 32 24 11 45 e40 e25 e23 e24 e80 50 22 27 25 47 22 12 12 47 e38 e24 e23 e24 e80 50 22 29 26 44 28 11 4 44 e30 e25 e23 e25 e100 50 22 34 26 36 31 14 44 e30 e25 e23 e25 e100 50 22 34 26 36 31 15 43 e28 e26 e23 e25 131 49 22 42 22 37 33 15 43 e28 e26 e23 e25 172 47 23 43 23 37 30 16 42 e29 e25 e22 e24 66 27 46 26 32 21 32 31 18 42 e29 e25 e22 e24 67 46 26 32 21 32 31 18 42 e29 e24 e22 e25 54 44 45 26 30 18 37 32 18 42 e29 e24 e21 e25 e44 45 26 30 18 37 32 19 44 e27 e23 e23 e27 54 45 25 31 18 37 32 20 44 e27 e23 e23 e27 54 45 25 31 18 37 32 29 11 44 e27 e23 e23 e23 e27 54 45 24 26 20 33 29 11 44 e27 e24 e23 e27 60 43 24 27 18 35 28 23 46 e26 e23 e24 e27 68 42 22 27 18 35 28 23 46 e26 e23 e24 e27 68 42 22 27 18 35 28 23 46 e26 e27 e24 e23 e27 60 43 24 27 18 35 28 23 46 e26 e23 e24 e27 68 42 23 27 18 35 28 23 46 e26 e23 e24 e27 68 42 23 27 18 35 28 23 46 e26 e23 e24 e27 68 42 23 27 18 35 28 23 46 e26 e23 e24 e27 68 42 23 27 18 35 28 23 46 e26 e27 e24 e23 e24 e27 68 42 23 27 18 35 28 23 46 e26 e27 e24 e23 e24 e27 68 42 23 27 18 35 28 23 46 e26 e27 e23 e24 e27 68 42 23 27 18 35 28 23 46 e26 e23 e24 e27 68 42 23 27 16 34 27 18 35 28 25 45 e27 e23 e24 e27 93 40 22 27 16 34 28 25 25 45 e27 e23 e24 e26 100 39 22 25 18 32 25 26 45 e27 e23 e24 e26 100 39 22 25 18 32 25 26 45 e27 e23 e24 e26 100 39 22 25 18 32 25 26 28 48 e28 e23 e24 e26 100 39 22 25 18 32 25 26 28 48 e28 e23 e24 e26 100 39 22 25 18 32 25 26 28 48 e28 e23 e24 e26 100 39 22 25 18 32 25 26 28 48 e26 e23 e24 e26 100 39 22 25 18 32 25 26 28 28 25 27 24 32 23 25 26 28 28 24 e26 100 39 22 25 18 32 25 26 28 28 25 27 28 28 28 28 28 28 28 28 28 28 28 28 28	7	42	38	e26	e22	e25	e35	61	27	33	20	31	
10	8	42	43	e25	e22	e24	e40	62	25	34	23	30	23
10	9	42	e43	e26	e22	e23	e43	58	24	31	24	31	22
12	10	42	e41	e26	e22	e23	e48	56	24	27	22	32	
13 45 e34 e25 e23 e25 e100 50 22 34 26 36 31 14 44 e30 e25 e23 e25 131 49 22 42 22 37 33 16 42 e29 e25 e22 e24 67 46 26 32 21 32 31 17 42 e30 e24 e22 e25 54 46 27 28 21 30 31 18 42 e29 e24 e21 e25 54 46 27 28 21 30 31 18 42 e29 e24 e22 e26 39 45 25 31 18 37 31 20 44 e27 e23 e23 e27 54 45 25 31 18 37 31 21 44 <td< td=""><td></td><td>45</td><td>e40</td><td>e25</td><td>e23</td><td>e24</td><td>e60</td><td>52</td><td></td><td></td><td></td><td>47</td><td>22</td></td<>		45	e40	e25	e23	e24	e60	52				47	22
14 44 e30 e25 e23 e25 131 49 22 42 22 37 33 15 43 e28 e26 e23 e25 172 47 23 43 23 37 33 16 42 e29 e24 e22 e25 54 46 26 32 21 32 31 17 42 e30 e24 e22 e25 54 46 27 28 21 30 31 18 42 e29 e24 e21 e25 44 45 26 30 18 37 32 19 44 e28 e24 e22 e26 39 45 25 31 18 37 32 20 44 e27 e23 e23 e26 65 43 24 26 21 34 27 21 44 e27 e24 e23 e27 60 43 24 26 21 34	12	47	e38	e24	e23	e24	e80	50	22	29	26	44	
15	13	45	e34	e25	e23	e25	e100	50	22	34	26	36	31
16	14	44	e30	e25	e23	e25	131	49	22	42	22	37	33
17	15	43	e28	e26	e23	e25	172	47	23	43	23	37	30
18 42 e29 e24 e21 e25 44 45 26 30 18 37 32 19 44 e28 e24 e22 e26 39 45 25 31 18 37 31 20 44 e27 e24 e23 e28 65 43 24 26 21 34 27 21 44 e27 e24 e23 e28 65 43 24 26 21 34 27 22 46 e27 e24 e23 e27 60 43 24 27 18 35 28 23 46 e26 e23 e24 e27 68 42 23 25 16 36 27 24 45 e27 e23 e24 e26 100 39 22 25 18 32 25 26 45 e26 e23 e24 e26 102 38 22 27 24 32	16	42	e29	e25	e22	e24	67	46		32	21	32	31
19	17	42	e30	e24	e22	e25	54	46	27	28	21	30	
20 44 e27 e23 e23 e28 65 43 24 26 20 33 29 21 44 e27 e24 e23 e28 65 43 24 26 21 34 27 22 46 e27 e24 e23 e27 60 43 24 27 18 35 28 23 46 e26 e23 e24 e27 68 42 23 25 16 36 27 24 45 e27 e23 e24 e27 93 40 22 27 16 34 28 25 45 e27 e23 e24 e26 100 39 22 25 18 32 25 26 45 e26 e23 e24 e26 100 39 22 25 18 32 25 26 45 e27 e23 e24 e26 100 39 22 25 18 32 25 26 45 e27 e23 e24 e26 92 37 22 26 30 30 20 22 27 45 e27 e23 e24 e26 92 37 22 26 30 30 20 22 28 48 e28 e23 e24 e26 92 37 22 26 30 30 20 22 29 47 e26 e22 e25 81 36 26 21 31 29 21 29 47 e26 e22 e25 81 36 26 21 31 29 21 30 49 e26 e23 e24 72 35 30 29 21 31 50 e23 e23 69 28 25 26 TOTAL 1359 1018 750 712 703 2015 1492 795 863 677 1006 786 MEAN 43.8 33.9 24.2 23.0 25.1 65.0 49.7 25.6 28.8 21.8 32.5 26.2 MAX 50 51 26 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 28 27 70 34 43 31 47 33 MIN 40 26 22 21 23 25 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 28 27 70 34 43 31 47 33 MIN 40 26 22 21 23 25 25 25 25 25 25 25 25 25 MAX 50 51 26 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 25 25 25 25 25 25 25 25 MAX 102 149 60.4 55.5 74.0 393 462 208 627 340 119 100 (WY) 1984 1984 1976 1984 1982 1997 1980 1984 1986 1995 1983 1983 MIN 36.0 31.5 22.1 17.4 16.4 36.4 28.3 19.7 28.8 21.8 32.4 26.2	18	42	e29	e24	e21	e25	44	45	26	30	18	37	32
21	19	44	e28	e24	e22	e26	39	45	25	31	18	37	31
22 46 e27 e24 e23 e27 60 43 24 27 18 35 28 23 46 e26 e23 e24 e27 68 42 23 25 16 36 27 24 45 e27 e23 e24 e27 93 40 22 27 16 34 28 25 45 e27 e23 e24 e26 100 39 22 25 18 32 25 26 45 e27 e23 e24 e26 100 39 22 25 18 32 25 26 45 e27 e23 e24 e26 100 39 22 25 18 32 25 26 45 e27 e23 e24 e26 100 39 22 25 18 32 25 26 45 e27 e23 e24 e26 100 39 22 25 18 32 25 26 45 e27 e23 e24 e26 92 37 22 26 30 30 20 22 28 48 e28 e23 e24 e26 92 37 22 26 30 29 21 29 47 e26 e22 e25 81 36 26 21 31 29 21 30 49 e26 e23 e24 72 35 30 21 24 28 21 31 50 e23 e23 69 28 25 26 26 26 26 26 26 26 26 26 26 26 26 26	20	44	e27	e23	e23	e27	54	45	24	26	20	33	29
23		44											
24 45 e27 e23 e24 e26 100 39 22 27 16 34 28 25 45 e27 e23 e24 e26 100 39 22 25 18 32 25 26 45 e27 e23 e24 e26 100 39 22 25 18 32 25 26 45 e26 e23 e24 e26 102 38 22 27 24 32 23 27 45 e27 e23 e24 e26 92 37 22 26 30 30 22 28 48 e28 e23 e24 e25 79 36 24 25 30 29 21 29 47 e26 e22 e25 81 36 26 21 31 29 21 30 49 e26 e23 e24 72 35 30 21 24 28 21 31 29 21 31 50 e23 e23 69 28 25 26 25 26 25 26 25 26 25 26 20 21 24 28 21 31 29 21 24 28 21 31 29 21 24 28 21 31 29 21 24 28 21 31 29 21 24 28 21 25 25 25 28 25 81 25 26 25 26 25 26 25 25 25 25 25 25 25 25 25 25 25 25 25	22	46	e27	e24	e23	e27	60	43	24	27	18	35	28
25		46	e26	e23	e24	e27	68	42			16	36	
26	24	45	e27	e23	e24	e27	93	40	22	27	16	34	28
27 45 e27 e23 e24 e26 92 37 22 26 30 30 22 28 48 e28 e23 e24 e25 79 36 24 25 30 29 21 29 47 e26 e22 e25 81 36 26 21 31 29 21 30 49 e26 e23 e24 72 35 30 21 24 28 21 31 50 e23 e23 69 28 25 26 TOTAL 1359 1018 750 712 703 2015 1492 795 863 677 1006 786 MEAN 43.8 33.9 24.2 23.0 25.1 65.0 49.7 25.6 28.8 21.8 32.5 26.2 M	25	45	e27	e23	e24	e26	100	39	22	25	18	32	25
28													
29 47 e26 e22 e25 81 36 26 21 31 29 21 30 49 e26 e23 e24 72 35 30 21 24 28 21 31 50 e23 e23 69 28 25 26 TOTAL 1359 1018 750 712 703 2015 1492 795 863 677 1006 786 MEAN 43.8 33.9 24.2 23.0 25.1 65.0 49.7 25.6 28.8 21.8 32.5 26.2 MAX 50 51 26 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 35 22 21 16 25 21 AC-FT 2700 2020 1490 1410 1390 4000 2960 1580 1710 1340 2000 1560 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 2001, BY WATER YEAR (WY) MEAN 61.9 54.2 38.6 31.3 33.9 86.0 111 77.7 149 107 79.5 72.6 MAX 102 149 60.4 55.5 74.0 393 462 208 627 340 119 100 (WY) 1984 1984 1976 1984 1982 1997 1980 1984 1986 1995 1983 1983 MIN 36.0 31.5 22.1 17.4 16.4 36.4 28.3 19.7 28.8 21.8 32.4 26.2	27	45	e27	e23	e24	e26	92	37	22	26	30	30	
30	28	48	e28	e23	e24	e25		36	24	25	30	29	
31 50 e23 e23 69 28 25 26 TOTAL 1359 1018 750 712 703 2015 1492 795 863 677 1006 786 MEAN 43.8 33.9 24.2 23.0 25.1 65.0 49.7 25.6 28.8 21.8 32.5 26.2 MAX 50 51 26 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 35 22 21 16 25 21 AC-FT 2700 2020 1490 1410 1390 4000 2960 1580 1710 1340 2000 1560 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 2001, BY WATER YEAR (WY) MEAN 61.9 54.2 38.6 31.3 33.9 86.0 111 77.7 149 107 79.5 72.6 MAX 102 149 60.4 55.5 74.0 393 462 208 627 340 119 100 (WY) 1984 1984 1976 1984 1982 1997 1980 1984 1986 1995 1983 1983 MIN 36.0 31.5 22.1 17.4 16.4 36.4 28.3 19.7 28.8 21.8 32.4 26.2	29	47	e26	e22	e25		81	36	26	21	31	29	21
TOTAL 1359 1018 750 712 703 2015 1492 795 863 677 1006 786 MEAN 43.8 33.9 24.2 23.0 25.1 65.0 49.7 25.6 28.8 21.8 32.5 26.2 MAX 50 51 26 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 35 22 21 16 25 21 AC-FT 2700 2020 1490 1410 1390 4000 2960 1580 1710 1340 2000 1560 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 2001, BY WATER YEAR (WY) MEAN 61.9 54.2 38.6 31.3 33.9 86.0 111 77.7 149 107 79.5 72.6 MAX 102 149 60.4 55.5 74.0 393 462 208 627 340 119 100 (WY) 1984 1984 1976 1984 1982 1997 1980 1984 1986 1995 1983 1983 MIN 36.0 31.5 22.1 17.4 16.4 36.4 28.3 19.7 28.8 21.8 32.4 26.2	30	49	e26	e23	e24		72	35	30	21	24	28	21
MEAN 43.8 33.9 24.2 23.0 25.1 65.0 49.7 25.6 28.8 21.8 32.5 26.2 MAX 50 51 26 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 35 22 21 16 25 21 AC-FT 2700 2020 1490 1410 1390 4000 2960 1580 1710 1340 2000 1560 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 2001, BY WATER YEAR (WY) MEAN 61.9 54.2 38.6 31.3 33.9 86.0 111 77.7 149 107 79.5 72.6 MAX 102 149 60.4 55.5 74.0 393 462 208 627 340 119 100 (WY) 1984 1984 1976 1984 1982 1997 1980 1984 1986 1995 1983 1983 <	31	50		e23	e23		69		28		25	26	
MAX 50 51 26 25 28 172 70 34 43 31 47 33 MIN 40 26 22 21 23 25 35 22 21 16 25 21 AC-FT 2700 2020 1490 1410 1390 4000 2960 1580 1710 1340 2000 1560 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 2001, BY WATER YEAR (WY) MEAN 61.9 54.2 38.6 31.3 33.9 86.0 111 77.7 149 107 79.5 72.6 MAX 102 149 60.4 55.5 74.0 393 462 208 627 340 119 100 (WY) 1984 1984 1976 1984 1982 1997 1980 1984 1986 1995 1983 1983 MIN 36.0 31.5 22.1 17.4 16.4 36.4 28.3 19.7 28.8 21.8 32.4 26.2	TOTAL												
MIN 40 26 22 21 23 25 35 22 21 16 25 21 AC-FT 2700 2020 1490 1410 1390 4000 2960 1580 1710 1340 2000 1560 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 2001, BY WATER YEAR (WY) MEAN 61.9 54.2 38.6 31.3 33.9 86.0 111 77.7 149 107 79.5 72.6 MAX 102 149 60.4 55.5 74.0 393 462 208 627 340 119 100 (WY) 1984 1984 1984 1976 1984 1982 1997 1980 1984 1986 1995 1983 1983 MIN 36.0 31.5 22.1 17.4 16.4 36.4 28.3 19.7 28.8 21.8 32.4 26.2		43.8	33.9	24.2	23.0	25.1	65.0	49.7	25.6	28.8	21.8	32.5	26.2
AC-FT 2700 2020 1490 1410 1390 4000 2960 1580 1710 1340 2000 1560 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 2001, BY WATER YEAR (WY) MEAN 61.9 54.2 38.6 31.3 33.9 86.0 111 77.7 149 107 79.5 72.6 MAX 102 149 60.4 55.5 74.0 393 462 208 627 340 119 100 (WY) 1984 1984 1976 1984 1982 1997 1980 1984 1986 1995 1983 1983 MIN 36.0 31.5 22.1 17.4 16.4 36.4 28.3 19.7 28.8 21.8 32.4 26.2	MAX	50	51	26	25	28	172	70	34	43	31	47	33
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1972 - 2001, BY WATER YEAR (WY) MEAN 61.9 54.2 38.6 31.3 33.9 86.0 111 77.7 149 107 79.5 72.6 MAX 102 149 60.4 55.5 74.0 393 462 208 627 340 119 100 (WY) 1984 1984 1976 1984 1982 1997 1980 1984 1986 1995 1983 1983 MIN 36.0 31.5 22.1 17.4 16.4 36.4 28.3 19.7 28.8 21.8 32.4 26.2	MIN	40	26	22	21	23	25	35	22	21	16	25	21
MEAN 61.9 54.2 38.6 31.3 33.9 86.0 111 77.7 149 107 79.5 72.6 MAX 102 149 60.4 55.5 74.0 393 462 208 627 340 119 100 (MY) 1984 1984 1976 1984 1982 1997 1980 1984 1986 1995 1983 1983 MIN 36.0 31.5 22.1 17.4 16.4 36.4 28.3 19.7 28.8 21.8 32.4 26.2	AC-FT	2700	2020	1490	1410	1390	4000	2960	1580	1710	1340	2000	1560
MAX 102 149 60.4 55.5 74.0 393 462 208 627 340 119 100 (WY) 1984 1984 1976 1984 1982 1997 1980 1984 1986 1995 1983 1983 MIN 36.0 31.5 22.1 17.4 16.4 36.4 28.3 19.7 28.8 21.8 32.4 26.2	STATIST	CICS OF M	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 1972	2 - 2001,	BY WATER	YEAR (WY))			
MAX 102 149 60.4 55.5 74.0 393 462 208 627 340 119 100 (WY) 1984 1984 1976 1984 1982 1997 1980 1984 1986 1995 1983 1983 MIN 36.0 31.5 22.1 17.4 16.4 36.4 28.3 19.7 28.8 21.8 32.4 26.2	MEAN	61.9	54.2	38.6	31.3	33.9	86.0	111	77.7	149	107	79.5	72.6
(WY) 1984 1984 1976 1984 1982 1997 1980 1984 1986 1995 1983 1983 MIN 36.0 31.5 22.1 17.4 16.4 36.4 28.3 19.7 28.8 21.8 32.4 26.2													
MIN 36.0 31.5 22.1 17.4 16.4 36.4 28.3 19.7 28.8 21.8 32.4 26.2													

09216050 BIG SANDY RIVER AT GASSON BRIDGE, NEAR EDEN, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDA	R YEAR	FOR 2001 W	ATER YEAR	WATER YEAR	S 1972 - 2001
ANNUAL TOTAL	17006		12176			
ANNUAL MEAN	46.5		33.4		74.2	
HIGHEST ANNUAL MEAN					139	1983
LOWEST ANNUAL MEAN					30.6	1990
HIGHEST DAILY MEAN	83	Mar 28	172	Mar 15	5530	Apr 24 1980
LOWEST DAILY MEAN	22	Dec 29	16	Jul 23	7.0	Dec 24 1990
ANNUAL SEVEN-DAY MINIMUM	23	Dec 23	18	Jul 18	11_	Dec 22 1990
MAXIMUM PEAK FLOW			339	ր Mar 15	7430 ^a	Apr 24 1980
MAXIMUM PEAK STAGE			6.00	Mar 3	10.58	Apr 24 1980
ANNUAL RUNOFF (AC-FT)	33730		24150		53740	
10 PERCENT EXCEEDS	64		49		111	
50 PERCENT EXCEEDS	49		27		55	
90 PERCENT EXCEEDS	26		22		28	

From rating curve extended above 2,000 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow. Backwater from ice. Estimated. a b e

09217000 GREEN RIVER NEAR GREEN RIVER, WY

LOCATION.--Lat $41^{\circ}30^{\circ}59^{\circ}$, long $109^{\circ}26^{\circ}54^{\circ}$, in NW $^{1}/_{4}$ NE $^{1}/_{4}$ Sec.26, T.18 N., R.107 W., Sweetwater County, Hydrologic Unit 14040106, on right bank 0.1 mi downstream from Bitter Creek, 1.0 mi southeast of town of Green River, and 4.0 mi upstream from high-water line of Flaming Gorge Reservoir.

DRAINAGE AREA.--14,000 mi^2 , of which 4,260 mi^2 , including 3,959 mi^2 in Great Divide Basin in southern Wyoming, probably is noncontributing.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- April 1951 to current year.

REVISED RECORDS.--WSP 1713: 1957. WDR-76-2: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 6,060 ft above sea level, from topographic map.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Some regulation by Fontenelle Reservoir (station 09211150) since August 1963. Natural flow of stream affected by transbasin diversions, storage reservoirs, power generation, and diversions for irrigation of about 223,000 acres upstream from station. National Weather Service data collection platform with satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge observed, 22,200 ft³/s, June 19, 1918, at site 1.5 mi upstream.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY DEC SEP OCT NOV JAN FEB APR MAY JUL AUG e810 e860 e880 e660 e1580 e798 e880 e900 e610 e1600 e791 e890 e950 e600 e1550 e809 e960 e590 e890 e1450 e950 e610 e810 e920 7 e809 e920 e970 e580 877 750 e812 e930 e980 e600 e610 e920 e809 e915 e950 e600 e610 e900 e812 e900 e910 e580 e650 e880 e809 e880 e910 e620 e680 e840 e813 e901 e930 e660 890 e780 e740 e803 e745 e900 e930 e620 e580 579 697 563 e910 e930 e727 e690 e900 e570 e740 e760 e920 e900 e560 e790 e890 e736 e920 e560 e692 e820 e900 e860 e570 e660 e880 e850 e580 e860 e840 e640 e880 e870 e580 e850 e682 e894 e870 e580 e640 e700 e910 e880 e710 e900 e610 e751 e780 e890 e900 e910 e860 e850 e930 e900 e970 e800 e900 e900 e850 e870 e870 e860 e930 e800 e1100 e760 e890 e850 e900 e1200 e865 e870 e910 e710 e1300 e851 e840 e920 e1400 e670 e849 e880 e920 e1500 e837 e840 e900 --e1600 e900 TOTAL MEAN MAY MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1952 - 2001, BY WATER YEAR (WY) MEAN MAX (WY) MTN 2.72 (WY)

09217000 GREEN RIVER NEAR GREEN RIVER, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR	YEAR	FOR 2001 WAT	ER YEAR	WATER YEARS	1952 - 2001
ANNUAL TOTAL	395062		277993			
ANNUAL MEAN	1079		762		1683	
HIGHEST ANNUAL MEAN					3089	1986
LOWEST ANNUAL MEAN					689	1977
HIGHEST DAILY MEAN	1660 J	un 9	1600 ^e	Apr 30, May 2	16700	Sep 7 1965
LOWEST DAILY MEAN	640 ^e D	ec 19	489	Sep 30	170	Nov 16 1955
ANNUAL SEVEN-DAY MINIMUM	694 D	ec 15	502	Sep 24	214	Dec 24 1962
MAXIMUM PEAK FLOW			1600 ^e h	Apr 30	16800 ^a	Sep 7 1965
MAXIMUM PEAK STAGE			4.34	Nov 23	8.53ª	Sep 7 1965
ANNUAL RUNOFF (AC-FT)	783600		551400		1219000	
10 PERCENT EXCEEDS	1420		923		3680	
50 PERCENT EXCEEDS	1060		747		1100	
90 PERCENT EXCEEDS	802		536		460	

Caused by emergency release from Fontenelle Reservoir. Backwater from ice. Estimated. $\,\,$ a b e

09217000 GREEN RIVER NEAR GREEN RIVER, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1951 to current year.

11... MAR

MAY 09...

JUL 12...

16...

--

--

--

--

--

28...

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: May 1951 to September 1992. WATER TEMPERATURES: May 1951 to September 1992. SUSPENDED-SEDIMENT DISCHARGE: May 1951 to September 1992.

WATER-OUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			WATER-	QUALITY D	ATA, WATE	R YEAR OC	TOBER 200	00 TO SEP	rember 200)1			
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 26	0900	900	609	9.5	98	8.7	532	4.5	7.0	190	46.2	16.9	1.65
JAN 11	1330	901	610	11.8	101	7.7	533	-3.0	.00				
MAR 28 MAY	1550	660				8.6	862	10.5	6.0				
09 JUL	1630	1320	611	9.2	112	8.5	541	23.0	14.0				
12 AUG	0910	651				8.2	496	22.0	19.0				
16	1455	517	618	9.0	127	8.6	500	29.5	21.5				
	DATE		ON (MO TO AS CAO	TRD CHL 4.5 RID AB DIS 3/L SOL	PE, RID - DI NVED SOL F/L (MG CL) AS	E, DIS S- SOI VED (MG J/L AS F) SIC	S- SULI LVED DIS S/L SOI S (MC D2) AS S	FATE DE S- SOI LVED (TO G/L PI SO4) AC-	LVED SOL ONS (TO ER PE	DS, RESING AT DECEMBER SOIL (MC	G.C TUEN IS- DI LVED SOL	OF TII- TTS, SS- VED	
	OCT 26 JAN	1	. 13	39 5.	3 .	3 3.	5 1:	34	.45 80		33	3	

345

594

346

312

322

--

09217010 GREEN RIVER BELOW GREEN RIVER, WY

LOCATION.--Lat $41^{\circ}29^{\circ}46^{\circ}$, long $109^{\circ}26^{\circ}17^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec.36, T.18 N., R.107 W., Sweetwater County, Hydrologic Unit 14040106, at bridge on county road, 1.7 mi downstream from Bitter Creek, 2.7 mi southeast of town of Green River, and 3.3 mi upstream from Logan Draw.

PERIOD OF RECORD.--Water years 1974 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
OCT													
26	1125	900	610	11.2	116	8.6	593	9.0	7.0	<.041	.36	.060	E.004
JAN													
11	1555	901					585	-4.0	.00	.055	.26	.144	E.003
MAR													
28	1705	660					988	8.5	6.0	.095	.78	.191	E.005
MAY													
09	1725	1320					808	22.0	15.0	<.041	.53	.194	.010
JUL	1010	CE1					565	05.0	10 5	. 0.10	4.5	T 046	D 005
12	1010	651					565	25.0	19.5	<.040	.45	E.046	E.005
AUG	1.00	517					F70	29.5	01 5	<.040			<.008
16	1605	21/					570	29.5	21.5	<.040			<.008

		PHOS-	
	PHOS-	PHORUS	
	PHORUS	ORTHO,	PHOS-
	DIS-	DIS-	PHORUS
	SOLVED	SOLVED	TOTAL
DATE	(MG/L	(MG/L	(MG/L
	AS P)	AS P)	AS P)
	(00666)	(00671)	(00665)
OCT			
26	<.060	E.015	E.037
JAN			
11	<.060	.022	.067
MAR	0.55	0.5.4	201
28	.065	.054	.381
MAY	T 020	000	144
09	E.039	.022	.144
JUL	. 0.00	T 010	001
12	<.060	E.010	.081
AUG		. 000	
16		<.020	

E -- Estimated value.

09217900 BLACKS FORK NEAR ROBERTSON, WY

LOCATION.--Lat $40^{\circ}57'33"$, long $110^{\circ}34'46"$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.27, T.3 N., R.12 E., Summit County, Utah, Hydrologic Unit 14040107, on left bank 1 mi downstream from East Fork, 2.7 mi south of Utah-Wyoming State line, and 18 mi south of Robertson.

DRAINAGE AREA. -- 130 mi².

PERIOD OF RECORD.--October 1937 to July 1939 (published as "at Blacks Fork Ranger Station"), July 1966 to September 1986, October 1992 to current year.

GAGE.--Water-stage recorder. Datum of gage is 8,811.3 ft above sea level (Bureau of Reclamation benchmark). Datums published from October 1968 to September 1978 are incorrect. October 1937 to July 1939, at site 970 ft downstream at different datum, July 1966 to September 1986 and October 1992 to September 1993 at site 0.2 mi downstream at datum 6.5 ft lower. U.S. Geological Survey data collection platform with satellite telemetry at station.

REMARKS.--Records fair except those for estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY AUG SEP e26 e31 e17 e17 e43 e25 e43 e26 e16 e27 e16 e42 e28 e40 e29 e20 e16 e28 e21 e16 e40 e40 e27 e19 e15 e25 e38 e17 e16 e25 e36 e26 e17 13 28 13 23 33 e36 e27 e18 e34 e28 e19 e32 e26 e19 e13 e31 e25 e19 e31 e25 e20 50 e29 e28 e25 23 e20 e21 13 58 219 35 e24 e28 e23 e20 e28 e24 e25 e27 17 e27 e25 e27 e26 e25 e28 e25 e17 e29 e24 e18 e30 e26 e17 e27 e29 e16 e27 e26 e28 ___ TOTAL 33.3 19.0 16.7 60.7 45.4 42.3 27.4 41 MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1966 - 2001, BY WATER YEAR (WY) 67.7 ME AN 53.6 40.2 32.6 27.3 24.1 25.0 36.9 62.0 55.7 38.6 50.0 MAX (WY) MTN 23.9 20.8 11.1 6.73 9.32 9.78 19.4 1975 60.5 32.2 27.4 (WY)

09217900 BLACKS FORK NEAR ROBERTSON, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	CER YEAR	WATER YEARS	3 1966 - 2001
ANNUAL TOTAL	33017		37020			
ANNUAL MEAN	90.2		101		161	
HIGHEST ANNUAL MEAN					228	1983
LOWEST ANNUAL MEAN					79.3	1977
HIGHEST DAILY MEAN	930	May 24	1180	May 16	1880	Jun 19 1983
LOWEST DAILY MEAN	14	Mar 15	13	Mar 13,14,17,18	3.2	Apr 2 1994
ANNUAL SEVEN-DAY MINIMUM	16	Mar 12	13	Mar 12	3.9	Apr 2 1994
MAXIMUM PEAK FLOW			1490	May 16	2480 ^a h	Jun 19 1983
MAXIMUM PEAK STAGE			4.16	May 16	5.17	Jun 15 1995
ANNUAL RUNOFF (AC-FT)	65490		73430		116700	
10 PERCENT EXCEEDS	220		278		494	
50 PERCENT EXCEEDS	38		33		45	
90 PERCENT EXCEEDS	24		19		21	

a Gage height, 4.91 ft, site and datum then in use. b Discharge, 2,210 ${\rm ft}^3/{\rm s}.$ e Estimated.

09220000 EAST FORK OF SMITHS FORK NEAR ROBERTSON, WY

LOCATION.--Lat $41^{\circ}03^{\circ}15^{\circ}$, long $100^{\circ}23^{\circ}52^{\circ}$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec.5, T.12 N., R.115 W., Uinta County, Hydrologic Unit 14040107, Wasatch National Forest, on left bank 60 ft downstream from bridge, 1.0 mi upstream from Gilbert Creek, 6.1 mi downstream from State Line Reservoir, and 9.0 mi south of Robertson.

DRAINAGE AREA. -- 53.0 mi².

PERIOD OF RECORD.--July 1939 to September 1984, April to September 2001 (no winter records since 1971). Monthly discharge only for some periods, published in WSP 1313. Prior to Oct. 1, 1978, published as East Fork of Smith Fork near Robertson.

REVISED RECORDS. -- WSP 979: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 8,470 ft, from topographic map. Prior to July 12, 1957, at datum 3.96 ft higher.

REMARKS.--Records fair, except those for estimated daily discharges, which are poor. Flow completely regulated by State Line Reservoir, 6.1 mi upstream, total capacity, 14,000 acre-ft, dead storage is about 2,000 acre-ft, since May 1979.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e12 260 240 25 ---------___ 2 ___ ___ e12 8.7 265 236 65 24 3 --------e13 162 260 219 24 ------65 --------------e13 262 259 211 ---5 e12 152 260 202 64 32 ---6 7 -----e12 11 260 201 64 32 ------___ e11 11 262 200 52 32 8 226 196 44 32 e10 13 --------------e10 12 196 196 44 32 ---10 e10 11 196 147 44 32 11 12 e10 9.0 192 92 44 28 -----------------e11 8.1 233 92 44 26 13 e11 270 92 45 26 26 25 14 ___ ---___ ___ ___ ___ e12 7.3 269 94 50 15 ------___ e12 28 265 92 52 16 17 ___ ---___ ___ ___ --e12 61 262 89 77 52 26 26 ___ ---------51 -----e12 262 69 18 e13 262 66 52 26 19 ___ ___ ___ ___ ___ ___ e11 78 200 66 51 25 79 25 20 153 55 e11 59 25 21 ___ ___ ___ ___ ___ ___ e11 80 157 52 42 22 e12 79 163 52 36 25 23 --e12 81 36 24 ___ ___ ___ ___ ___ ___ e11 82 163 64 35 25 32 25 74 35 e12 80 163 211 75 26 ___ ___ e12 118 35 35 ___ ___ ___ ___ 27 11 74 35 35 153 249 28 ------------------12 161 245 74 29 35 ___ ---___ ---___ ___ 29 12 165 242 74 25 35 30 ------11 25 241 31 ------------------252 69 25 TOTAL 346 2535.9 6809 3601 1424 859 227 270 MEAN ------------------11.5 81.8 116 45.9 28.6 ------___ ---------65 MAX 13 262 240 35 MIN ___ ___ ___ ---___ ---10 7.1 153 25 24 AC-FT ------------------686 5030 13510 7140 2820 1700 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 - 2001, BY WATER YEAR (WY)* 15.9 10.9 8.10 7.15 7.19 19.1 105 216 28.0 MEAN 8.00 106 42.5 MAX 34.8 19.0 16.9 16.4 13.4 15.0 90.0 221 628 374 120 91.2 (WY) 1962 1952 1966 1966 1966 1943 2.14 1946 1974 1983 1975 1965 1995 5.21 5.50 2.11 1.34 1.55 3.71 26.6 15.9 6.68 59.3 6.64 MIN (WY) 1957 1957 1963 1963 1963 1963 1982 1983 1954 1940 1940 1956

09220000 EAST FORK OF SMITHS FORK NEAR ROBERTSON, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1939 - 2001*
ANNUAL MEAN		47.1
HIGHEST ANNUAL MEAN		88.9 1965
LOWEST ANNUAL MEAN		25.4 1954
HIGHEST DAILY MEAN	270 Jun 13	1200 Jun 24 1983
LOWEST DAILY MEAN	7.1 May 13	1.0 Dec 17 1962
ANNUAL SEVEN-DAY MINIMUM	9.6 May 8	1.0 Dec 17 1962
MAXIMUM PEAK FLOW	290 May 3	1450 Jun 10 1965
MAXIMUM PEAK STAGE	5.02 May 3	6.75 Jun 10 1965
ANNUAL RUNOFF (AC-FT)		34160
10 PERCENT EXCEEDS	242	168
50 PERCENT EXCEEDS	51	20
90 PERCENT EXCEEDS	11	6.0

For period of operation. Estimated.

09222000 BLACKS FORK NEAR LYMAN, WY

LOCATION.--Lat $41^{\circ}27^{\circ}08^{\circ}$, long $110^{\circ}10^{\circ}20^{\circ}$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $SW^{1}/_{4}$ sec.15, T.17 N., R.113 N., Uinta County, Hydrologic Unit 14040107, 200 ft downstream from bridge on old U.S. Highway 30S, 8.5 mi downstream from Smiths Fork, and 11 mi northeast of

DRAINAGE.--821 mi².

PERIOD OF RECORD. -- Water years 1962 to 1989, October 1995 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: May 1962 to September 1983. WATER TEMPERATURES: May 1962 to September 1983.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 25 MAR 27 JUN	1215 1630	23 177	605 605	9.6 9.4	101 98	8.4	2140 862	9.5 8.3	7.0 7.0	 E11k	E8k E22k	181 1020	11 488
21 AUG	1105	3.8				8.2	1690	23.0	18.0	150	180	65	.66
14	1420	9.2	610	7.8	117	8.3	2150	27.0	24.0	E33k	150	31	.77

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

09223000 HAMS FORK BELOW POLE CREEK, NEAR FRONTIER, WY

LOCATION.--Lat $42^{\circ}06^{\circ}38^{\circ}$, long $110^{\circ}42^{\circ}32^{\circ}$, in NE $^{1}/_{4}$ SE $^{1}/_{4}$ NW $^{1}/_{4}$ sec.35, T.25 N., R.117 W., Lincoln County, Hydrologic Unit 14040107, on left bank 2.0 mi downstream from Pole Creek, 4.6 mi upstream from Taylor Creek, and 22 mi northwest of Frontier. DRAINAGE AREA.--128 mi 2 .

PERIOD OF RECORD.--October 1952 to current year. Prior to October 1970, published as "near Elk Creek ranger station."

GAGE.--Water-stage recorder. Elevation of gage is 7,455 ft above sea level, from topographic map. October 1952 to Sept. 2, 1971, at site 270 ft upstream at present datum, Sept. 3, 1971, to July 30, 1980, at site 150 ft upstream at present datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. No diversion upstream from station. National Weather Service data collection platform with satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV AUG 13 e16 e18 e14 e13 49 188 95 21 5.9 1.8 17 19 9.3 92 e15 e19 e14 e14 66 e165 19 3.3 3 16 e9.0 e15 e18 e13 e15 48 e135 80 17 5.8 3.3 77 e8.4 10 4 14 e16 e17 e13 e15 37 e160 17 3.3 13 74 e15 12 e12 45 e150 15 6 e5.3 e18 e16 e16 69 8.9 3.4 14 11 e17 e13 e16 41 e145 62 15 6.0 4.4 e6.4 e16 8 9 3 e6.0 e16 e15 e12 e16 35 e140 57 15 5.6 4 6 27 55 4.9 11 e7.0 e16 e15 e11 e15 e145 15 10 12 e15 e11 e15 26 50 4.9 5.4 e16 e150 11 22 e5.5 e16 e16 e10 25 e171 16 5.7 e14 4.1 25 22 12 36 e5.3 e16 e15 e11 e15 168 47 16 4.0 5.4 13 62 34 e6.2 e17 e15 e12 e15 167 16 4.1 5.3 14 39 e6.8 e16 e15 e12 e14 58 5.0 5.8 15 38 e8.0 e16 e16 e13 e14 22 187 51 15 4.8 15 16 33 e8.2 e15 e15 e13 e15 33 309 45 4.8 14 13 6.7 17 27 e8.2 e15 e14 e12 e15 73 302 40 4.4 18 27 258 144 e8.3 e14 e13 e14 3.8 e14 38 7.6 e10 e13 e13 e12 e14 183 36 3.1 e14 20 23 e12 e14 e13 e12 167 205 33 11 2 4 7.7 21 10 7.0 e14 e15 e13 e11 e15 186 29 27 9.1 9.1 2.6 6.7 5.8 22 26 e14 e14 e12 e11 e23 92 163 23 22 e12 e33 91 147 e14 e15 e12 e12 e12 e50 25 14 e15 e16 e11 e13 139 138 27 8.7 4.0 6.2 197 26 16 e16 e15 e14 136 9.0 6.2 27 11 e17 e14 e12 e13 e13 e50 163 136 25 25 8.5 8.4 3.4 6.2 6.3 28 10 e18 131 e15 e13 e49 180 29 8.5 e18 e16 e14 e48 199 125 23 7.9 1.9 30 8.9 e17 e16 ₽14 ___ e46 201 110 21 7.6 92 7.1 15 6.2 31 e17 e15 102 .92 e48 TOTAL. 607 7 317 5 481 452 757 2598 5222 1427 403 6 140 94 166 9 344 10.6 19.6 12.3 24.4 13.0 5.56 MEAN 14.6 86.6 168 4.55 14 MAX 39 18 18 19 54 201 309 95 21 12 7.7 8.5 MIN 5.3 13 11 10 13 22 102 21 6.2 .92 1.8 5150 10360 2830 801 1500 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1953 - 2001, BY WATER YEAR (WY) MEAN 22.3 19.5 16.3 14.9 15.3 21.0 103 417 395 97.1 29.7 21.5 51.9 54.2 34.4 27.8 26.4 29.1 38.2 398 970 1039 296 64.0 MAX (WY) 1983 1983 1984 1984 1958 1958 1971 1971 1986 1975 1983 1984 MTN 11.1 9 37 9 37 6.23 5 61 6.77 19.8 40.5 24.0 9.32 4.55 5 56 1991 1967 1965 1975 1977 1977 1993 1967 1977 2001 2001 (WY) 1961

09223000 HAMS FORK BELOW POLE CREEK, NEAR FRONTIER, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1953 - 2001
ANNUAL TOTAL	22213.9	12917.64	
ANNUAL MEAN	60.7	35.4	97.9
HIGHEST ANNUAL MEAN			214 1971
LOWEST ANNUAL MEAN			17.7 1977
HIGHEST DAILY MEAN	394 May 25	309 May 16	2000 Jun 5 1986
LOWEST DAILY MEAN	5.3 Nov 6	.92 Aug 30,31	.10 Aug 17 1977
ANNUAL SEVEN-DAY MINIMUM	6.1 Nov 6	2.2 Aug 28	.62 Aug 11 1977
MAXIMUM PEAK FLOW		351 May 16	2230 ^a _h Jun 5 1986
MAXIMUM PEAK STAGE		3.93 May 16	8.10 ^b May 28 1971
ANNUAL RUNOFF (AC-FT)	44060	25620	70940
10 PERCENT EXCEEDS	212	133	305
50 PERCENT EXCEEDS	19	15	22
90 PERCENT EXCEEDS	9.0	5.4	12

a Gage height, 6.72 ft. b Site then in use. e Estimated.

09224050 HAMS FORK NEAR DIAMONDVILLE, WY

LOCATION.--Lat $41^{\circ}45^{\circ}06^{\circ}$, long $110^{\circ}31^{\circ}57^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ SW $^{1}/_{4}$ sec.36, T.21 N., R.116 W., Lincoln County, Hydrologic Unit 14040107, at bridge on U.S. Highway 30 North, 1.9 mi south of Diamondville, and 2.8 mi south of Kemmerer.

PERIOD OF RECORD.--Water years 1974 to September 1989, October 1992 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DIS-	BARO-		OXYGEN,	PH	CDE			NITRO-	NITRO-	NITRO-	PHOS-
		CHARGE,	METRIC		DIS-	WATER	SPE-			GEN,	GEN,	GEN,	PHORUS
		INST.	PRES-		SOLVED	WHOLE	CIFIC			AMMONIA	NO2+NO3	NITRITE	ORTHO,
		CUBIC	SURE	OXYGEN,	(PER-	FIELD	CON-	TEMPER-	TEMPER-	DIS-	DIS-	DIS-	DIS-
		FEET	(MM)	DIS-	CENT	(STAND-	DUCT-	ATURE	ATURE	SOLVED	SOLVED	SOLVED	SOLVED
DATE	TIME	PER	OF	SOLVED	SATUR-	ARD	ANCE	AIR	WATER	(MG/L	(MG/L	(MG/L	(MG/L
		SECOND	HG)	(MG/L)	ATION)	UNITS)	(US/CM)	(DEG C)	(DEG C)	AS N)	AS N)	AS N)	AS P)
		(00061)	(00025)	(00300)	(00301)	(00400)	(00095)	(00020)	(00010)	(00608)	(00631)	(00613)	(00671)
OCT													
24	0940	7.6	595	8.2	83	8.3	634	10.0	5.0	<.041	.620	.006	.046
MAR													
26	1630	109	594	9.2	81	8.2	548	7.0	.00	<.041	.217	E.004	<.018
JUN													
19	1645	50				9.2	354	24.5	20.0	<.040	<.050	<.006	<.020
AUG													
14	1755	4.7	599	12.0	178	9.2	436	25.5	22.5	E.028	.382	.021	.078

DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	0.7 UM-ME (COLS. 100 MI
OCT 24		110
MAR 26	E4k	E8k
JUN 19	E7k	E18k
AUG 14	E4k	E5k

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

09224700 BLACKS FORK NEAR LITTLE AMERICA, WY

LOCATION.--Lat $41^{\circ}32^{\circ}46^{\circ}$, long $109^{\circ}41^{\circ}34^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.15, T.18 N., R.109 W., Sweetwater County, Hydrologic Unit 14040107, on right bank 200 ft upstream from bridge on U.S. Highway 30, 4.2 mi upstream from Meadow Springs Wash, and 8.5 mi east of Little America.

DRAINAGE AREA. -- 3,100 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1962 to current year.

GAGE.--Water-stage recorder. Datum of gage is 6,127.66 ft above sea level.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Natural flow of stream affected by regulation from Meeks Cabin Reservoir, capacity, 32,470 acre-ft, since June 1971, Viva Naughton Reservoir, capacity, 42,400 acre-ft, from State Line Reservoir, capacity, 14,000 acre-ft, since April 1980, numerous smaller reservoirs, and diversions for upstream mines and irrigation of about 76,100 acres upstream from station. National Weather Service data collection platform with satellite telemetry at station.

		DISCHARGE	, CUBIC	FEET PE		WATER YE Y MEAN VA	EAR OCTOBER ALUES	2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	58 42 34 30 27	e36 e32 e29 e28 e26	e24 e25 e24 e23 e24	e21 e20 e21 e20 e22	e39 e42 e45 e48 e45	e76 e85 e90 e95 e100	277 265 252 299 325	137 152 130 119 141	64 61 64 67	36 30 28 28 24	14 12 10 9.9 8.2	1.1 1.0 .97 .93
6 7 8 9	25 24 23 23 23	e21 e22 e21 e23 e21	e25 e24 e25 e26 e27	e21 e20 e19 e22 e25	e42 e39 e36 e34 e36	e115 e130 e150 e170 e185	302 333 339 290 252	158 512 481 401 347	71 98 108 87 80	22 23 46 262 440	5.7 3.9 2.8 2.3 2.5	4.0 4.2 3.5 2.6 2.5
11 12 13 14 15	28 29 29 35 40	e19 e18 e17 e18 e19	e28 e26 e24 e22 e23	e28 e27 e30 e33 e31	e40 e43 e45 e47 e52	e200 e220 e250 e240 e230	218 199 184 172 155	317 282 266 253 262	68 55 51 61 147	520 912 725 508 376	1.8 1.4 .99 .65	2.5 2.3 2.1 5.9 5.2
16 17 18 19 20	39 37 36 33 32	e20 e19 e21 e23 e24	e24 e23 e22 e20 e23	e32 e30 e31 e30 e34	e56 e60 e66 e72 e76	e260 e280 e340 e320 e500	142 131 118 110 101	295 250 421 460 365	136 115 76 62 56	314 257 205 158 120	.42 .36 .32 .30	4.5 17 26 103 39
21 22 23 24 25	33 33 33 34 36	e23 e22 e20 e21 e22	e22 e21 e20 e19 e18	e36 e35 e34 e35 e36	e80 e76 e78 e85 e84	e1400 1970 2250 1260 907	103 125 143 130 120	337 250 192 156 119	47 42 39 40 41	90 68 55 46 35	1.4 6.7 3.5 13 21	25 17 13 11 9.3
26 27 28 29 30 31	35 34 33 34 33 e33	e23 e25 e26 e27 e28	e17 e18 e19 e20 e21 e22	e35 e37 e38 e38 e37 e35	e82 e80 e78 	735 634 543 430 369 317	108 93 81 81 112	90 71 67 64 61 63	38 34 33 30 36	27 25 21 17 16 16	13 8.3 5.2 3.0 1.7	7.9 7.0 6.0 5.3 4.7
TOTAL MEAN MAX MIN AC-FT	1018 32.8 58 23 2020	36 17	699 22.5 28 17 1390	913 29.5 38 19 1810	1606 57.4 85 34 3190	14851 479 2250 76 29460	5560 185 339 81 11030	7219 233 512 61 14320	1981 66.0 147 30 3930	5450 176 912 16 10810	156.18 5.04 21 .26 310	335.70 11.2 103 .93 666
STATIST	rics of M	ONTHLY MEAN	DATA FOR	R WATER	YEARS 196	2 - 2001,	, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	100 376 1983 7.05 1980	336 1983 13.6	78.1 230 1984 5.44 1995	80.8 371 1971 3.94 1991	112 318 1984 26.4 1989	343 912 1997 33.9 1964	502 1310 1973 51.2 1990	957 2918 1984 21.1 1977	1085 4573 1983 14.0 1977	323 1349 1975 4.36 1977	111 542 1983 .55 1994	86.8 576 1983 .000 1994

09224700 BLACKS FORK NEAR LITTLE AMERICA, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1962 - 2001
ANNUAL TOTAL	37761.29	40482.88	
ANNUAL MEAN	103	111	325
HIGHEST ANNUAL MEAN			888 1983
LOWEST ANNUAL MEAN			29.0 1977
HIGHEST DAILY MEAN	430 Apr 17	2250 Mar 23	9340 Jun 13 1965
LOWEST DAILY MEAN	.16 Aug 25-2'	7 .26 Aug 20	.00 Many days,
			several years
ANNUAL SEVEN-DAY MINIMUM	.17 Aug 24	.40 Aug 14	00 Several years
MAXIMUM PEAK FLOW		2910 Mar 23	
MAXIMUM PEAK STAGE		8.50 Mar 23	11.18 ^b Mar 13 1997
ANNUAL RUNOFF (AC-FT)	74900	80300	235500
10 PERCENT EXCEEDS	250	292	936
50 PERCENT EXCEEDS	70	35	118
90 PERCENT EXCEEDS	4.8	5.3	20

a Gage height, 10.90 ft. b Backwater from ice. e Estimated.

09224700 BLACKS FORK NEAR LITTLE AMERICA, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1951 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: March 1951 to current year.
WATER TEMPERATURES: March 1951 to September 1963, December 1964 to current year.

INSTRUMENTATION.--Water-quality monitor for specific conductance and water temperature.

REMARKS.--Published as "near Green River" prior to October 1953 and as "near Marston" October 1953 to September 1964. Partial record of specific conductance and temperature for water years 1979 and 1980 are available at District Office.

Water-temperature records represent water temperature at sensor within 0.2°C.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 6,010 microsiemens/cm, Oct. 1, 1953; minimum daily, 194 microsiemens/cm, May 17, 1984.
WATER TEMPERATURES: Maximum, 40.0°C, July 31, Aug. 1-4, 1984; minimum, 0.0°C on many days during winter period most years.

EXTREMES FOR CURRENT YEAR . --

SPECIFIC CONDUCTANCE: Maximum mean daily, 1,820 microsiemens/cm, Oct. 15; minimum mean daily, 506 microsiemens/cm, May 6.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DIS-										ANC	
		CHARGE,	SPE-			HARD-		MAGNE-	POTAS-	SODIUM		UNFLTRD	CHLO-
		INST.	CIFIC			NESS	CALCIUM	SIUM,	SIUM,	AD-	SODIUM,	TIT 4.5	RIDE,
		CUBIC FEET	CON-	TEMPER-	TEMPER-	TOTAL	DIS-	DIS-	DIS-	SORP-	DIS- SOLVED	LAB	DIS-
DATE	TIME	PER	DUCT- ANCE	ATURE AIR	ATURE WATER	(MG/L AS	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	TION RATIO	SOLVED (MG/L	(MG/L AS	SOLVED (MG/L
DAIL	TIME	SECOND	(US/CM)	(DEG C)	(DEG C)	CACO3)	AS CA)	AS MG)	AS K)	KALLO	AS NA)	CACO3)	AS CL)
		(00061)	(00095)	(00020)	(00010)	(00900)	(00915)	(00925)	(00935)	(00931)	(00930)	(90410)	(00940)
		(,	(,	(,	(,	(,	(,	(,	(,	((,	(/	(,
OCT													
26	0825	39	1920	-2.0	4.0	560	128	59.3	4.55	4	222	199	94.3
JAN													
11	0925	28		-6.0	.00	610	158	53.7	5.25	3	150	308	78.7
MAR 21	1415	2090	532	16.0	1.5	120	32.1	9.46	2.40	2	62.4	113	23.0
MAY	1413	2090	332	10.0	1.5	120	32.1	9.40	2.40	2	02.4	113	23.0
09	1305	444	920	24.0	15.0	170	42.3	14.7	5.06	4	127	185	54.3
JUN										_			
21	1430	46	1540	25.5	23.0	450	114	40.9	5.74	3	162	241	57.3
JUL													
13	1405	731	1070	30.0	21.0	270	72.1	22.1	5.62	3	123	241	51.2
AUG										_			
17	1005	.36	2510	21.5	17.0	500	99.7	61.2	8.59	7	335	168	121
SEP	1700	0.0	2222	20.0	01 0	0.40	20.0	22 5	6 51	11	201	200	125
12	1720	2.0	2200	28.0	21.0	240	38.9	33.5	6.51	11	381	209	135

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
OCT								
26	.6	4.9	719	1.84	142	1350	498	<30
JAN 11	.6	9.0	511	1.57	88.3	1150	609	<10
MAR	.0	9.0	211	1.57	88.3	1150	609	<10
21	.3	6.4	119	.44	1820	323	114	580
MAY	_	15.4	100	7.6	600	561	001	1.0
09 JUN	.5	15.4	190	.76	673	561	221	<10
21	.7	15.5	505	1.42	130	1050	299	<10
JUL								
13 AUG	.6	21.1	230	.91	1320	670	271	20
17	.8	9.2	922	2.26	1.61	1660	576	<10
SEP								
12	.9	.5	665	1.89	7.68	1390	485	<10

09229500 HENRYS FORK NEAR MANILA, UT

LOCATION.--Lat $41^{\circ}00^{\circ}45^{\circ}$, long $109^{\circ}40^{\circ}20^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec.23, T.12 N., R. 109 W., Sweetwater County, WY, Hydrologic Unit 14040106, on right bank 0.8 mi north of Wyoming-Utah State line, 1.3 mi upstream from normal high-water line of Flaming Gorge Reservoir at elevation 6,045 ft, and 3.0 mi northeast of Manila, UT.

DRAINAGE AREA. -- 520 mi², approximately.

PERIOD OF RECORD.--October 1928 to September 1993, May to September 2001. Prior to October 1971, published as "at Linwood, UT." REVISED RECORDS.--WSP 1443: 1955. WDR WY-76-2: 1970. WDR WY-92-1: 1991.

GAGE.--Water-stage recorder. Elevation of gage is 6,060 ft above sea level, from topographic map. Prior to Oct. 1, 1957, nonrecording gages or water-stage recorder at several sites and 2.0 mi downstream at various datums. Oct. 1, 1957, to Dec. 2, 1965, water-stage recorders at sites about 1.0 mi upstream at different datums.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Peoples Irrigation Canal diverts 5.9 mi upstream. Natural flow of stream affected by transbasin diversions, small storage reservoirs, diversions for irrigation, and return flow from irrigated areas.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCIAL	KGE, CODIK	C PEET FEI		MEAN VA		R 2000 10	OBF TEMO	ER ZOOI		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								e480	299	e50	e6.8	e7.0
2								e550	292	e47	e6.2	e6.0
3								e240	282	e44	e6.0	e5.8
4								e90	236	e43	e6.8	e5.8
5								e180	195	e45	e6.5	e5.9
6								e145	160	e42	e6.1	e6.0
7								e130	128	e48	e5.8	e6.0
8								e120	129	e40	e6.0	e6.5
9								e117	131	e63	e5.8	e6.6
10								104	129	e100	e5.6	e6.3
11								105	123	e71	e6.1	e6.0
12								112	115	e67	e5.8	e6.0
13								134	147	e85	e5.1	e6.8
14								181	124	e80	e5.3	e7.4
15								220	e100	87	e5.0	e7.0
16								383	e76	86	e5.0	e6.5
17								628	e71	52	e4.8	e6.0
18								500	e75	34	e4.7	e6.4
19								598	e76	25	e4.8	e7.5
20								451	e71	22	e5.3	e6.3
21								420	e70	18	e6.0	6.3
22								346	e75	13	7.6	6.6
23								327	e72	11	6.2	6.5
24								407	e77	9.9	e6.4	6.5
25								461	e83	8.2	e5.1	6.1
26								431	e85	7.1	e5.0	6.1
27								456	e77	7.2	e5.0	5.7
28								433	e63	e7.0	e4.8	5.7
29								434	e58	e6.7	e4.7	5.6
30								366	e53	e6.4	e5.0	5.5
31								313		e6.4	e6.0	
TOTAL								9862	3672	1231.9	175.3	188.4
MEAN								318	122	39.7	5.65	6.28
MAX								628	299	100	7.6	7.5
MIN								90	53	6.4	4.7	5.5
AC-FT								19560	7280	2440	348	374
STATIST	rics of Mo	ONTHLY MEA	AN DATA FO	OR WATER Y	YEARS 1929	9 - 2001,	BY WATER	YEAR (WY))			
MEAN	47.2	55.4	47.6	42.7	46.2	69.8	85.5	155	277	93.9	50.3	34.2
MAX	176	117	105	103	88.6	165	196	541	1375	703	323	191
(WY)	1983	1984	1985	1984	1984	1929	1944	1984	1983	1975	1965	1929
(WY) MIN	.000	12.8	20.5	15.2	15.0	24.9	3.94	3.79	.10	.000	.090	.000
(WY)	1935	1935	1933	1933	1933	1957	1935	1977	1934	1934	1940	1934

09229500 HENRYS FORK NEAR MANILA, UT--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1929 - 2001*
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN	 628 May 17 4.7 Aug 18,29	83.8 273 1983 16.5 1934 3780 Jun 13 1965 .00 Several days in 1933-35, 1939-40
ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT)	 687 May 17 4.88 May 17	00 Jun 6 1934 6750 Aug 3 1936 9.42 Jul 15 1959 60700

b e

For period of operation.

Maximum discharge determined, gage height, 7.19 ft, site and datum then in use, from floodmarks, from rating curve extended above 57 ft³/s on basis of slope-area measurement of peak flow. Site and datum then in use. Discharge not determined. Estimated. а

09234500 GREEN RIVER NEAR GREENDALE, UT

LOCATION.--Lat $40^{\circ}54^{\circ}30^{\circ}$, long $109^{\circ}25^{\circ}20^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec. 15. T. 2 N., R. 22 E., Daggett County, Hydrologic Unit 14040106, Ashley National Forest on right bank 0.5 mi downstream from Flaming Gorge Dam, 2 mi south of Dutch John, 4 mi northeast of Greendale, and 407 mi from mouth.

DRAINAGE AREA.--19,350 mi², approximately, including about 4,260 mi² which is probably noncontributing. This noncontributing area includes 3,959 mi² in Great Divide Basin in southern Wyoming.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1950 to current year.

REVISED RECORDS. -- WDR UT-76-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 5,594.48 ft above sea level. Prior to Sept. 2, 1959, water-stage recorder at site 2.2 mi upstream at different datum. Sept. 3, 1959, to Sept. 30, 1985, at datum 5.0 ft lower.

REMARKS.-- Records good. Flow completely regulated by Flaming Gorge Reservoir 0.5 mi upstream, beginning Nov. 1, 1962. Station operated and record provided by Utah District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAY JUL AUG SEP e1020 e1020 e1020 e1020 e1020 e1020 13 1020 1020 1110 1170 2590 1100 824 1020 1170 e1020 e1020 e1020 e1020 e1020 e952 e1020 ---TOTAL MEAN MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1964 - 2001, BY WATER YEAR (WY) MEAN MAX (WY) MTN (WY)

09234500 GREEN RIVER NEAR GREENDALE, UT--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR	R YEAR	FOR 2001 WATE	R YEAR	WATER YEARS	1964 - 2001
ANNUAL TOTAL ANNUAL MEAN	605120 1653		400736 1098		 2139	
HIGHEST ANNUAL MEAN					4270	1983
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN		May 24	4490	May 22	1044 12300	1989 Jul 16 1983
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM		Dec 29,30 Dec 25	784 785	Jul 16,19,22,30 Jul 16	112_	Oct 8 1963 Oct 2 1963
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE			4530 11.72	May 18 May 18	19600 ^a 14.51	Jun 12 1957 ^D May 12 and
ANNUAL RUNOFF (AC-FT)	1200000		794900	-	1549000	May 12 and Jun 6 1986
10 PERCENT EXCEEDS	2210		1170		3750	
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1400 1020		1010 810		1870 895	

a Gage height 10.60 ft.
b For period of operation, 1950 to current year, site and datum then in use.
e Estimated.

09253000 LITTLE SNAKE RIVER NEAR SLATER, CO

LOCATION.--Lat $40^{\circ}59^{\circ}58$ ", long $107^{\circ}08^{\circ}34$ ", in $SW^{1}/_{4}$ $NW^{1}/_{4}$ sec.15, T.12 N., R.87 W., Routt County, Hydrologic Unit 14050003, on left bank just downstream from highway bridge at Focus Ranch, 0.2 mi downstream from Spring Creek, and 12 mi east of Slater.

DRAINAGE AREA. -- 285 mi².

PERIOD OF RECORD.--October 1942 to September 1947, October 1950 to September 1999, April to September, 2001.

REVISED RECORDS. -- WSP 1733: 1960.

GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,831.00 ft above sea level.

REMARKS.--Records good. Diversions for irrigation of about 2,000 acres upstream from station. Station operated and record provided by the Colorado District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 570 2 ___ ___ ___ ---___ ___ ___ 901 553 75 32 21 3 29 ---512 16 ---------------566 72 ---------142 ___ ___ ___ 5 164 462 399 61 26 14 6 7 ------------210 477 348 25 16 ---___ 175 525 334 57 26 16 8 ---571 33 158 312 61 19 ------------------745 273 41 22 10 122 827 252 55 44 21 11 ------115 1010 233 102 35 19 ------------12 214 101 964 69 28 17 13 107 977 221 66 25 16 ---------14 ___ 107 1040 209 78 26 18 ------15 93 1060 191 74 30 18 16 17 17 18 ___ ___ ___ ___ ___ 120 1170 166 62 33 ------------------163 1230 28 148 55 997 18 240 135 48 24 24 19 ___ ___ ___ ---___ ---346 994 127 47 21 25 20 20 20 465 1060 126 43 17 21 ___ ___ ___ ___ ___ ___ 353 816 139 41 22 22 ___ 279 25 16 711 130 38 23 236 25 120 24 ___ ___ ___ ___ ___ ___ 204 724 115 36 22 15 25 266 737 110 19 19 35 26 ___ ___ ___ ___ ___ ___ 434 744 108 36 17 14 27 766 575 116 47 15 14 28 ------682 729 103 38 14 14 ___ ___ ---29 ___ ___ ___ 756 697 101 33 13 14 30 658 659 46 14 31 ------------------604 32 14 TOTAL 7401 24683 6918 1708 789 529 ---274 756 MEAN ---------------796 231 55.1 25.5 17.6 ------1230 MAX ---------570 102 44 26 ___ ___ ___ ___ ___ ___ 462 90 14 MIN AC-FT ------------------14680 48960 13720 3390 1560 1050 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1944 - 2001, BY WATER YEAR (WY)* 1089 MEAN 39.6 36.5 32.4 31.9 32.8 51.4 263 946 161 39.8 29.6 MAX 91.8 77.8 59.4 74.5 59.5 139 842 2122 2231 519 97.3 80.5 (WY) 1962 1962 1983 1983 1962 1989 1974 1984 1983 1983 1945 1997 77.6 11.0 17.6 18.4 16.3 20.4 23.8 405 178 33.4 17.0 MIN 14.8 (WY) 1953 1959 1977 1945 1945 1977 1973 1977 1987 1977 1954 1944

09253000 LITTLE SNAKE RIVER NEAR SLATER, CO--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1944 - 2001*
ANNUAL MEAN		232
HIGHEST ANNUAL MEAN		423 1984
LOWEST ANNUAL MEAN		86.6 1977
HIGHEST DAILY MEAN	1230 May 17	3960 May 24 1984
LOWEST DAILY MEAN	12 Aug 30	4.2 Sep 9 1988
ANNUAL SEVEN-DAY MINIMUM	15 Aug 25	6,2 Sep 4 1988
MAXIMUM PEAK FLOW	1430 May 17	4780 ^a May 23 1984
MAXIMUM PEAK STAGE	6.19 May 17	9.95 Apr 25 1974
ANNUAL RUNOFF (AC-FT)		167900

- * For period of operation. a Gage height, 8.78 ft.

09253455 HAGGARTY CREEK ABOVE BELVIDERE DITCH, NEAR ENCAMPMENT, WY

LOCATION.--Lat $41^{\circ}09^{\circ}02^{\circ}$, long $107^{\circ}07^{\circ}06^{\circ}$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.25, T.14 N., R.87 W., Carbon County, Hydrologic Unit 14050003, Medicine Bow National Forest, 0.5 mi upstream from State Highway 70, 1.6 mi upstream from mouth, and 17 mi west of Encampment, WY.

PERIOD OF RECORD.--October 1992 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
MAY 30	1400	79	565	9.2	100	7.6	23	17.0	6.0	9	2.50	.589	.35
AUG 15	1010	2.1	567	8.7	101	7.7	42	10.5	9.0	18	5.20	1.15	.46
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)
MAY 30	.1	.8	10	.2	E.1	6.5	1.5	.03	3.97	19	32	E.03	E.1
AUG 15	.1	1.3	20	.2	<.2	8.8	2.1	.04	.18	31	6	<.05	.3
DATE	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)
MAY 30	8.9	<.06	E11	.05	E.4	.19	66.0	20	.33	<4.0	1.3	<.01	<.2
AUG 15	15.5	<.06	<13	<.04	<.8	.07	19.1	30	<.08	<4.0	5.5	<.02	<.2
		MAY		NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)			
		AUG		.60	<.3	<1.0	12.0	<8.0	<1	.03			
		1	5	.47	E.3	<1.0	22.8	<8.0	<1	<.02			

 $^{{\}tt E}$ -- Estimated value.

09253465 WEST FORK BATTLE CREEK AT BATTLE CREEK CAMPGROUND, NEAR SAVERY, WY

LOCATION.--Lat $41^{\circ}05^{\circ}37^{\circ}$, long $107^{\circ}09^{\circ}31^{\circ}$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$ $SE^{1}/_{4}$ sec.15, T.13 N., R.87 W., Carbon County, Hydrologic Unit 14050003, Medicine Bow National Forest, at Battle Creek Campground, 1.1 mi upstream from mouth, and 15 mi east of Savery.

PERIOD OF RECORD.--October 1992 to current year.

				2	,					_			
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
MAY 30 AUG	1000	110	590	9.4	100	7.2	30	21.5	7.0	12	3.70	.773	.34
15	1310	1.2	590	7.4	101	7.9	189	19.0	17.5	79	24.5	4.17	.76
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)
MAY 30 AUG	.1	1.0	13	. 4	<.2	6.6	2.0	.03	6.79	23	32	E.03	E.1
15	. 4	7.4	56	3.8	.6	10.9	29.8	.16	.38	116	5	<.05	. 2
DATE	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)
MAY 30 AUG	10.2	<.06	15	.13	E.5	.08	33.1	30	.12	<4.0	1.4	<.01	E.1
15	42.2	<.06	22	<.04	<.8	.05	6.1	М	<.08	E3.0	2.7	<.01	1.2
		D#	TE	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)			
		MAY 3 AUG	30	.48	<.3	<1.0	20.7	<8.0	2	.04			
			5	<.06	E.2	<1.0	180	<8.0	<1	.14			

 $[\]mbox{E}$ -- Estimated value. M -- Presence verified, not quantified.

09255000 SLATER FORK NEAR SLATER, CO

LOCATION.--Lat $40^{\circ}58^{\circ}57^{\circ}$, long $107^{\circ}22^{\circ}56^{\circ}$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$ sec.21, T.12 N., R.89 W., Moffat County, Hydrologic Unit 14050003, on right bank 15 ft downstream from highway bridge, 1.0 mi upstream from mouth, and 1.5 mi south of Slater.

DRAINAGE AREA. -- 161 mi².

PERIOD OF RECORD.--May to October, December 1910, March to October 1911, and April to May 1912 (published as Slater Creek), July 1931 to current year. Monthly discharge only for some periods, published in WSP 1313.

REVISED RECORDS.--WSP 618: 1910-11. WSP 764: Drainage area.

GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,600 ft above sea level, from river-profile map. May 28, 1910 to May 25, 1912, nonrecording gage at site 1.5 mi upstream at different datum. July 9, 1931 to May 6, 1932, nonrecording gage at site 0.2 mi downstream at different datum.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

REMARKS.--Records fair except for estimated daily discharges, which are poor. Diversions for irrigation of about 500 acres upstream from station. Station operated and record provided by the Colorado District.

DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 21 190 11 6.7 7.4 504 2 11 22 21 e23 e23 e22 46 476 185 10 4.5 9.1 20 e23 e23 72 3.5 7.2 3 e21 261 183 8.3 15 8.8 19 e23 e24 e21 222 7.0 5 8.7 25 18 e22 e24 e21 104 288 115 5 7 4 7 6.2 6 9.0 21 19 e22 e24 e21 124 277 96 3.2 4.5 5.1 7 9.4 14 19 e23 e24 e20 85 271 93 3.8 4.5 6.0 8 9.9 19 19 e23 e23 e20 335 94 7.8 69 6.8 6.4 12 24 20 e24 e23 e20 404 95 7.2 10 21 15 9.0 10 15 19 e24 e23 e20 61 436 94 7.5 11 16 18 19 e23 e24 e21 55 477 84 14 16 7.9 12 18 15 18 e22 e24 e22 48 434 70 14 11 6.7 23 13 18 19 19 e23 e24 50 453 68 13 8.2 5.3 14 18 1 a 20 e23 e24 17 49 4 a a 59 12 8.4 6.0 23 15 51 22 19 24 7.0 18 e23 e23 42 520 11 16 18 22 18 e22 e23 21 63 535 43 37 19 11 6.5 7.4 19 17 24 97 470 9.8 18 e18 e22 e23 13 22 377 9.0 18 e19 e22 e22 149 8.1 e19 19 17 20 e23 e22 21 197 655 34 7 6 7 4 10 20 16 20 e23 e21 24 221 447 29 9.1 e20 6.6 6.6 8.4 7.8 21 16 20 e21 e23 e21 30 148 329 26 4 8 6.7 22 16 20 e22 e20 37 129 250 24 7.2 e24 4.6 23 e23 e24 e20 45 97 262 24 7.9 24 17 20 e22 e24 ₽19 47 90 283 21 17 3 8 7 1 7 8 6.3 25 19 21 e22 e23 53 137 3.9 5.4 e18 21 17 4 7 26 19 e22 ₽17 64 218 283 4 4 e23 4 9 27 19 20 e16 274 19 e22 e23 54 313 8.4 4.5 5.4 28 18 21 e23 e23 12 43 404 253 18 6.8 4.1 5.8 29 19 20 e23 e23 ___ 39 485 259 15 5.0 3 3 4 4 30 34 229 13 4.8 21 e22 e22 433 31 20 e22 e22 ---31 204 3.2 2.5 TOTAL 477.9 599 629 709 607 903 4176 11244 1995 256.7 212 9 209.1 20.0 21.7 24 MEAN 15.4 20.3 22.9 29.1 139 363 66.5 8.28 6.87 6.97 20 23 24 64 655 190 24 10 MAX 485 16 MIN 8.7 14 18 22 12 17 204 13 3.2 2.5 4.4 AC-FT 948 1190 1250 1410 1200 1790 8280 22300 3960 509 422 415 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1932 - 2001, BY WATER YEAR (WY) 17.6 17.4 29.8 120 384 252 37.8 9.95 MEAN 20.1 19.4 18.8 11.6 MAX 62.4 49.2 44.1 36.9 46.5 144 323 801 660 189 38.4 55.0 (WY) 1986 1985 1985 1985 1986 1998 1985 1984 1995 1983 1945 1984 7.29 7.73 7.30 4.42 12.6 25.2 45.7 23.6 1.39 3.20 MIN 9.82 1.27 (WY) 1934 1934 1932 1992 1981 1965 1933 1934 1977 1977 1994 1960

09255000 SLATER FORK NEAR SLATER, CO--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1932 - 2001
ANNUAL TOTAL	26582.2	22018.6	
ANNUAL MEAN	72.6	60.3	78.4
HIGHEST ANNUAL MEAN			157 1984
LOWEST ANNUAL MEAN			20.5 1934
HIGHEST DAILY MEAN	559 May 5	655 May 19	1500 _ May 16 1984
LOWEST DAILY MEAN	1.3 Aug 15	2.5 Aug 31	.00 ^a Aug 2 1934
ANNUAL SEVEN-DAY MINIMUM	2.0 Aug 2	3.9 Jul 30	_B 00 Aug 2 1934
MAXIMUM PEAK FLOW		869 May 19	2250 ^D _ May 16 1984
MAXIMUM PEAK STAGE		8.03 May 19	11.78 ^C May 16 1984
ANNUAL RUNOFF (AC-FT)	52730	43670	56780
10 PERCENT EXCEEDS	279	210	258
50 PERCENT EXCEEDS	22	21	20
90 PERCENT EXCEEDS	4.4	6.1	7.1

Also occurred several days during years 1936, 1954, and 1977. From rating curve extended above 1000 $\rm ft^3/s$. From floodmark. Estimated. a b c e

09259050 LITTLE SNAKE RIVER BELOW BAGGS, WY

LOCATION.--Lat $41^{\circ}01^{\circ}43^{\circ}$, long $107^{\circ}41^{\circ}14^{\circ}$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec.7, T.12 N., R.92 W., Carbon County, Hydrologic Unit 14050003, 0.8 mi downstream from Ledford Slough, 1.5 mi southwest of Baggs, and 3.5 mi downstream from bridge on State Highway 789 in Baggs.

PERIOD OF RECORD.--Water years 1981 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN DIS- SOLVE (MG/L (00300	CEI D SATT) ATIO	S- WAT VED WHO R- FIE NT (STA UR- AR ON) UNI	ER SE LE CI LD CO ND- DU D AN TS) (US	PE- IFIC DN- JCT- JCE JCM)	TEMPE ATUR AIR (DEG (0002	E ATU WAT C) (DEG	RE (MC ER AS C) CAC	SS C TAL S/L S CO3)	CALCIUM DIS- SOLVED (MG/L AS CA) 00915)	MAGNE SIUM DIS- SOLVE (MG/I AS MG	I, SIUM, DIS- DIS- DIS- MG/L AS K)
APR 17 MAY	1310	691	614	9.1	104	4 8.	4 4	139	21.0	11.	5 18	30	49.3	14.6	2.41
31 JUN	1230	1280	613	8.2	99	9 8.	0 1	L27	22.0	14.	0 5	53	14.9	3.88	1.12
28	1000	11	615	9.8	143	1 8.	4 4	153	22.5	22.	5 18	30	46.9	14.7	2.35
AUG 15	1710	14	612	8.8	136	5 8.	5 4	193	24.0	26.	0 16	50	40.2	14.5	3.39
DATE	SC T R.F	ORP- DI PION SOI ATIO (N AS	LI DIUM, WA IS- LVED MG/L C S NA) (M	T.DIS FET LAB ACO3 G/L)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVEI (MG/L AS SIO2) (00955)	SUL D DI SO (M AS	FATE	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIE SUM C CONST TUENT DIS SOLV (MG/	OF CI- SE CS, ME G- SU VED PE (L) (M	DI- NT, C S- NDED G/L) (SEDI- MENT, DIS- HARGE, SUS- PENDED T/DAY) 80155)
APR 17 MAY		.7 23	3.2	137	5.9	.2	15.2	86	5.5	.38	522	280) 2	40 4	48
31		.3 5	5.5	52	1.6	E.1	11.0	11	. 8	.11	279	81	-	71 2	245
JUN 28 AUG	1	L 30	0.9	197	5.8	.3	16.3	37	7.3	.37	8.17	273	3	4	.12
15	2	2 45	5.8	181	11.1	. 4	9.8	60).5	.40	11.1	294	1	38	5.2

E -- Estimated value.

GREAT SALT LAKE BASIN 409

BEAR RIVER BASIN

10011500 BEAR RIVER NEAR UTAH-WYOMING STATE LINE

LOCATION.--Lat $40^{\circ}57^{\circ}55^{\circ}$, long $11^{\circ}051^{\circ}10^{\circ}$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 30, T. 3 N., R. 10 E., Summit County, Utah Hydrologic Unit 16010101, on left bank 400 ft downstream from West Fork and 2.8 mi upstream from Utah-Wyoming State line.

DRAINAGE AREA. -- 172 mi².

PERIOD OF RECORD. -- July 1942 to current year.

REVISED RECORDS.--WRD UT-74-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 7,965 ft above sea level, from river-profile map. Prior to Oct. 1, 1986 at datum 3.0 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated slightly by Whitney Reservoir, total capacity, 4,700 acre-ft since 1966. Three diversions upstream from station for irrigation of about 265 acres upstream and 2,600 acres downstream from station. Station operated and record provided by Utah District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	57 55 54 54 52	55 46 45 58 54	e40 e42 45 44 43	43 40 40 32 29	e38 e40 e44 e46 e44	e33 e32 e34 e36 e35	49 57 51 49 50	440 371 266 235 219	532 516 468 412 356	113 144 140 137 144	64 63 67 67 57	68 61 41 37 36
6 7 8 9 10	51 51 51 50 52	54 47 60 56 50	44 43 43 41 41	29 e28 e27 e28 29	e45 e40 e35 e34 e38	e33 e32 e32 e36 e35	52 49 46 44 49	204 221 294 408 526	315 320 323 325 332	161 173 161 171 159	53 52 50 50 62	39 37 36 36 34
11 12 13 14 15	82 62 57 57 55	48 e52 e52 e46 e49	47 45 43 43	31 28 29 28 e30	e36 e38 e40 e34 e36	33 37 34 33 40	46 45 43 45 44	597 653 728 799 848	300 297 283 236 196	141 146 140 135 141	53 50 52 56 50	34 33 38 43 36
16 17 18 19 20	54 54 56 55 54	e50 e52 46 52 56	e40 e42 e35 e37 e38	e29 e30 e31 e35 e34	e34 e35 e38 e38	37 36 35 40 42	55 73 101 123 120	1500 1290 1020 897 866	176 170 168 169 164	113 91 82 78 82	42 39 37 35 34	35 48 52 41 37
21 22 23 24 25	59 57 55 56 55	51 46 47 44 41	39 40 42 40 42	e34 e35 e37 e38 e40	e36 e37 e36 e35 e33	44 47 51 52 54	95 90 81 85 114	757 677 742 812 807	159 157 151 151 151	79 76 74 76 74	52 55 47 41 39	36 35 34 34 34
26 27 28 29 30 31	53 54 56 55 56 59	37 40 45 45 44	e39 e36 34 42 46 43	e39 e37 e42 e38 e40 e38	e31 e32 e31 	53 51 50 48 45 46	166 214 295 362 373	787 744 668 622 611 541	143 137 130 125 116	74 72 69 65 65 66	37 35 41 66 71 77	33 33 34 37 39
TOTAL MEAN MAX MIN AC-FT	1728 55.7 82 50 3430	1468 48.9 60 37 2910	1282 41.4 47 34 2540	1048 33.8 43 27 2080	1040 37.1 46 31 2060	1246 40.2 54 32 2470	3066 102 373 43 6080	20150 650 1500 204 39970	7478 249 532 116 14830	3442 111 173 65 6830	1594 51.4 77 34 3160	1171 39.0 68 33 2320
STATIST	TICS OF	MONTHLY ME	CAN DATA	FOR WATER	YEARS 194	3 - 2001,	, BY WATER	YEAR (W	()			
MEAN MAX (WY) MIN (WY)	63.6 208 1983 30.8 1959	54.8 106 1984 32.5 1955	46.9 94.9 1984 27.7 1960	42.2 72.4 1984 29.6 1991	40.2 64.3 1984 25.3 1964	44.0 69.0 1986 26.0 1964	111 316 1946 37.2 1944	600 1044 1984 162 1977	860 1990 1986 204 1992	304 1105 1995 67.4 1961	95.2 244 1965 37.5 1954	74.0 229 1983 23.9 1956

BEAR RIVER BASIN

10011500 BEAR RIVER NEAR UTAH-WYOMING STATE LINE--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	NDAR YEAR	FOR 2001 WAT	ER YEAR	WATER YEARS	1943 - 2001
ANNUAL TOTAL	49020		44713			
ANNUAL MEAN	134		123		195	
HIGHEST ANNUAL MEAN					335	1986
LOWEST ANNUAL MEAN					81.5	1977
HIGHEST DAILY MEAN	1240	May 26	1500	May 16	2680	Jun 4 1986
LOWEST DAILY MEAN	34	Dec 28	27	Jan 8	18	Jan 3 1960
ANNUAL SEVEN-DAY MINIMUM	39	Dec 16	29	Jan 6	21	Dec 28 1959
MAXIMUM PEAK FLOW			1790	May 16	3230 _	Jun 6 1986
MAXIMUM PEAK STAGE			6.50	May 16	4.05 ^a	Jun 6 1986
ANNUAL RUNOFF (AC-FT)	97230		88690		141200	
10 PERCENT EXCEEDS	337		317		608	
50 PERCENT EXCEEDS	55		50		59	
90 PERCENT EXCEEDS	43		34		34	

a Datum then in use. e Estimated.

10016900 BEAR RIVER AT EVANSTON, WY

LOCATION.--Lat $41^{\circ}16^{\circ}13^{\circ}$, long $110^{\circ}57^{\circ}47^{\circ}$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec.21, T.15 N., R.120 W., Uinta County, Hydrologic Unit 16010101, on left bank 100 ft downstream from bridge on State Highway 89, in the City of Evanston.

DRAINAGE AREA. -- 433 mi².

PERIOD OF RECORD. -- May 1984 to current year (no winter records).

MTN

(WY)

GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,730 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated discharges, which are poor. Natural flow of stream affected by storage reservoirs, diversions for irrigation, and return flow from irrigated areas.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY FEB OCT NOV DEC JAN MAR APR JUL AUG SEP e160 e470 392 64 18 16 1 --------e500 15 17 17 e162 355 60 ------3 ___ ___ ___ ___ e200 e440 327 55 15 23 4 -----------------e142 e400 304 54 16 5 ___ 273 20 15 6 e130 e330 210 58 17 14 --------------------------e120 e310 166 95 16 14 8 e108 e370 140 115 18 14 484 e105 105 200 23 11 10 616 93 205 34 8.7 e105 11 e100 709 88 132 30 8.3 ------------------94 162 78 70 7.1 12 e90 759 24 13 26 e80 822 14 e74 906 144 70 35 12 15 ___ ___ --e70 898 119 64 29 13 22 13 16 e74 1210 85 56 17 18 e90 e137 1560 1150 54 41 21 18 15 21 ___ ___ ___ ___ ___ ___ 47 ___ ___ ------------40 19 e170 1010 16 22 20 ___ ---___ ___ ___ --e200 925 30 31 12 16 21 e175 815 33 31 21 12 33 31 21 18 11 9.5 22 ___ ___ ___ ___ ___ ___ e155 694 28 23 ---------675 e145 38 9.0 25 ___ ___ ___ ___ ___ ___ e140 667 62 26 13 8.6 26 e210 654 70 9.6 8.2 7.7 27 ___ ___ ___ ___ ___ ___ e276 610 86 77 28 8.0 7.6 28 e330 557 29 29 -----e380 529 68 27 12 8.8 30 ___ ___ ___ ___ ___ ___ e420 507 66 22 16 9.9 31 19 18 434 TOTAL. ___ ___ ___ ___ ___ ___ 4813 21015 3797 1879 591 2 369 0 ------------127 12.3 MEAN 160 678 60.6 19.1 MAX ------------------420 1560 392 205 35 22 7.6 7.1 MIN ------------------70 310 28 19 9550 7530 3730 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1984 2001, BY WATER YEAR (WY)* MEAN 312 833 805 212 68.5 58.0 ---___ ---___ ------2469 1890 980 181 225 MAX 602 ------------(WY) ------1985 1984 1986 1995 1984 1984

133

1995

330

1990

121

1992

31 9

2000

16.4

1988

11.8

1988

10016900 BEAR RIVER AT EVANSTON, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1984 - 2001*
HIGHEST DAILY MEAN	1560 May 17	3160 May 16 1984
LOWEST DAILY MEAN	7.1 Sep 12	3.8 Sep 30 1992
ANNUAL SEVEN-DAY MINIMUM	8.6 Sep 23	5.3 Aug 18 1988
MAXIMUM PEAK FLOW	1830 May 17	3680 May 16 1984
MAXIMUM PEAK STAGE	5.23 May 17	7.35 May 16 1984

^{*} For period of operation. e Estimated.

10020100 BEAR RIVER ABOVE RESERVOIR, NEAR WOODRUFF, UT

LOCATION.--Lat $41^{\circ}26^{\circ}04^{\circ}$, long $111^{\circ}01^{\circ}01^{\circ}$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 29, T. 17 N., R. 120 W., Uinta County, Wyoming, Hydrologic Unit 16010101, on right bank 9.3 mi upstream from Woodruff Narrows Dam and 10 mi southeast of Woodruff.

DRAINAGE AREA. -- 752 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1961 to current year.

REVISED RECORDS. -- WRD UT-74-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 6,455 ft above sea level, from river-profile map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diversion for irrigation of about 43,500 acres upstream from station. Station operated and record provided by the Utah District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY NOV OCT DEC FEB MAY AUG SEP 7.5 e26 e39 127 426 306 25 2.5 .15 1 65 e35 e46 2 6.6 e40 e48 264 22 2.5 .35 67 e32 e26 138 487 2 5 3 5.8 57 e29 e26 **638** e53 292 441 264 21 .63 .78 5.5 e28 e25 192 254 19 2.8 4 44 e36 e56 336 5 5.4 43 171 259 18 2.8 .90 e26 295 6 5.5 52 e34 e26 e35 212 277 227 15 e56 1.8 1.1 e36 5.4 52 e26 e37 e54 214 232 159 14 .80 1.3 8 5.5 50 e37 e26 e38 e55 175 237 110 18 .53 1.5 5.6 e29 e38 e56 318 .34 1.8 48 e35 158 84 40 7.1 10 65 e33 e29 e53 157 444 69 136 .31 1.8 e36 11 11 64 e31 e30 e35 e52 155 565 72 94 .31 1.8 12 13 1.8 15 55 e31 e33 e36 e51 152 638 e66 59 .30 22 53 e32 e34 e38 e52 150 701 e84 41 .27 14 15 e53 e35 e34 e40 e52 122 .30 1.6 15 12 e57 e38 e33 e44 e56 119 799 104 34 .26 1.6 30 16 13 e59 e40 e31 e47 e62 891 .31 1.6 17 10 e53 e51 e41 e30 e48 e69 76 e1400 1180 63 48 28 .31 1.5 1.7 18 100 25 11 e40 e29 e49 e68 .28 10 e35 e28 e48 e80 1030 38 2.0 20 8.4 e45 e32 e29 e45 e100 160 879 34 17 .18 1.8 21 8.7 e30 788 13 e42 e30 e45 .31 e170 .63 .81 1.4 1.4 22 34 e40 e30 e31 e44 135 672 29 11 23 45 e38 e31 e33 e44 e200 132 605 28 8.7 e32 e34 e260 109 525 25 52 e39 e32 e33 e47 e350 97 545 24 6.5 29 1.4 26 57 e40 e31 e32 e45 e400 125 567 6.3 .19 1.3 5.0 2.8 .14 1.3 1.4 27 56 e42 e29 e30 e46 e420 177 537 27 28 52 e43 e29 253 474 38 e28 e46 29 53 e41 e27 e29 183 315 461 30 3.3 .15 30 60 e38 e27 e32 ___ 158 378 404 27 3 0 13 1.3 31 2.8 .11 62 e27 e36 135 366 1484 TOTAL 712.0 1008 925 1166 3834 18306 2993 786.5 23.14 41.21 4944 .75 23.0 124 165 1.37 MEAN 49.5 29.8 41.6 591 25.4 41 27 MAX 62 67 36 49 420 378 1400 306 136 2.0 5.4 25 35 2.8 MIN 38 46 76 232 22 .11 .15 1410 2940 2000 1830 2310 7600 9810 36310 5940 1560 46 82 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1962 - 2001, BY WATER YEAR (WY) 84.4 312 ME AN 74.5 72.6 68.8 167 341 812 858 201 50.4 49.6 437 288 198 671 2564 MAX 181 147 627 1957 1191 340 (WY) 1983 1974 1984 1984 1986 1986 1969 1984 1986 1995 1983 1983 MTN 3.03 6.06 7.21 6.76 13.8 26.8 77.7 104 54.6 4.41 . 68 .49 1992 (WY) 1965 1989 1989 1989 1993 1977 1977 1977 2000 2000 1988

10020100 BEAR RIVER ABOVE RESERVOIR, NEAR WOODRUFF, UT--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1962 - 2001
ANNUAL TOTAL	38182.14	36222.85	
ANNUAL MEAN	104	99.2	238
HIGHEST ANNUAL MEAN			583 1986
LOWEST ANNUAL MEAN			45.1 1977
HIGHEST DAILY MEAN	1210 May 27	1400 May 17	3900 Jun 2 1983
LOWEST DAILY MEAN	.04 Aug 21,22	.11 Aug 31	.00 Many days 1988
ANNUAL SEVEN-DAY MINIMUM	.06 Aug 18	.14 Aug 26	.00 Aug 30 1988
MAXIMUM PEAK FLOW		1560 May 17	4150 Jun 2 1983
MAXIMUM PEAK STAGE		4.70 May 17	6.17 Jun 2 1983
ANNUAL RUNOFF (AC-FT)	75730	71850	172400
10 PERCENT EXCEEDS	254	269	700
50 PERCENT EXCEEDS	52	37	85
90 PERCENT EXCEEDS	1.5	1.4	9.5

e Estimated.

10020100 BEAR RIVER ABOVE RESERVOIR, NEAR WOODRUFF, UT--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1969 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 25	0835	63	603	8.8	90	8.3	420	8.0	6.0	190	45.1	17.8	1.98
MAR	0033	03	003	0.0	50	0.5	420	0.0	0.0	100	43.1	17.0	1.50
27 JUN	1120	420	605	9.2	89	8.1	468	3.0	4.0	220	50.7	21.5	3.94
21	1435	55				8.4	575	26.0	21.0	260	54.3	29.4	2.84
AUG 15	1440	.48	610	8.8	117	8.8	682	21.0	18.0	230	32.9	36.7	7.16
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
OCT 25	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	UNFLTRD TIT 4.5 LAB (MG/L AS CACO3)	LINITY WAT.DIS FET LAB CACO3 (MG/L)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
OCT 25 MAR 27	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
OCT 25 MAR	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)

DATE	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
	(00613)	(00671)	(80154)	(80155)
OCT 25	<.006	<.018	37	6.3
MAR	- 004	000	204	265
27 JUN	E.004	.029	324	367
21 AUG	<.006	<.020	4	.60
15	<.006	<.020	2	.00

 $^{{\}tt E}$ -- Estimated value.

10020300 BEAR RIVER BELOW RESERVOIR, NEAR WOODRUFF, UT

LOCATION.--Lat $41^{\circ}30^{\circ}20^{\circ}$, long $111^{\circ}00^{\circ}50^{\circ}$, in NE $^{1}/_{4}$ NE $^{1}/_{4}$ NW $^{1}/_{4}$ sec. 32, T. 18 N., R. 120 W., Uinta County, Wyoming, Hydrologic Unit 16010101, on right bank 1,100 ft downstream from Woodruff Narrows Dam, 1.6 mi upstream from Salt Creek, 5.4 mi upstream from Wyoming-Utah State line, and 7.7 mi east of Woodruff.

DRAINAGE AREA. -- 784 mi².

(WY)

PERIOD OF RECORD. -- October 1961 to current year.

REVISED RECORDS. -- WRD UT-74-1: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 6,398.96 ft above sea level (levels by Utah Water Resources Division from Bureau of Reclamation bench mark). Prior to Sept. 26, 1962, at site 175 ft upstream at same datum.

REMARKS.--Records good except those for estimated discharges, which are fair. Flow regulated by Woodruff Narrows Reservoir (station 10020200) beginning January 1962. Diversions for irrigation of about 43,500 acres upstream from station. Station operated and record provided by the Utah District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 8.3 7.6 7.2 6.9 6.2 6.7 25 27 29 26 25 25 9 9 9.3 9 1 9.0 9.0 8 6 8.3 8 1 8.2 8.3 8.9 7.7 5.1 8.3 ---8.4 TOTAL 407.8 355.8 24.6 26 MEAN 31.7 27.1 28.9 29.9 30.0 23.8 36.9 13.2 11.9 MAX MIN 5.1 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1962 - 2001, BY WATER YEAR (WY) 55.5 48.1 48.7 62.0 MEAN 60.1 45.8 99.1 80.2 MAX (WY) 3.89 .12 4.37 4.71 4.70 27.8 20.0 3.91 3.65 MIN 4.28 .34

10020300 BEAR RIVER BELOW RESERVOIR, NEAR WOODRUFF, UT--Continued

SUMMARY STATISTICS	FOR 2000 CALE	IDAR YEAR	FOR 2001 WA	TER YEAR	WATER YEAR	RS 1962 - 2001
ANNUAL TOTAL	61178		36431.6			
ANNUAL MEAN	167		99.8		239	
HIGHEST ANNUAL MEAN					509	1983
LOWEST ANNUAL MEAN					44.3	1977
HIGHEST DAILY MEAN	2330	May 18	1250	May 26	3630	Jun 3 1983
LOWEST DAILY MEAN	12	Sep 14-16	5.1	Sep 30	.00	Several days,
					1	1962,1979,1980
ANNUAL SEVEN-DAY MINIMUM	14	Oct 5	7.3	Sep 1	.07	Nov 26 1980
MAXIMUM PEAK FLOW			1250	May 26	3820	Jun 2 1983
MAXIMUM PEAK STAGE					8.26	Jun 2 1983
ANNUAL RUNOFF (AC-FT)	121300		72260		173200	
10 PERCENT EXCEEDS	651		58		804	
50 PERCENT EXCEEDS	26		26		42	
90 PERCENT EXCEEDS	17		13		9.7	

10027000 TWIN CREEK AT SAGE, WY

LOCATION.--Lat $41^{\circ}48^{\circ}36^{\circ}$, long $110^{\circ}58^{\circ}12^{\circ}$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec.7, T.21 N., R.119 W., Lincoln County, Hydrologic Unit 16010101, 0.5 mi downstream from Bulldog Hollow, 0.5 mi southwest of Sage, 0.8 mi southeast of junction of U.S. Highway 30 and State Highway 89, and 5.0 mi upstream from mouth.

DRAINAGE AREA. -- 246 mi².

PERIOD OF RECORD. -- Water years 1975 to 1981, October 1989 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 24 MAR	1155	6.8	609	10.2	103	8.4	925	12.0	6.0	380	86.1	40.6	3.38
27	0830	42	609	10.2	93	8.1	952	.00	2.0	360	75.9	41.2	4.67
MAY 08	1100	6.3	613	9.2	101	8.4	1010	19.5	9.5	410	84.4	49.2	3.17
JUN 20	1200	4.4				8.2	835	22.0	15.0	330	65.7	41.0	2.52
AUG 15	1145	3.0	613	8.2	107	8.3	685	21.0	17.5	260	45.9	35.9	2.86
	SODIUM		ANC UNFLTRD	ALKA- LINITY	CHLO-	FLUO-	SILICA,		SOLIDS,	SOLIDS,	SOLIDS, SUM OF	NITRO- GEN,	NITRO- GEN,
DATE	AD- SORP- TION RATIO	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	TIT 4.5 LAB (MG/L AS CACO3) (90410)	WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
OCT 24	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	TIT 4.5 LAB (MG/L AS CACO3)	WAT.DIS FET LAB CACO3 (MG/L)	DIS- SOLVED (MG/L AS CL)	DIS- SOLVED (MG/L AS F)	SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	SOLVED (TONS PER AC-FT)	SOLVED (TONS PER DAY)	TUENTS, DIS- SOLVED (MG/L)	DIS- SOLVED (MG/L AS N)	DIS- SOLVED (MG/L AS N)
OCT 24 MAR 27	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	TIT 4.5 LAB (MG/L AS CACO3) (90410)	WAT.DIS FET LAB CACO3 (MG/L) (29801)	DIS- SOLVED (MG/L AS CL) (00940)	DIS- SOLVED (MG/L AS F) (00950)	SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	SOLVED (TONS PER AC-FT) (70303)	SOLVED (TONS PER DAY) (70302)	TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (MG/L AS N) (00608)	DIS- SOLVED (MG/L AS N) (00631)
OCT 24 MAR 27 MAY 08	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	TIT 4.5 LAB (MG/L AS CACO3) (90410)	WAT.DIS FET LAB CACO3 (MG/L) (29801)	DIS- SOLVED (MG/L AS CL) (00940)	DIS- SOLVED (MG/L AS F) (00950)	SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	SOLVED (TONS PER AC-FT) (70303)	SOLVED (TONS PER DAY) (70302)	TUENTS, DIS- SOLVED (MG/L) (70301)	DIS- SOLVED (MG/L AS N) (00608)	DIS- SOLVED (MG/L AS N) (00631)
OCT 24 MAR 27 MAY 08 JUN 20	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 50.0	TIT 4.5 LAB (MG/L AS CACO3) (90410)	WAT.DIS FET LAB CACO3 (MG/L) (29801)	DIS- SOLVED (MG/L AS CL) (00940) 35.5	DIS- SOLVED (MG/L AS F) (00950)	SOLVED (MG/L AS SIO2) (00955) 9.1 9.6	DIS- SOLVED (MG/L AS SO4) (00945)	SOLVED (TONS PER AC-FT) (70303)	SOLVED (TONS PER DAY) (70302) 10.9	TUENTS, DIS- SOLVED (MG/L) (70301) 599	DIS- SOLVED (MG/L AS N) (00608) <.041	DIS- SOLVED (MG/L AS N) (00631) <.047
OCT 24 MAR 27 MAY 08 JUN	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 50.0 66.3	TIT 4.5 LAB (MG/L AS CACO3) (90410) 215 	WAT.DIS FET LAB CACO3 (MG/L) (29801) 183 230	DIS- SOLVED (MG/L AS CL) (00940) 35.5 37.0	DIS- SOLVED (MG/L AS F) (00950)	SOLVED (MG/L AS SIO2) (00955) 9.1 9.6 9.3	DIS- SOLVED (MG/L AS SO4) (00945) 245 273 281	SOLVED (TONS PER AC-FT) (70303) .81 .84	SOLVED (TONS PER DAY) (70302) 10.9 70.6 11.4	TUENTS, DIS- SOLVED (MG/L) (70301) 599 618 663	DIS- SOLVED (MG/L AS N) (00608) <.041 <.041	DIS- SOLVED (MG/L AS N) (00631) <.047

	NITRO-	PHOS-		SEDI-
	GEN,	PHORUS		MENT,
	NITRITE	ORTHO,	SEDI-	DIS-
	DIS-	DIS-	MENT,	CHARGE,
	SOLVED	SOLVED	SUS-	SUS-
DATE	(MG/L	(MG/L	PENDED	PENDED
	AS N)	AS P)	(MG/L)	(T/DAY)
	(00613)	(00671)	(80154)	(80155)
OCT				
24	<.006	<.018	79	1.4
MAR	- 006	0.51	000	2.0
27	E.006	.051	809	92
MAY 08	< .006	<.018	107	1.8
JUN	<.006	<.018	107	1.8
20	< .006	< .020	40	.47
AUG	<.000	<.020	40	. 47
15	<.006	< .020	6	.05
10	~.000	~.020	U	.05

E -- Estimated value.

10028500 BEAR RIVER BELOW PIXLEY DAM, NEAR COKEVILLE, WY

LOCATION.--Lat $41^{\circ}56^{\circ}20^{\circ}$, long $110^{\circ}59^{\circ}05^{\circ}$, in $SE^{1}/_{4}$ SE $^{1}/_{4}$ sec. 25, T. 23 N., R. 120 W., Lincoln County, Hydrologic Unit 16010102, 800 ft downstream from Pixley Dam, 11 mi south of Cokeville, and 17.5 mi downstream from Twin Creek.

DRAINAGE AREA. -- 2,032 mi².

PERIOD OF RECORD.--October 1941 to November 1943 (published as Bear River near Cokeville), October 1952 to September 1956, May 1958 to current year (seasonal only). Monthly discharge only for some periods, published in WSP 1314.

REVISED RECORDS.--WRD UT-74-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 6,185 ft above sea level, from river-profile map. Oct. 31, 1941 to Nov. 30, 1943, at site 200 ft downstream at different datum.

REMARKS.--Records good. Natural flow of stream affected by diversions for irrigation, return flow from irrigated areas, and regulation by upstream reservoirs. Station operated and record provided by the Utah District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							143	31	4.5	14	12	1.8
2							90	32	5.1	14	11	4.2
3							72	33	4.5	13	11	6.9
4							70	31	5.6	12	11	9.0
5							76	30	5.7	10	9.9	11
3							70	30	3.,	10	5.5	
6							80	29	5.2	74	9.6	13
7							81	29	5.8	53	9.0	11
8							81	18	6.8	41	8.2	8.6
9							87	5.5	8.9	39	8.7	14
10							88	5.6	9.6	39	7.5	21
11							85	5.8	9.5	38	6.7	26
12							85	4.9	7.6	38	6.8	16
13							82	4.9	7.6	38	6.5	22
14							82 79	4.1	8.7	35		27
								4.3			6.1	
15							74	4.3	11	32	5.8	36
16							69	5.6	17	31	5.7	39
17							63	6.4	36	66	5.4	38
18							56	6.6	40	50	5.2	37
19							52	6.5	39	35	5.0	41
20							49	6.3	37	31	5.0	42
21							50	6.0	31	28	5.9	41
22							51	5.7	27	25	3.3	38
23							47	5.2	22	23	.21	12
24							40	4.9	17	20	.36	13
25							40	4.4	15	18	2.2	22
26							39	4.1	14	17	3.2	24
27							38	4.0	13	16	3.1	26
28							36	4.0	14	16	2.5	27
29							35	3.7	14	14	.36	27
30							33	3.7	15	13	.48	25
31								4.0		12	1.4	23
31								4.0		12	1.4	
TOTAL							1971	348.6	456.9	905	179.11	679.5
MEAN							65.7	11.2	15.2	29.2	5.78	22.6
MAX							143	33	40	74	12	42
MIN							33	3.7	4.5	10	.21	1.8
AC-FT							3910	691	906	1800	355	1350
.10 11							3710	0,7,1	200	1000	555	1550

10028500 BEAR RIVER BELOW PIXLEY DAM, NEAR COKEVILLE, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR*	WATER YEARS 1966-2001*
HIGHEST DAILY MEAN	143 Apr 1	2040 Jun 5 1983
LOWEST DAILY MEAN	.21 Apr 23	.56 May 12 1977
MAXIMUM PEAK FLOW	179 Jul 17	2300 Mar 25 1956
MAXIMIM PEAK STAGE	2.95 Jul 17	

 \star For period of operation.

10032000 SMITHS FORK NEAR BORDER, WY

LOCATION.--Lat $42^{\circ}17^{\circ}36^{\circ}$, long $110^{\circ}51^{\circ}18^{\circ}$, in NE $^{1}/_{4}$ SW $^{1}/_{4}$ sec.28, T.27 N., Lincoln County, Hydrologic Unit 16010102, on left bank 4.9 mi upstream from Howland Creek, 5.6 mi downstream from Hobble Creek, and 12.4 mi northeast of Border.

DRAINAGE AREA.--165 mi².

PERIOD OF RECORD. -- May 1942 to current year.

REVISED RECORDS. -- WSP 1734: 1952(M).

GAGE.--Water-stage recorder. Elevation of gage is 6,720 ft above sea level, from topographic map. Prior to October 16, 1945, at site 1.2 mi downstream at different datum. October 16, 1945 to November 1986 at site 0.4 mi down-stream at different datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. One diversion for irrigation of about 200 acres above station. Station operated and record provided by the Utah District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	85	80	e72	e53	e52	61	86	215	254	121	78	e66
2	85	76	e70	e53	e53	75	99	201	249	119	80	e67
3	84	72	e70	e53	e54	53	86	185	246	116	81	e65
4	84	74	e70	e53	e55	50	82	167	238	115	100	e63
5	84	75	e70	e54	e57	51	89	167	263	112	88	e63
6	83	73	e70	e55	e57	50	91	166	207	113	83	e64
7	83	e72	e70	e54	e57	50	84	168	197	113	81	e67
8	84	e71	e70	e54	e55	51	86	190	191	115	80	e70
9	82	e72	e70	e55	e53	51	77	217	190	114	78	e74
10	85	e73	e70	e57	e51	52	78	221	197	114	79	e72
11	92	e70	e69	e58	e51	53	80	244	198	111	79	e70
12	88	e73	e67	e56	e52	52	81	251	200	114	77	e68
1.3	92	e75	e65	e54	e52	52	79	274	218	107	77	e67
14	90	e74	e63	e54	e52	51	80	302	224	105	79	e68
15	85	e72	e60	e53	e51	52	77	321	203	103	76	e68
16	83	e69	e58	e53	e50	52	82	379	188	104	76	e67
17	82	e68	e62	e52	e51	49	93	403	181	98	74	e68
18	82	e70	e62	e53	e52	52	123	372	178	98	72	e72
19	81	e70	e61	e53	52	51	147	341	173	97	70	e70
20	81	e70	e59	e53	53	55	133	330	167	96	70	e67
21	81	e70	e59	e54	53	63	122	311	160	92	74	e67
22	80	e70	e59	e54	53	66	112	286	154	89	e77	e67
23	78	e70	e59	e54	52	70	114	277	156	89	e73	e66
24	79	e70	e59	e55	50	76	113	280	153	89	e68	e65
25	84	e71	e60	e56	49	79	137	290	137	89	e67	e62
26	83	e70	e59	e58	49	81	e140	298	134	89	e68	e61
27	79	e69	e58	e56	45	74	167	298	133	90	e67	e61
28	77	e72	e56	e55	49	76	192	290	130	84	e65	e62
29	76	e72	e55	e54		77	222	281	125	82	e63	e63
30	80	e74	e54	e53		78	215	271	123	80	e61	e63
31	83		e54	e53		77		263		79	e63	
TOTAL	2575	2157	1960	1682	1460	1880	3367	8259	5567	3137	2324	1993
MEAN	83.1	71.9	63.2	54.3	52.1	60.6	112	266	186	101	75.0	66.4
MAX	92	80	72	58	57	81	222	403	263	121	100	74
MIN	76	68	54	52	45	49	77	166	123	79	61	61
AC-FT	5110	4280	3890	3340	2900	3730	6680	16380	11040	6220	4610	3950
STATIST	CICS OF MC	ONTHLY MEAN I	DATA FOI	R WATER Y	EARS 1943	3 - 2001,	BY WATER Y	YEAR (WY	.)			
MEAN	91.5		69.7	64.0	61.5	63.1	160	544	633	296	153	109
MAX	156	113	88.4	85.0	82.8	99.4	385	1072	1377	602	242	166
(WY)	1987		1983	1983	1984	1986	1946	1997	1986	1975	1983	1986
MIN	51.0		45.3	40.1	38.1	39.5	58.6	99.1	96.2	61.4	55.1	52.1
(WY)	1978	1978	1995	1988	1988	1988	1975	1977	1977	1977	1977	1977

10032000 SMITHS FORK NEAR BORDER, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEARS	S 1943 - 2001
ANNUAL TOTAL	52324		36361			
ANNUAL MEAN	143		99.6		194	
HIGHEST ANNUAL MEAN					324	1986
LOWEST ANNUAL MEAN					71.1	1977
HIGHEST DAILY MEAN	613	May 25	403	May 17	2000	Jun 4 1986
LOWEST DAILY MEAN	54	Dec 30,31	45	Feb 27	32	Dec 6 1993
ANNUAL SEVEN-DAY MINIMUM	57	Dec 25	50	Feb 22	35	Dec 1 1993
MAXIMUM PEAK FLOW			424	May 17	2100	Jun 4 1986
MAXIMUM PEAK STAGE			2.24	May 17	5.86ª	Jun 4 1986
ANNUAL RUNOFF (AC-FT)	103800		72120		140600	
10 PERCENT EXCEEDS	342		200		519	
50 PERCENT EXCEEDS	85		74		91	
90 PERCENT EXCEEDS	65		53		59	

a Site and datum then in use. e Estimated.

10035000 SMITHS FORK AT COKEVILLE, WY

LOCATION.--Lat $42^{\circ}05'47"$, long $110^{\circ}56'24"$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec.4, T.24 N., R.119 W., Lincoln County, Hydrologic Unit 16010102, 900 ft upstream from U.S. Highway 30N, 1 mi northeast of Cokeville, and 2 mi upstream from mouth.

DRAINAGE AREA.--275 mi².

PERIOD OF RECORD.--Water years 1983-88, 1989-1992, October 1993 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	
OCT 24	1435	77	605	10.2	109	8.4	387	10.0	8.0	<.041	<.047	<.006	<.018	
MAY 08	0850	185	613	9.2	94	8.3	353	13.5	7.0	<.041	<.047	<.006	<.018	
JUN 20	0925	136				8.2	361	15.0	10.5	<.040	E.024	<.006	<.020	
AUG 15	0845	64	611	7.6	92	7.7	371	20.5	14.0	E.030	E.023	<.006	<.020	

DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE SUS- PENDE: (T/DAY (80155
OCT 24	35	7.3
MAY		
08	80	40
JUN 20	41	15
AUG 15	11	1.9
13	11	1.0

 $^{{\}tt E}$ -- Estimated value.

10038000 BEAR RIVER BELOW SMITHS FORK, NEAR COKEVILLE, WY

LOCATION.--Lat $42^{\circ}07^{\circ}36^{\circ}$, long $110^{\circ}58^{\circ}21^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ NE $^{1}/_{4}$ sec. 28, T.25 N., R.119 W., Lincoln County, Hydrologic Unit 16010102, on left bank 1.1 mi upstream from Wyman Dam, 2.8 mi northwest of Cokeville, and 3.8 mi downstream from Smiths Fork. DRAINAGE AREA.--2,447 mi 2 .

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1954 to September 1996, October 1996 to current year. (seasonal).

REVISED RECORDS.--WRD UT-74-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 6,140 ft above sea level, from river-profile map.

REMARKS.--Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by diversion for irrigation, return flow from irrigated areas, and regulation by upstream reservoirs. Station operated and record provided by Utah District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	236	e190	e160	e140	e140	e120	327	192	201	161	99	e70
2	239	e190	e160	e140	e140	127	302	181	197	154	99	76
3	241	e190	e160	e140	e143	e130	233	177	196	145	113	74
4	246	e190	e160	e140	e141	e130	208	166	197	140	141	73
5	248	e190	e160	e140	e146	e130	203	165	196	139	127	71
6	237	e190	e150	e150	e150	e130	205	164	e190	131	117	73
7	219	e180	e150	e160	e146	e130	214	164	e180	123	110	82
8	197	e170	e150	e160	e140	e130	215	183	174	189	101	86
9	185	e160	e150	e160	e140	e130	206	196	159	162	93	88
10	181	e160	e150	e160	e140	e130	207	191	154	152	93	83
11	e200	e160	e150	e160	e140	e130	203	164	155	145	96	80
12	e190	e160	e160	e150	e140	e130	207	174	154	144	93	78
13	e180	e160	e160	e140	e141	e130	208	185	179	159	91	78
14	e180	e160	e160	e130	e140	e130	207	204	214	154	89	79
15	e180	e160	e160	e130	e140	e130	192	263	200	146	86	79
16	e180	e160	e160	e130	e140	e130	182	337	198	140	88	78
17	e180	e160	e160	e130	e150	e140	180	373	226	134	93	79
18	e180	e160	e160	e140	e140	e160	187	360	249	168	89	87
19	e180	e160	e160	e150	e142	180	201	337	287	145	86	80
20	e180	e160	e160	e140	e144	198	191	318	299	129	86	76
21	e190	e160	e160	e140	e147	235	184	308	290	119	88	75
22	e190	e160	e170	e140	e150	257	169	301	270	112	94	74
23	e200	e160	e170	e140	e152	326	161	281	264	109	87	74
24	e200	e150	e160	e140	e150	376	136	251	249	113	78	74
25	e200	e150	e150	e135	e140	472	133	251	232	107	74	70
26 27 28 29 30 31	e200 e190 e190 e190 e190	e150 e160 e160 e160 e160	e140 e140 e140 e140 e140 e140	e135 e135 e135 e135 e135 e135	e130 e120 e120 	549 679 613 498 431 387	137 166 176 190 193	253 257 251 251 235 216	212 193 190 183 169	106 109 106 108 105 100	75 75 73 71 68 e68	69 69 70 70 70
TOTAL	6189	4980	4790	4395	3952	7568	5923	7349	6257	4154	2841	2285
MEAN	200	166	155	142	141	244	197	237	209	134	91.6	76.2
MAX	248	190	170	160	152	679	327	373	299	189	141	88
MIN	180	150	140	130	120	120	133	164	154	100	68	69
AC-FT	12280	9880	9500	8720	7840	15010	11750	14580	12410	8240	5640	4530
MEAN MAX (WY) MIN (WY)	226 755 1983 55.6 1978	234 692 1983 83.1 1978	205 536 1983 96.5 1978	FOR WATER 186 344 1984 86.2 1993	212 429 1986 82.4 1993	368 1159 1986 116 1988	686 1945 1985 69.2 1977	990 2794 1984 115 1977	1234 3712 1983 96.7 1977	586 1556 1983 71.4 1977	240 707 1983 80.1 1977	205 658 1983 55.9 1977

10038000 BEAR RIVER BELOW SMITHS FORK, NEAR COKEVILLE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1955	- 2001
ANNUAL TOTAL	92753		60683				
ANNUAL MEAN	253		166		446		
HIGHEST ANNUAL MEAN					1049		1984
LOWEST ANNUAL MEAN					112		1977
HIGHEST DAILY MEAN	617	May 26	679	Mar 27	5400	Jun	7 1983
LOWEST DAILY MEAN	102	Sep 17	68	Aug 30,31	31	Oct	5 1977
ANNUAL SEVEN-DAY MINIMUM	106	Sep 15	70	Sep 24	36	Oct	1 1977
MAXIMUM PEAK FLOW			718	Mar 26	5620	Jun	7 1983
MAXIMUM PEAK STAGE			4.08	Mar 26	8.75	Jun	7 1983
ANNUAL RUNOFF (AC-FT)	184000		120400		323000		
10 PERCENT EXCEEDS	439		243		1070		
50 PERCENT EXCEEDS	200		160		231		
90 PERCENT EXCEEDS	140		86		115		

e Estimated.

10038000 BEAR RIVER BELOW SMITHS FORK, NEAR COKEVILLE, WY--Continued (National Water-Quality Assessment Program Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1992 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
JAN 10 24	1425 1400	80 144	610 611	11.8 11.5	101 98	8.2 7.6	736 571	-3.0 -1.0	.00	 270	 68.0	23.3	1.38
FEB 23	0930	155	598	10.9	96	8.4	554		.3	250	63.9	21.6	1.33
MAR 18	1000	156	614	11.5	101	8.3	539	4.0	1.3	230	58.3	19.8	1.63
APR 18	1500	161	610	10.2	124	8.4	779	19.0	14.2	310	66.4	34.3	4.18
MAY 24	1800	262	612	9.9	127	8.4	443	23.0	16.4	200	56.0	15.5	.98
JUN 19	1120	300	619	8.0	99	8.3	750	19.5	15.5	320	67.6	35.6	4.37
JUL 25	1500	108	611	10.0	137	8.4	590	31.0	19.9	260	62.3	26.0	1.80
AUG 07	0940	108	617	7.7	101	8.2	500	18.5	18.3	220	55.1	21.2	1.36
SEP 13	1210	87	614	10.8	136	8.4	463	24.5	16.2	220	58.5	18.1	1.12
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)
JAN 10													
24 FEB	.5	19.7	213	260		19.9	E.2	8.8	60.0	.47	134	344	330
23 MAR	.5	18.0	202	246		19.5	. 2	8.4	58.4	.43	134	319	313
18 APR	.5	16.8	196	228	5	19.4	. 2	7.0	60.1	.44	136	322	301
18 MAY	1	45.2	233	274	5	48.6	. 2	9.1	103	.67	213	490	452
24 JUN	. 4	11.5	172	201	5	11.5	E.1	5.9	46.5	.36	186	263	251
19 JUL	1.0	39.5	262	320		41.5	.3	15.5	77.7	.64	383	473	440
25 AUG	.7	26.5	205	240	5	27.9	. 2	8.1	72.0	.48	104	356	348
07 SEP	.5	18.7	172	210		19.5	E.2	7.1	69.1	.44	93.3	320	296
13	. 4	12.2	163	191	4	12.0	E.1	5.8	72.2	.35	61.3	260	277
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	2,4-D METHYL ESTER, WATER FLIRD REC (UG/L) (50470)
JAN 10 24 FEB	E.023	 E.09	 .12	.169 .157	E.003	 .006	E.009 <.018	 .017	E11k 	23	 M	 12.4	
23 MAR	<.041	E.10	.17	.139	<.006	E.004	<.018	.019		E1k	М	5.2	
18 APR	<.041	.15	.25	.075	<.006	.006	<.018	.040			<10	30.0	
18 MAY	<.041	.43	.51	<.047	<.006	.014	<.018	.087			М	48.9	
24	E.025	E.06	.30	E.035	<.006	.008	<.020	.073		22	<10	29.3	
JUN 19 JUL	<.040	1.1	1.0	<.050	E.004	.026	<.020	.140			20	34.6	
25	<.040	.23	.35	E.041	<.006	.009	<.020	.034			<10	22.5	
AUG 07 SEP	E.024	.20	.30	.050	E.003	.010	<.020	.031		74	<10	28.9	<.009
13	<.040	.12	.20	E.037	E.003	E.004	<.020	.015			М	18.6	

427

10038000 BEAR RIVER BELOW SMITHS FORK, NEAR COKEVILLE, WY--Continued (National Water-Quality Assessment Program Station)

DATE	2,4-D, DIS- SOLVED (UG/L) (39732)	2,4-DB WATER, FLITRD, GF 0.7U REC (UG/L) (38746)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	3HYDRXY CARBO- FURAN WAT,FLT GF 0.7U REC (UG/L) (49308)	3-KETO CARBO- FURAN WATER FLTRD REC (UG/L) (50295)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ACIFL- UORFEN WATER, FLTRD, GF 0.7U REC (UG/L) (49315)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALDI- CARB SULFONE WAT,FLT GF 0.7U REC (UG/L) (49313)	ALDICA- RB SUL- FOXIDE, WAT,FLT GF 0.7U REC (UG/L) (49314)	ALDI- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (49312)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)
JAN 10													
24 FEB			<.002			<.004		<.002				<.005	<.007
23 MAR			<.002			<.004		<.002				<.005	<.007
18 APR			<.002			<.004		<.002				<.005	<.007
18 MAY			<.002			<.004		<.002				<.005	<.007
24 JUN 19			<.002			<.004		<.002				<.005	<.007
JUL 25			<.002 <.002			<.004		<.002 <.002				<.005 <.005	<.007 <.007
AUG 07	<.02	<.02	<.002	<.01	<1.50	<.004	<.01	<.002	<.02	<.01	<.04	<.005	<.007
SEP 13			<.002			<.004		<.002				<.005	<.007
13			1.002			1.004		1.002				1.005	1.007
DATE	BENDIO- CARB, WATER FLTRD REC (UG/L) (50299)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BENOMYL WATER FLTRD REC (UG/L) (50300)	BEN- SUL- FURON METHYL WAT FLT REC (UG/L) (61693)	BENTA- ZON, WATER, FLTRD, GF 0.7U REC (UG/L) (38711)	BRO- MACIL, WATER, DISS, REC (UG/L) (04029)	BRO- MOXYNIL WATER, FLTRD, GF 0.7U REC (UG/L) (49311)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAF- FEINE, WATER FLTRD REC (UG/L) (50305)	CAR- BARYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49310)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN, WATER, FLTRD, GF 0.7U REC (UG/L) (49309)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)
JAN 10													
24 FEB		<.010						<.002			<.041		<.020
23 MAR		E.003						<.002			<.041		<.020
18 APR		<.010						<.002			<.041		<.020
18 MAY		<.010						<.002			<.041		<.020
24 JUN		<.010						<.002			<.041		<.020
19 JUL_		<.010						<.002			<.041		<.020
25 AUG		<.010						<.002			<.041		<.020
07 SEP	<.025	<.010	<.004	<.0158	<.01	<.03	<.02	<.002	<.010	<.03	<.041	<.01	<.020
13		<.010						<.002			<.041		<.020
DATE	CHLOR- AMBEN, METHYL ESTER WATER FLTRD (UG/L) (61188)	CHLORI- MURON, WATER FLTRD REC (UG/L) (50306)	CHLORO- THALO- NIL, WAT,FLT GF 0.7U REC (UG/L) (49306)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CLOPYR- ALID, WATER, FLTRD, GF 0.7U REC (UG/L) (49305)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	SI- CLOATE, WATER, DISS, REC (UG/L) (04031)	DACTHAL MONO- ACID, WAT,FLT GF 0.7U REC (UG/L) (49304)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DEETHYL DEISO- PROPYL ATRAZIN DISS, REC (UG/L) (04039)	DEISO- PROPYL ATRAZIN WATER, DISS, REC (UG/L) (04038)	DI- AZINON, DIS- SOLVED (UG/L) (39572)
JAN 10													
24 FEB				<.005		<.018			<.003	<.006			<.005
23 MAR				<.005		<.018			<.003	<.006			<.005
18 APR				<.005		<.018			<.003	<.006			<.005
18 MAY				<.005		<.018			<.003	<.006			<.005
24 JUN				<.005		<.018			<.003	<.006			<.005
19 JUL				<.005		<.018			<.003	<.006			<.005
25 AUG				<.005		<.018			<.003	<.006			<.005
07 SEP	<.02	<.010	<.04	<.005	<.01	<.018	<.01	<.01	<.003	<.006	<.01	<.04	<.005
13				<.005		<.018			<.003	<.006			<.005

10038000 BEAR RIVER BELOW SMITHS FORK, NEAR COKEVILLE, WY--Continued (National Water-Quality Assessment Program Station)

DATE	DICAMBA WATER, FLTRD, GF 0.7U REC (UG/L) (38442)	DICHLOR PROP, WATER, FLTRD, GF 0.7U REC (UG/L) (49302)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DINOSEB WATER, FLTRD, GF 0.7U REC (UG/L) (49301)	DIPHEN- AMID, WATER, DISS, REC (UG/L) (04033)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	DIURON, WATER, FLTRD, GF 0.7U REC (UG/L) (49300)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FEN- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49297)	FLUMET- SULAM WATER FLTRD REC (UG/L) (61694)	FLUO- METURON WATER, FLTRD, GF 0.7U REC (UG/L) (38811)
JAN 10													
24 FEB			<.005			<.021		<.002	<.009	<.005			
23 MAR			<.005			<.021		<.002	<.009	<.005			
18 APR			<.005			<.021		<.002	<.009	<.005			
18 MAY			<.005			<.021		<.050	<.009	<.005			
24 JUN			<.005			<.021		<.002	<.009	<.005			
19 JUL			<.005			<.021		<.002	<.009	<.005			
25 AUG			<.005			<.021		<.002	<.009	<.005			
07 SEP	<.01	<.01	<.005	<.01	<.03	<.021	<.01	<.002	<.009	<.005	<.03	<.0110	<.03
13			<.005			<.021		<.002	<.009	<.005			
DATE	FONOFOS WATER DISS REC (UG/L) (04095)	HYDROXY ATRA- ZINE WATER FLTRD REC (UG/L) (50355)	IMAZ- AQUIN WATER FLTRD REC (UG/L) (50356)	IMAZE- THAPYR WATER FLTRD REC (UG/L) (50407)	IMID- ACLOP- RID WATER FLTRD REC (UG/L) (61695)	LINDANE DIS- SOLVED (UG/L) (39341)	LINURON WATER, FLTRD, GF 0.7U REC (UG/L) (38478)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	MCPA, WATER, FLTRD, GF 0.7U REC (UG/L) (38482)	MCPB, WATER, FLTRD, GF 0.7U REC (UG/L) (38487)	METAL- AXYL WATER FLTRD REC (UG/L) (50359)	METHIO- CARB, WATER, FLTRD, GF 0.7U REC (UG/L) (38501)
JAN 10													
24 FEB	<.003					<.004		<.035	<.027				
23 MAR	<.003					<.004		<.035	<.027				
18 APR	<.003					<.004		<.035	<.027				
18 MAY	<.003					<.004		<.035	<.027				
24 JUN	<.003					<.004		<.035	<.027				
19 JUL	<.003					<.004		<.035	<.027				
25 AUG	<.003					<.004		<.035	E.006				
07 SEP	<.003	<.008	<.016	<.017	<.0068	<.004	<.01	<.035	E.006	<.02	<.01	<.020	<.01
13	<.003					<.004		<.035	<.027				
DATE	METH- OMYL OXIME WATER FLIRD REC (UG/L) (61696)	METH- OMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (49296)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MET- SUL- FURON METHYL WAT FLT REC (UG/L) (61697)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	NEB- URON, WATER, FLTRD, GF 0.7U REC (UG/L) (49294)	NICOSUL FURON WATER FLTRD REC (UG/L) (50364)	NORFLUR AZON, WATER, FLTRD, GF 0.7U REC (UG/L) (49293)	ORY- ZALIN, WATER, FLTRD, GF 0.7U REC (UG/L) (49292)
JAN 10													
24 FEB			<.050	<.006	<.013	<.006		<.002	<.007				
23 MAR			<.050	<.006	<.013	<.006		<.002	<.007				
18 APR			<.050	<.006	<.013	<.006		<.002	<.007				
18 MAY			<.050	<.006	<.013	<.006		<.002	<.007				
24 JUN			<.050	<.006	<.013	<.006		<.002	<.007				
19 JUL			<.050	<.006	<.013	<.006		<.002	<.007				
25 AUG			<.050	<.006	<.013	<.006		<.002	<.007				
07 SEP	<.0110	<.0044	<.050	<.006	<.013	<.006	<.0250	<.002	<.007	<.01	<.013	<.02	<.02
13			<.050	<.006	<.013	<.006		<.002	<.007				

10038000 BEAR RIVER BELOW SMITHS FORK, NEAR COKEVILLE, WY--Continued (National Water-Quality Assessment Program Station)

DATE	OXAMYL OXIME WATER FLITRD REC (UG/L) (50410)	OXAMYL, WATER, FLTRD, GF 0.7U REC (UG/L) (38866)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PIC- LORAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49291)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLITD 0.7 U GF, REC (UG/L) (82679)
JAN 10													
24 FEB			<.003	<.007	<.002	<.010	<.006	<.011		<.015	<.004	<.010	<.011
23 MAR			<.003	<.007	<.002	<.010	<.006	<.011		<.015	<.004	<.010	<.011
18 APR			<.003	<.007	<.002	<.010	<.006	<.011		<.015	<.004	<.010	<.011
18 MAY			<.003	<.007	<.002	E.016	<.006	<.011		<.015	<.004	<.010	<.011
24 JUN			<.003	<.007	<.002	<.010	<.006	<.011		<.015	<.004	<.010	<.011
19 JUL			<.003	<.007	<.002	<.010	<.006	<.011		<.015	<.004	<.010	<.011
25 AUG			<.003	<.007	<.002	<.010	<.006	<.011		<.015	<.004	<.010	<.011
07 SEP 13	<.013	<.01	<.003	<.007	<.002	<.010	<.006	<.011	.09	E.002	<.004	<.010	<.011
13			<.003	<.007	<.002	<.010	<.006	<.011		E.003	<.004	<.010	<.011
DATE	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	PRO- PHAM, WATER, FLTRD, GF 0.7U REC (UG/L) (49236)	PROP- ICONA- ZOLE , WATER FLTRD REC (UG/L) (50471)	PRO- POXUR, WATER, FLTRD, GF 0.7U REC (UG/L) (38538)	SIDURON WATER FLTRD REC (UG/L) (38548)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	SULFO- MET- RURON METHYL WTR FLT REC (UG/L) (50337)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL, WATER, DISS, REC (UG/L) (04032)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)
JAN 10													
24 FEB	<.023					<.011		<.016		<.034	<.017	<.005	<.002
23 MAR	<.023					<.011		<.016		<.034	<.017	<.005	<.002
18 APR	<.023					<.011		<.016		<.034	<.017	<.005	<.002
18 MAY	<.023					<.011		E.005		<.034	<.017	<.005	<.002
24 JUN	<.023					<.011		<.016		<.034	<.017	<.005	<.002
19 JUL	<.023					<.011		<.016		<.034	<.017	<.005	<.002
25 AUG	<.023					<.011		<.016		<.034	<.017	<.005	<.002
07 SEP	<.023	<.01	<.021	<.01	<.017	<.011	<.009	<.016	<.01	<.034	<.017	<.005	<.002
13	<.023					<.011		<.016		<.034	<.017	<.005	<.002
		DA	TE	TRI- BENURON METHYL WATER FLTRD (UG/L) (61159)	TRI- CLOPYR, WATER, FLTRD, GF 0.7U REC (UG/L) (49235)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	UREA 3(4-CHLOR OPHENYL METHYL WAT FLT REC (UG/L) (61692)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)			
			0 4			 <.009			74 44	16 17			
		FEB 2	3			E.003			43	18			
		MAR				<.009			14	5.9			
		APR 1	8			<.090			39	17			
		MAY 2	4			<.009			42	30			
		JUN				<.009		90	57	46			
		JUL				<.009		85	29	8.5			
		AUG 0	7	<.01	<.02	<.009	<.0242		16	4.7			
		SEP				<.009			7	1.6			

 $[\]mbox{\bf E}$ -- Estimated value. M -- Presence verified, not quantified. k -- Counts outside acceptable range (non-ideal colony count).

10039500 BEAR RIVER AT BORDER, WY

LOCATION.--Lat $42^{\circ}12^{\circ}40^{\circ}$, long $111^{\circ}03^{\circ}11^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.15, T.14 S., R. 46 E., Bear Lake County, Idaho, Hydrologic Unit 16010102, on left bank 0.2 mi west of Wyoming-Idaho State line, 0.5 mi west of Border, and 2.1 mi upstream from Thomas Fork.

DRAINAGE AREA. -- 2,486 mi².

PERIOD OF RECORD.--October 1937 to September 1996, October 1996 to 2000 (seasonal), October 2000 to September 2001.

REVISED RECORDS.--WRD UT-74-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 6,051.63 ft above sea level, unadjusted.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Natural flow of stream affected by regulation of upstream reservoirs, diversions for irrigation, and return flow from irrigated areas.

		DISCHA	ARGE, CUE	IC FEET P		, WATER Y		ER 2000 T	O SEPTEMB	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	202 202 201 203 202	176 182 177 172 181	e160 e160 e160 e160 e160	e140 e140 e140 e140 e140	e130 e120 e120 e120 e120	e120 e120 e120 e130 e130	384 343 304 256 242	172 113 113 106 104	172 168 167 168 169	126 120 109 100 97	84 70 73 92 92	45 48 45 43
6 7 8 9 10	193 178 158 145 144	185 e180 e160 e150 e160	e160 e150 e150 e150 e150	e150 e160 e160 e160 e160	e120 e120 e120 e120 e120	e130 e130 e130 e130 e130	239 246 251 245 237	105 104 114 160 158	161 136 124 115 116	87 125 135 124 117	82 78 71 65 62	44 45 48 51
11 12 13 14 15	157 147 138 142 142	e160 e150 e160 e160 e160	e150 e160 e160 e160 e160	e160 e150 e140 e130 e130	e130 e130 e130 e130 e130	e130 e130 e130 e130 e130	233 230 230 223 218	121 106 104 123 202	115 125 161 156 152	114 119 125 132 123	62 63 61 60 58	48 46 47 49 51
16 17 18 19 20	133 131 135 131 130	e170 e160 e160 e160 e160	e170 e160 e160 e160 e160	e130 e130 e140 e150 e140	e130 e130 e130 e140 e150	e130 e140 e150 e160 e170	207 201 201 212 223	277 322 318 302 283	161 183 217 240 236	116 110 122 134 111	58 59 58 56 54	51 49 52 54 46
21 22 23 24 25	136 146 149 160 175	e160 e160 e160 e150 e150	e160 e160 e160 e160 e150	e130 e130 e130 e140 e140	e150 e150 e150 e150 e140	e200 e250 e300 e400 e480	207 201 182 169 135	274 266 250 222 220	223 214 204 187 169	100 95 90 92 92	55 58 57 50 47	45 44 44 45 45
26 27 28 29 30 31	184 176 172 171 170 177	e150 e160 e160 e160 e160	e140 e140 e140 e140 e140 e140	e130 e120 e120 e120 e120 e120	e130 e120 e120 	481 646 630 580 478 431	136 163 181 172 178	218 224 220 213 209 190	153 149 148 137 130	92 91 92 91 91 86	46 46 43 43 42 42	43 46 47 47 49
TOTAL MEAN MAX MIN AC-FT	5030 162 203 130 9980	4893 163 185 150 9710	4790 155 170 140 9500	4290 138 160 120 8510	3650 130 150 120 7240	7546 243 646 120 14970	6649 222 384 135 13190	5913 191 322 104 11730	4956 165 240 115 9830	3358 108 135 86 6660	1887 60.9 92 42 3740	1411 47.0 54 43 2800
STATIST	TICS OF	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	38 - 2001	, BY WATE	R YEAR (W	Y)*			
MEAN MAX (WY) MIN (WY)	213 751 1983 51.4 1978	228 693 1983 81.2 1978	199 563 1983 106 1993	184 381 1985 77.6 1993	210 479 1986 75.2 1993	384 1294 1986 105 1988	754 1979 1985 71.2 1977	1031 3158 1952 74.4 1977	1179 3829 1983 62.2 1977	539 1670 1983 54.2 1977	229 752 1983 42.3 1940	181 671 1983 38.5 1940

10039500 BEAR RIVER AT BORDER, WY--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR	WATER YEARS 1938 - 2001*
ANNUAL TOTAL	54373	
ANNUAL MEAN	149	433
HIGHEST ANNUAL MEAN		1068 1983
LOWEST ANNUAL MEAN		103 1977
HIGHEST DAILY MEAN	646 Mar 27	4840 Jun 8 1983
LOWEST DAILY MEAN	42 Aug 30,31	25 Apr 29 1977
ANNUAL SEVEN-DAY MINIMUM	44 Aug 26	29 Apr 28 1977
MAXIMUM PEAK FLOW	707 Mar 27	4880 Jun 7 1983
MAXIMUM PEAK STAGE	3.69 Mar 27	9.69 Jun 7 1983
ANNUAL RUNOFF (AC-FT)	107800	314000
10 PERCENT EXCEEDS	223	1180
50 PERCENT EXCEEDS	140	230
90 PERCENT EXCEEDS	52	110

For period of operation. Estimated.

432 COLUMBIA RIVER BASIN

SNAKE RIVER BASIN

13010065 SNAKE RIVER ABOVE JACKSON LAKE, AT FLAGG RANCH, WY

LOCATION.--Lat 44°05'21", long 110°41'38", in Hydrologic Unit 17040101, Grand Teton National Park, on left bank 50 ft upstream from State Highway 89 bridge, 2 mi downstream from the south boundary of Yellowstone National Park, 600 ft downstream from the confluence with Sheffield Creek.

DRAINAGE AREA. -- 486 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1983 to current year. Prior to 1988 water year, published as station 13010200.

GAGE.--Water-stage recorder. Datum of the gage is 6,801.61 ft above sea level, (levels by U.S. Coast and Geodetic Survey). A nonrecording cantilever chain gage was used from 1913-18 at a site 2.5 mi upstream at a different datum. In 1918, an auxiliary chain gage was installed at the current site and read periodically. Water-stage recorder installed July 1921 at the current site at a different datum and operated until July 1925. Records probably not comparable.

REMARKS.--Records good except for estimated daily discharges, which are fair. Station equipment includes satellite telemetry. Station operated and record provided by the Idaho District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY DEC FEB OCT NOV JAN MAY JUL AUG SEP e260 e260 e260 e260 e260 e260 274 e240 e280 e240 e280 e240 e280 e280 e280 e260 e280 13 294 287 3670 181 e260 e280 e280 e260 e280 e280 e280 e280 e260 e240 e280 e240 e280 e260 e260 e260 e260 e260 e260 e280 e260 e280 e260 e280 e260 e260 e270 e260 e260 e260 e260 e260 e260 e260 2.27 e260 e260 ---TOTAL MEAN MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1984 - 2001, BY WATER YEAR (WY) MEAN MAX (WY) MTN 2.47 (WY)

13010065 SNAKE RIVER ABOVE JACKSON LAKE, AT FLAGG RANCH, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001	WATER YEAR	WATER YEA	ARS 1984 - 2001
ANNUAL TOTAL	297989		192905			
ANNUAL MEAN	814		529		902	
HIGHEST ANNUAL MEAN					1538	1997
LOWEST ANNUAL MEAN					526	1988
HIGHEST DAILY MEAN	6400	May 26	5170	May 16	11300	Jun 5 1996
LOWEST DAILY MEAN	237	Nov 20	161	Sep 4	161	Sep 6 1994
ANNUAL SEVEN-DAY MINIMUM	240	Nov 19	166	Aug 30	163	Sep 4 1994
ANNUAL RUNOFF (AC-FT)	591100		382600		653200	
10 PERCENT EXCEEDS	2280		1120		2420	
50 PERCENT EXCEEDS	390		292		401	
90 PERCENT EXCEEDS	260		196		262	

e Estimated.

13010065 SNAKE RIVER ABOVE JACKSON LAKE AT FLAGG RANCH, WY--Continued (National Water-Quality Assessment Program Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.-- Water years 1986 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: June to September 1994, June to September 1995, May to September 1996.

 ${\tt INSTRUMENTATION:--Temperature\ recording\ data\ logger.}$

EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 22.5°C July 22, 24, Aug. 11, 1994.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 26 30	1357 1050	347 324	595 590	10.3 9.5	113 101	7.6 7.9	275 287	9.5 5.5	8.5 7.0	59 59	18.4 18.2	3.30 3.21	4.52 4.66
NOV 15 DEC	1155	276	591	10.9	103	8.2	325	5.0	2.3	69	21.3	3.74	4.74
12 12 JAN	1200 1230	257 257	588 590	11.7 11.3	104 100	7.5 8.3	308 311	-7.0 -8.0	.00	61 62	19.1 19.4	3.35 3.31	4.96 4.97
18 FEB	1320	277	600	10.4	94	7.8	294	-4.0	1.4	57	17.6	3.12	5.06
22 MAR	1000	310	594	11.3	107	7.7	284	5.0	2.6	52	16.2	2.82	5.00
08 MAY	1100	282	602	12.0	109	7.6	295	-2.0	1.5	55	17.2	3.03	4.93
02 15 JUN	1130 0830	1390 5520	595 593	11.0 10.1	105 101	7.7 7.7	150 82	3.0 9.5	2.9 4.6	47 29	14.2 9.00	2.70 1.56	2.10 .90
12 JUL	0945	770	590	8.7	103	8.0	194	14.2	11.4	50	15.2	2.84	2.68
24 AUG	0930	276	598	8.8	113	8.1	303	19.8	15.3	69	21.0	3.87	4.53
07 SEP	0900	204	602	8.6	112	8.0	341	18.8	16.6	75	23.0	4.26	5.35
18	0940	218	599	8.6	100	8.2	358	5.0	11.0	82	25.1	4.66	5.42
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
OCT 26 30	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT.DIS FET LAB CACO3 (MG/L)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)
OCT 26 30 NOV 15	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
OCT 26 30 NOV 15 DEC 12	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
OCT 26 30 NOV 15 DEC 12 12 JAN 18	AD-SORP-TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 30.4 33.3 36.6	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 15.9 17.6 18.8 18.7	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 33.2 33.7 35.0	DIS- SOLVED (MG/L AS SO4) (00945) 30.6 31.9 38.0 33.3	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 176 171 161	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 188 196 216 208	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041 <.041	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22	AD- SORP- TION RATIO (00931) 2 2 2 2	DIS- SOLVED (MG/L AS NA) (00930) 30.4 33.3 36.6 35.9 37.5	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 15.9 17.6 18.8 18.7 20.3	RIDE, DIS- SOLVED (MG/L AS F) (00950) 2.3 .2 2.1 2.5 2.6	DIS- SOLVED (MG/L AS SIO2) (00955) 33.2 33.7 35.0 37.4 36.8	DIS- SOLVED (MG/L AS SO4) (00945) 30.6 31.9 38.0 33.3 34.2	DIS- SOLVED (TONS PER AC-FT) (70303) .26 .27 .29 .28 .28	DIS- SOLVED (TONS PER DAY) (70302) 176 171 161 144 145	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 188 196 216 208 209	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 183 188 209 203 206	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041 <.041	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .09 .11
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR 08	AD- SORP- TION RATIO (00931) 2 2 2 2 2	DIS- SOLVED (MG/L AS NA) (00930) 30.4 33.3 36.6 35.9 37.5	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 15.9 17.6 18.8 18.7 20.3	RIDE, DIS- SOLVED (MG/L AS F) (00950) 2.3 .2 2.1 2.5 2.6	DIS- SOLVED (MG/L AS SIO2) (00955) 33.2 33.7 35.0 37.4 36.8	DIS- SOLVED (MG/L AS SO4) (00945) 30.6 31.9 38.0 33.3 34.2	DIS- SOLVED (TONS PER AC-FT) (70303) .26 .27 .29 .28 .28	DIS- SOLVED (TONS PER DAY) (70302) 176 171 161 144 145	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 188 196 216 208 209	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 183 188 209 203 206 204	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041 <.041 <.041	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .09 .11 .08 .29 .19
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR 08 MAY 02 15	AD- SORP- TION RATIO (00931) 2 2 2 2 2 2 2	DIS- SOLVED (MG/L AS NA) (00930) 30.4 33.3 36.6 35.9 37.5 35.1	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 76 80	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 15.9 17.6 18.8 18.7 20.3 20.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) 2.3 .2 2.1 2.5 2.6 2.5	DIS- SOLVED (MG/L AS SIO2) (00955) 33.2 33.7 35.0 37.4 36.8 37.1	DIS- SOLVED (MG/L AS SO4) (00945) 30.6 31.9 38.0 33.3 34.2 32.0 29.0	DIS- SOLVED (TONS PER AC-FT) (70303) .26 .27 .29 .28 .28	DIS- SOLVED (TONS PER DAY) (70302) 176 171 161 144 145 153	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 188 196 216 208 209 205 188	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 183 188 209 203 206 204 188	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .09 .11 .08 .29 .19 .13
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR 08 MAY 02 15 JUN 12	AD- SORP- TION RATIO (00931) 2 2 2 2 2 2 2 2 2	DIS- SOLVED (MG/L AS NA) (00930) 30.4 33.3 36.6 35.9 37.5 35.1 35.0 34.8	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 76 80	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 15.9 17.6 18.8 18.7 20.3 20.1 17.9 18.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) 2.3 .2 2.1 2.5 2.6 2.7 2.6	DIS- SOLVED (MG/L AS SIO2) (00955) 33.2 33.7 35.0 37.4 36.8 37.1 37.5	DIS- SOLVED (MG/L AS SO4) (00945) 30.6 31.9 38.0 33.3 34.2 32.0 29.0 30.4	DIS- SOLVED (TONS PER AC-FT) (70303) .26 .27 .29 .28 .28 .28 .26 .27	DIS- SOLVED (TONS PER DAY) (70302) 176 171 161 144 145 153 157 152	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 188 196 216 208 209 205 188 200	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 183 188 209 203 206 204 188 187 98	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .09 .11 .08 .29 .19 .13 .10 .10
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR 08 MAY 02 15 JUN 12 JUL 24	AD- SORP- TION RATIO (00931) 2 2 2 2 2 2 2 2 2 2 2 4 4	DIS- SOLVED (MG/L AS NA) (00930) 30.4 33.3 36.6 35.9 37.5 35.1 35.0 34.8	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 76 80	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 15.9 17.6 18.8 18.7 20.3 20.1 17.9 18.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) 2.3 .2 2.1 2.5 2.6 2.5 2.7 2.6	DIS- SOLVED (MG/L AS SIO2) (00955) 33.2 33.7 35.0 37.4 36.8 37.1 37.5 37.8	DIS- SOLVED (MG/L AS SO4) (00945) 30.6 31.9 38.0 33.3 34.2 32.0 29.0 30.4	DIS- SOLVED (TONS PER AC-FT) (70303) .26 .27 .29 .28 .28 .28 .26 .27	DIS- SOLVED (TONS PER DAY) (70302) 176 171 161 144 145 153 157 152 447 924	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 188 196 216 208 209 205 188 200	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 183 188 209 203 206 204 188 187 98 52	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .09 .11 .08 .29 .19 .13 .10 .10 .25 .50
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR 08 MAY 02 15 JUN 12 JUL	AD- SORP- TION RATIO (00931) 2 2 2 2 2 2 2 2 2 2 2 1	DIS- SOLVED (MG/L AS NA) (00930) 30.4 33.3 36.6 35.9 37.5 35.1 35.0 34.8 12.2 4.7 18.6	LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801) 76 80	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 15.9 17.6 18.8 18.7 20.3 20.1 17.9 18.9 6.7 2.8	RIDE, DIS- SOLVED (MG/L AS F) (00950) 2.3 .2 2.1 2.5 2.6 2.7 2.6 .9 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 33.2 33.7 35.0 37.4 36.8 37.1 37.5 37.8	DIS- SOLVED (MG/L AS SO4) (00945) 30.6 31.9 38.0 33.3 34.2 32.0 29.0 30.4 12.1 4.4	DIS- SOLVED (TONS PER AC-FT) (70303) .26 .27 .29 .28 .28 .28 .26 .27	DIS- SOLVED (TONS PER DAY) (70302) 176 171 161 144 145 153 157 152 447 924 274	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 188 196 216 208 209 205 188 200 119 62	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 183 188 209 203 206 204 188 187 98 52 127	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .09 .11 .08 .29 .19 .13 .10 .10 .25 .50

13010065 SNAKE RIVER ABOVE JACKSON LAKE AT FLAGG RANCH, WY--Continued (National Water-Quality Assessment Program Station)

DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)
OCT 26 30	<.047 E.025	<.018 <.018	.005	 1.5	 <.2	10 10	E2.2 3.4	<.002	<.004	<.002	 <.005	<.007	<.010
NOV 15 DEC	E.041	<.018	.009			M	3.3						
12 12	E.038 E.044	<.018 <.018	E.036 .011	1.4	.4	M 10	3.2 3.6						
JAN 18	E.044	<.018	.011			M	E2.8						
FEB 22	E.042	<.018	.010	1.1		20	E2.8	<.002	<.004	<.002	<.005	<.007	<.010
MAR 08	E.044	<.018	.013			10	<3.2	<.002	<.004	<.002	<.005	<.007	<.010
MAY 02 15	.051 E.043	<.018 .030	.063 .344	3.2		30 30	5.4 5.6	<.002 <.002	<.004 <.004	<.002 <.002	<.005 <.005	<.007 <.007	<.010 <.010
JUN 12	E.025	<.020	.016	1.7		М	E2.2	<.002	<.004	<.002	<.005	<.007	<.010
JUL 24	E.023	<.020	.011			10	4.7	<.002	<.004	<.002	<.005	<.007	<.010
AUG 07	E.026	<.020	.007	1.1		10	E2.7	<.002	<.004	<.002	<.005	<.007	<.010
SEP 18	<.050	<.020	.010			10	4.2	<.002	<.004	<.002	<.005	<.007	<.010
DATE	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL WATER FLIRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)
OCT	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	PYRIFOS DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, DIS- SOLVED (UG/L)	ELDRIN DIS- SOLVED (UG/L)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)
OCT 26 30	ATE, WATER, DISS, REC (UG/L)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	PYRIFOS DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	ATRA- ZINE, WATER, DISS, REC (UG/L)	AZINON, DIS- SOLVED (UG/L)	ELDRIN DIS- SOLVED (UG/L)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)	PROP WATER FLTRD 0.7 U GF, REC (UG/L)
OCT 26	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933)	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, DIS- SOLVED (UG/L) (39572)	ELDRIN DIS- SOLVED (UG/L) (39381)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)
OCT 26 30 NOV 15 DEC 12	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933)	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, DIS- SOLVED (UG/L) (39572)	ELDRIN DIS- SOLVED (UG/L) (39381)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)
OCT 26 30 NOV 15 DEC 12 12 JAN	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933)	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, DIS- SOLVED (UG/L) (39572)	ELDRIN DIS- SOLVED (UG/L) (39381)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	WATER FLIRD 0.7 U GF, REC (UG/L) (82668)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, DIS- SOLVED (UG/L) (39572) <.005	ELDRIN DIS- SOLVED (UG/L) (39381) E.003	FOTON WATER FLITED 0.7 U GF, REC (UG/L) (82677)	WATER FLTRD 0.7 U GF, REC (UG/L) (82668) <.002 	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PROP WATER FLITED 0.7 U GF, REC (UG/L) (82672)
OCT 26 30 NOV 15 DEC 12 12 JAN 18	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <- <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) E.003 <.005	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.021 <- <- <- <- <- <- <- <- <- <- <- <-	WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PROP WATER FLIRD 0.7 U GF, REC (UG/L) (82672) <.005
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, DIS- SOLVED (UG/L) (39572) <.005	ELDRIN DIS- SOLVED (UG/L) (39381) E.003	FOTON WATER FLITED 0.7 U GF, REC (UG/L) (82677)	WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009	PROP WATER FLITED 0.7 U GF, REC (UG/L) (82672)
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR 08	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) 	FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) E.003 <.005 <.005	FOTON WATER FLITED 0.7 U GF, REC (UG/L) (82677)	WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009	PROP WATER FLITED 0.7 U GF, REC (UG/L) (82672) <.005 <.005 <.005
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR 08 MAY 02 15 JUN 12 JUL	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002	BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041	FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.006 <.006 <.006 <.006 <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) E.003 <.005 <.005 <.005 <.005	FOTON WATER FLITED 0.7 U GF, REC (UG/L) (82677) <.021 <.021 <.021 <.021 <.021 <.021 <.021	WATER FLURD 0.7 U GF, REC (UG/L) (82668)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009	PROP WATER FLITED 0.7 U GF, REC (UG/L) (82672) <.005 <.005 <.005 <.005 <.005
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR 08 MAY 02 15 JUN 12	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.006 <.006 <.006 <.006 <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) E.003 <.005 <.005 <.005	FOTON WATER FITTED 0.7 U GF, REC (UG/L) (82677) <.021 <.021 <.021 <.021 <.021	WATER FLITRD 0.7 U GF, REC (UG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009	PROP WATER FLITED 0.7 U GF, REC (UG/L) (82672) <.005 <.005 <.005 <.005 <.005
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR 08 MAY 02 15 JUN 12 JUN 12 JUL 24	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002	BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041	FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.006 <.006 <.006 <.006 <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) E.003 <.005 <.005 <.005 <.005	FOTON WATER FLITED 0.7 U GF, REC (UG/L) (82677) <.021 <.021 <.021 <.021 <.021 <.021 <.021	WATER FLURD 0.7 U GF, REC (UG/L) (82668)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009	PROP WATER FLITED 0.7 U GF, REC (UG/L) (82672) <.005 <.005 <.005 <.005 <.005

13010065 SNAKE RIVER ABOVE JACKSON LAKE AT FLAGG RANCH, WY--Continued (National Water-Quality Assessment Program Station)

DATE	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)
OCT													
26 30	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002	<.007	<.003	<.007	<.002
NOV 15 DEC													
12													
12 JAN													
18 FEB													
22 MAR	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002	<.007	<.003	<.007	<.002
08 MAY	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002	<.007	<.003	<.007	<.002
02 15 JUN	<.003 <.003	<.004 <.004	<.035 <.035	<.027 <.027	<.050 <.050	<.006 <.006	<.013 <.013	<.006 <.006	<.002 <.002	<.007 <.007	<.003 <.003	<.007 <.007	<.002 <.002
12	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002	<.007	<.003	<.007	<.002
JUL 24	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002	<.007	<.003	<.007	<.002
AUG 07	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002	<.007	<.003	<.007	<.002
SEP 18	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002	<.007	<.003	<.007	<.002
DATE	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLIRD 0.7 U GF, REC (UG/L) (82678)
OCT	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	METON, WATER, DISS, REC (UG/L)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	CHLOR, WATER, DISS, REC (UG/L) (04024)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L)	MAZINE, WATER, DISS, REC (UG/L)	THIURON WATER FLTRD 0.7 U GF, REC (UG/L)	BACIL WATER FLTRD 0.7 U GF, REC (UG/L)	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L)	LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)
OCT 26 30	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	METON, WATER, DISS, REC (UG/L)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	CHLOR, WATER, DISS, REC (UG/L)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L)	MAZINE, WATER, DISS, REC (UG/L)	THIURON WATER FLTRD 0.7 U GF, REC (UG/L)	BACIL WATER FLTRD 0.7 U GF, REC (UG/L)	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L)	LATE WATER FLTRD 0.7 U GF, REC (UG/L)
OCT 26 30 NOV 15	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	METON, WATER, DISS, REC (UG/L) (04037)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	CHLOR, WATER, DISS, REC (UG/L) (04024)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	MAZINE, WATER, DISS, REC (UG/L) (04035)	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)
OCT 26 30 NOV 15 DEC 12	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	METON, WATER, DISS, REC (UG/L) (04037)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	CHLOR, WATER, DISS, REC (UG/L) (04024)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	MAZINE, WATER, DISS, REC (UG/L) (04035)	THIURON WATER FLIRD 0.7 U GF, REC (UG/L) (82670)	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	BENCARB WATER FLIRD 0.7 U GF, REC (UG/L) (82681)	LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)
OCT 26 30 NOV 15 DEC 12 12 JAN	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011	METON, WATER, DISS, REC (UG/L) (04037)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004	CHLOR, WATER, DISS, REC (UG/L) (04024)	PANIL WATER FILTRD 0.7 U GF, REC (UG/L) (82679) <.011	PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.023	MAZINE, WATER, DISS, REC (UG/L) (04035)	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.016	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	LATE WATER FLITED 0.7 U GF, REC (UG/L) (82678) <.002
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015	AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82676) <.004	CHLOR, WATER, DISS, REC (UG/L) (04024)	PANIL WATER FILTED 0.7 U GF, REC (UG/L) (82679) <.011	PARGITE WATER FLITED 0.7 U GF, REC (UG/L) (82685)	MAZINE, WATER, DISS, REC (UG/L) (04035)	THIURON WATER FLITED 0.7 U GF, REC (UG/L) (82670) <.016	BACIL WATER FLIRD 0.7 U GF, REC (UG/L) (82665) <.034	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.005	LATE WATER FILTED 0.7 U GF, REC (UG/L) (82678) <.002
OCT 26 30 NOV 15 DEC 12 JAN 18 FEB 22 MAR	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.016 <.016	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.034 <.034	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.005 <.005	LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.002 <.002
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR 08	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) 	WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 <.015	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010	PANIL WATER FILTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011	PARGITE WATER WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011	THIURON WATER FLITRD 0.7 U GF, REC (UG/L) (82670) <.016 <.016 <.016 <.016	BACIL WATER FLIRD 0.7 U GF, REC (UG/L) (82665) <.034 <.034 <.034	BENCARB WATER WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.005 <.005 <.005	LATE WATER FITTRD 0.7 U GF, REC (UG/L) (82678) <.002 <.002 <.002 <.002
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR 08	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.016 <.016	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.034 <.034	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.005 <.005	LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.002 <.002
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR 08 MAY 02 15 JUN 12	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011	PARGITE WATER WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.016 <.016 <.016 <.016 <.016	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.034 <.034 <.034 <.034	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.005 <.005 <.005 <.005	LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.002 <.002 <.002 <.002 <.002
OCT 26 30 NOV 15 DEC 12 12 JAN 18 FEB 22 MAR 08 MAY 012 JUN 12 JUN 12 JUL 24	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006	WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 <.015 <.015 <.015 <.015	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010	PANIL WATER FILTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011	PARGITE WATER WATER FLITRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011 <.011	THIURON WATER FLITRD 0.7 U GF, REC (UG/L) (82670) <.016 <.016 <.016 <.016 <.016	BACIL WATER FITRD 0.7 U GF, REC (UG/L) (82665) <.034 <.034 <.034 <.034 <.034	BENCARB WATER WATER 10.7 U GF, REC (UG/L) (82681) <.005 <.005 <.005 <.005 <.005	LATE WATER FITTRD 0.7 U GF, REC (UG/L) (82678) <.002 <.002 <.002 <.002 <.002 <.002
OCT 26 30 NOV 15 DEC 12 12 18 FEB 22 MAR 08 MAY 02 15 JUN 12 JUL	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 <.015 <.015 <.015 <.015 <.015 <.015	AMIDE WATER FLITED 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010	PANIL WATER FITTED 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011	PARGITE WATER WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023 <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011 <.011 <.011	THIURON WATER FLITED 0.7 U GF, REC (UG/L) (82670) <.016 <.016 <.016 <.016 <.016 <.016 <.016	BACIL WATER FLIRD 0.7 U GF, REC (UG/L) (82665) <.034 <.034 <.034 <.034 <.034 <.034	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.005 <.005 <.005 <.005 <.005 <.005	LATE WATER FLITED 0.7 U GF, REC (UG/L) (82678) <.002 <.002 <.002 <.002 <.002 <.002 <.002

13010065 SNAKE RIVER ABOVE JACKSON LAKE AT FLAGG RANCH, WY--Continued (National Water-Quality Assessment Program Station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	(MG/L)	
OCT			
26		1	.94
30	<.009	4	3.5
NOV			
15		1	.75
DEC		_	
12		6	4.2
12		2	1.4
JAN 18		2	1.5
FEB		2	1.5
22	<.009	2	1.7
MAR	1.005	2	±.,
08	<.009	1	.76
MAY			
02	<.009	17	64
15	<.009	330	4920
JUN			
12	<.009	4	8.3
JUL		_	
24	<.009	1	.75
AUG 07	<.009	1	
SEP	<.009	1	.55
18	<.009	1	.59
10	1.000	_	. 3 2

E -- Estimated value. M -- Presence verified, not quantified.

13011000 SNAKE RIVER NEAR MORAN, WY

LOCATION.--Lat $43^{\circ}51'30"$, long $110^{\circ}35'09"$ (revised), in $SW^{1}/_{4}$ SE $^{1}/_{4}$ sec.18, T.45 N., R.114 W., Teton County, Grand Teton National Park, Hydrologic Unit 17040101, on left bank 1,000 ft downstream from Jackson Lake Dam, 4.1 mi west of Moran, and at mile 988.7.

DRAINAGE AREA. -- 807 mi². Mean elevation, 8,040 ft.

PERIOD OF RECORD.--September 1903 to current year. Monthly discharge only for some periods, published in WSP 1317. Published as "South Fork Snake River at Moran" prior to October 1910 and as "Snake River at Moran" October 1910 to September 1968.

REVISED RECORDS.--WSP 1217: 1944(m). WSP 1347: 1906-10. WDR Idaho 1974: Drainage area.

GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,727.84 ft above sea level (levels by U.S. Bureau of Reclamation). Prior to June 13, 1917, nonrecording gage, and June 14, 1917 to May 20, 1940, water-stage recorder, at site 1.5 mi downstream at different datums.

REMARKS.--Records good. Station operated and record provided by Idaho District.

		DISC	HARGE, CU	BIC FEET P		, WATER YE LY MEAN VA		ER 2000 T	O SEPTEMB	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1050 822 659 539 456	393 394 401 407 406	400 400 401 401 400	409 409 409 409 409	409 404 391 388 388	400 397 396 395 391	383 382 382 382 383	1300 1580 1830 2070 2300	2550 2540 2540 2600 2720	2990 3000 3000 2990 2990	4360 4380 4390 4400 4400	3810 3800 3790 3800 3760
6 7 8 9 10	403 404 405 405 405	400 398 397 396 396	400 400 400 400 400	405 400 400 401 405	389 390 391 391 392	391 391 391 391 390	383 385 383 382 382	2460 2490 2460 2460 2500	2790 2800 2800 2790 2780	3000 3000 2990 3050 3170	4390 4380 4400 4400 4400	3720 3680 3630 3580 3460
11 12 13 14 15	413 406 403 401 402	396 398 400 400	400 400 402 405 404	405 405 405 404 405	394 396 396 396 396	387 386 386 386 386	382 382 382 382 382	2510 2520 2530 2540 2560	2800 2800 2810 2810 2800	3260 3370 3390 3380 3380	4400 4400 4400 4400 4410	3310 3190 3100 3070 3020
16 17 18 19 20	400 400 400 400 403	400 400 401 401 403	405 405 405 405 406	405 405 409 402 391	396 396 396 396 396	386 386 382 382 382	382 383 386 388 386	2570 2570 2570 2570 2570	2800 2800 2790 2790 2790	3470 3570 3670 3760 3800	4400 4400 4400 4400 4400	2980 2940 2890 2850 2810
21 22 23 24 25	405 405 405 405 405	403 401 401 403 404	408 409 409 409	391 391 393 396 396	396 397 400 400 400	382 382 383 382 383	385 384 441 515 616	2570 2560 2560 2560 2550	2800 2800 2800 2790 2800	3780 3760 3780 3870 3970	4390 4330 4230 4130 4100	2770 2720 2680 2520 2280
26 27 28 29 30 31	405 405 405 405 405 390	405 404 401 403 401	409 409 409 409 409	396 396 400 400 403 407	399 400 400 	383 382 382 382 382 382	709 829 937 941 1080	2550 2560 2560 2550 2550 2550	2870 2960 2970 3000 2990	4070 4090 4090 4090 4160 4270	4100 4030 3930 3840 3800 3800	2110 2030 2020 2020 2020
TOTAL MEAN MAX MIN AC-FT	14016 452 1050 390 27800	12013 400 407 393 23830	12537 404 409 400 24870	12461 402 409 391 24720	11083 396 409 388 21980	11987 387 400 382 23780	14499 483 1080 382 28760	75080 2422 2570 1300 148900	83680 2789 3000 2540 166000	109160 3521 4270 2990 216500	132590 4277 4410 3800 263000	90360 3012 3810 2020 179200
STATIST	TICS OF	MONTHLY I	MEAN DATA	FOR WATER	YEARS 19	04 - 2001,	, BY WATER	R YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	357 1605 1913 5.06 1948	296 3009 1957 3.00 1949	333 4280 1957 2.00 1945	311 1362 1912 2.00 1945	374 2489 1961 2.00 1945	478 3053 1951 2.00 1945	753 3828 1974 2.53 1945	1508 5658 1971 6.48 1945	3502 8594 1918 51.7 1932	3938 8182 1921 983 1989	3499 7370 1918 987 1919	1988 5265 1984 146 1910

13011000 SNAKE RIVER NEAR MORAN, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENI	DAR YEAR	FOR 2001 W	ATER YEAR	WATER YEAR	S 1904 - 2001
ANNUAL TOTAL	442549		579466			
ANNUAL MEAN	1209		1588		1451	
HIGHEST ANNUAL MEAN					2548	1997
LOWEST ANNUAL MEAN					687	1989
HIGHEST DAILY MEAN	5710	May 31	4410	Aug 15	14700	Jun 13 1918
LOWEST DAILY MEAN	390	Oct 31	382	Mar 18	.30	Oct 28 1969
ANNUAL SEVEN-DAY MINIMUM	397	Nov 6	382	Apr 9	1.4	Oct 24 1969
ANNUAL RUNOFF (AC-FT)	877800		1149000		1051000	
10 PERCENT EXCEEDS	2990		3850		4280	
50 PERCENT EXCEEDS	449		409		496	
90 PERCENT EXCEEDS	401		386		17	

13011500 PACIFIC CREEK AT MORAN, WY

LOCATION.--Lat $43^{\circ}51^{\circ}01^{\circ}$, long $110^{\circ}31^{\circ}04^{\circ}$ (revised), in $SW^{1}/_{4}$ $NW^{1}/_{4}$ sec.23, T.45 N., R.114 W., Teton County, Grand Teton National Park, Hydrologic Unit 17040101, on left bank 40 ft upstream from bridge on U.S. Highway 287, at Moran, and at mile 0.5.

DRAINAGE AREA.--169 mi². Mean elevation, 8,160 ft.

(WY)

1988

1953

1955

1979

1955

1963

1970

1975

1994

1994

2001

1994

PERIOD OF RECORD.--July to November 1906 (gage heights only), July 1917 to September 1918 (no winter records), September 1944 to September 1975, July 1978 to current year. Published as "near Moran" prior to October 1968.

GAGE.--Water-stage recorder. Elevation of gage is 6,720 ft above sea level, from topographic map. July 31 to Nov. 11, 1906, nonrecording gage at site 0.4 mi downstream at different datum. July 20, 1917 to Sept. 30, 1918, nonrecording gage at site 0.1 mi downstream at different datum. Sept. 23, 1944 to Nov. 13, 1959, at site 100 ft upstream at same datum. Nov. 14, 1959 to Sept. 24, 1975, at site 35 ft downstream at same datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Station equipment includes satellite telemetry. No diversion or regulation. Station operated and record provided by the Idaho District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC FEB APR MAY AUG SEP 53 e40 e40 e35 81 713 106 33 1 51 e45 414 45 2 e40 e35 e40 e35 396 101 43 33 3 54 50 e40 e35 e45 e40 81 383 403 97 42 32 32 49 404 93 53 e45 e35 e40 e35 81 369 44 5 50 47 33 e45 e35 6 52 50 e40 e35 e40 83 571 300 91 49 e35 43 51 e45 e40 e30 e40 e35 526 91 40 51 84 273 252 8 50 e45 e40 e30 e35 e35 83 655 91 39 51 47 e30 e35 843 39 47 50 e45 e30 e80 242 90 93 10 51 48 e35 e80 227 44 44 e40 e35 11 52 e45 e35 e30 e35 e40 e80 848 210 89 41 41 12 13 244 282 53 e45 e35 e35 e35 e40 82 946 87 41 40 55 e40 e40 e35 e40 e40 80 1110 81 40 41 14 e40 e40 e35 e35 e35 81 45 44 e35 15 55 e45 e35 e30 e40 79 1550 318 83 45 48 55 16 e40 e35 e25 e45 e40 1980 315 80 50 45 17 54 e45 e40 e20 e25 e40 e40 98 1230 276 238 73 70 45 45 18 54 113 974 41 e45 e35 e40 e45 46 e30 e30 e60 39 20 54 e45 e30 e35 e50 e70 140 784 195 65 38 41 21 e45 181 38 40 e30 e30 e65 620 e35 54 53 77 78 22 e45 e30 e50 121 580 169 57 37 39 23 e35 e30 e50 123 602 158 56 35 39 e45 e40 e30 e45 81 34 25 56 e45 e35 e35 e40 82 138 629 153 53 33 37 e50 26 e35 e30 e35 193 690 138 32 36 27 55 e50 e35 e30 **e30** 81 289 639 130 50 32 36 28 54 674 122 31 36 e45 e35 e30 e30 48 29 54 e40 e35 e35 80 508 576 115 47 31 36 30 54 e45 e40 e35 ___ 80 550 506 110 46 31 36 32 e80 45 TOTAL 1659 1378 1170 1130 1672 24038 7204 2294 1217 1212 990 4344 53.9 145 240 53.5 39.3 40.4 MAX 56 53 45 40 55 83 550 1980 414 106 50 51 40 30 32 MIN 50 30 20 35 79 383 110 45 31 AC-FT 3290 2730 2320 1960 2240 3320 8620 47680 14290 4550 2410 2400 .86 CFSM .32 .27 .22 .19 .24 .32 4.59 1.42 .44 .23 .24 .37 .22 .25 .37 .96 5.29 1.59 IN. .30 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1917 - 2001, BY WATER YEAR (WY) MEAN 65.2 54.6 48.7 44.6 46.0 52.8 156 978 1267 345 97.8 71.1 MAX 142 105 93.5 70.7 72.2 94.5 418 2314 2884 1527 191 127 (WY) 1973 1973 1984 1951 1995 1972 1946 1997 1997 1982 1982 1972 MIN 34.6 32.6 29.7 25.3 26.6 34.6 53.3 345 238 70.0 39.3 37.2

13011500 PACIFIC CREEK AT MORAN, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALE	IDAR YEAR	FOR 2001	WATER YEAR	WATER YEA	RS 1917 - 2001
ANNUAL TOTAL	89123		48308			
ANNUAL MEAN	244		132		269	
HIGHEST ANNUAL MEAN					560	1997
LOWEST ANNUAL MEAN					132	1994
HIGHEST DAILY MEAN	2680	May 26	1980	May 16	4170	Jun 1 1997
LOWEST DAILY MEAN	30	Dec 19-21	20	Jan 17	19	Dec 31 1978
ANNUAL SEVEN-DAY MINIMUM	34	Dec 15	28	Jan 15	23	Jan 6 1993
ANNUAL RUNOFF (AC-FT)	176800		95820		194900	
10 PERCENT EXCEEDS	835		381		919	
50 PERCENT EXCEEDS	55		47		66	
90 PERCENT EXCEEDS	40		35		39	

13011900 BUFFALO FORK ABOVE LAVA CREEK, NEAR MORAN, WY

LOCATION.--Lat $43^{\circ}50^{\circ}17^{\circ}$, long $110^{\circ}26^{\circ}28^{\circ}$ (revised), in $SE^{1}/_{4}$ NE $^{1}/_{4}$ sec.29, T.45 N., R.113 W., Teton County, Hydrologic Unit 17040101, Grand Teton National Park, on right bank below bridge on U.S. Highway 26/287, about 2 mi upstream from Lava Creek, 3.5 mi east of Moran, and 4.0 mi upstream from mouth.

DRAINAGE AREA. -- 323 mi².

PERIOD OF RECORD.--September 1965 to current year. July to November 1906, July 1917 to September 1918, and September 1944 to September 1960 at sites about 3 mi downstream.

REVISED RECORDS. -- WDR Idaho 1974: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 6,772.78 ft above sea level (Federal Highway Administration bench mark).

REMARKS.--Records good except those for estimated daily discharges, which are poor. Station equipment includes satellite telemetry. Station operated and record provided by the Idaho District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAY AUG SEP e100 e140 e120 e130 e130 e120 e120 e100 e140 e130 e120 e130 e110 e140 e140 e120 e120 e100 e110 e140 e120 e130 e140 e130 e120 e120 e100 e140 e130 e110 e120 e100 e140 e130 e100 e110 e100 e110 e100 e150 e140 e90 e140 e130 e120 e100 e100 e140 e120 e110 e100 e100 13 196 175 e140 e120 e120 e100 e110 e130 e130 e120 e110 e110 e130 e130 e120 e100 e100 e140 e120 e110 e110 e100 e130 e120 e100 e120 e110 196 e140 e140 e130 e80 e100 e110 e110 e110 167 1370 714 e120 e120 e140 e110 e110 e120 e130 e140 e110 e120 e130 e140 e120 e140 e110 e110 e130 e130 e140 e120 e110 e120 e140 e120 e110 e120 e130 e130 e110 e110 e140 e140 e120 e120 e100 e140 e150 e120 e110 e100 e120 e120 e150 e100 e90 e140 e100 e90 e130 e120 e100 e140 e130 e110 ___ e130 TOTAL MAX MIN AC-FT .44 .35 CFSM .60 .39 .34 .35 .55 3.37 2.61 2.92 .97 1.12 .53 .47 .49 .45 .40 .41 .61 3.89 .61 .52 IN. .69 .36 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1966 - 2001, BY WATER YEAR (WY) MEAN MAX (WY) MIN 99.5 87.3 93.1 98.5 (WY)

13011900 BUFFALO FORK ABOVE LAVA CREEK, NEAR MORAN, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALE	NDAR YEAR	FOR 2001 W	ATER YEAR	WATER YEA	RS 1966 - 2001
ANNUAL TOTAL	175824		108216			
ANNUAL MEAN	480		296		541	
HIGHEST ANNUAL MEAN					890	1997
LOWEST ANNUAL MEAN					286	1977
HIGHEST DAILY MEAN	3430	Jun 8	2300	May 16	5880	Jun 9 1981
LOWEST DAILY MEAN	80	Jan 31	80	Jan 17	73	Jan 25 1989
ANNUAL SEVEN-DAY MINIMUM	99	Jan 28	99	Feb 24	81	Jan 23 1989
ANNUAL RUNOFF (AC-FT)	348700		214600		391900	
10 PERCENT EXCEEDS	1390		765		1650	
50 PERCENT EXCEEDS	190		149		193	
90 PERCENT EXCEEDS	110		110		112	

13013650 SNAKE RIVER AT MOOSE, WY

LOCATION.--Lat $43^{\circ}39^{\circ}14^{\circ}$, long $110^{\circ}42^{\circ}52^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec.36, T.43 N., R.116 W., Teton County, Hydrologic Unit 17040101, Grand Teton National Park, on right bank at downstream side of bridge on Teton Park Road, 0.2 miles east of Grand Teton National Park Headquarters visitor Center at Moose, and 0.3 miles west of U.S. Highway 191.

DRAINAGE AREA. -- 1,677 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1995 to current year.

GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,431.12 ft above sea level, by survey.

REMARKS. -- Records good.

		DISCHAR	GE, CUBI	IC FEET PE		WATER Y	EAR OCTOBE ALUES	ER 2000 T	O SEPTEMBI	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	1720 1540	982 970	921 908	869 878	822 825	800 805	874 899	2930 2990	5300 5530	4390 4340	5190 5270	4610 4580
3	1390	933	894	872	819	816	878	2950	5300	4270	5240	4570
4	1230	931	915	884	814	809	862	3120	4940	4230	5240	4600
5	1140	972	933	866	825	812	850	3510	4770	4200	5250	4580
6	1040	961	919	849	818	816	871	3880	4620	4200	5230	4590
7	1020	910	906	847	819	814	881	3900	4540	4210	5160	4560
8	1010	891	913	848	825	814	886	4050	4580	4180	5150	4510
9	1000	918	937	885	799	811	838	4440	4790	4330	5190	4420
10	1020	933	939	841	801	817	833	4590	5070	4370	5200	4320
11 12	1050 1070	937 920	917 918	838 844	810 812	825 814	835 842	4720 4960	5090 5040	4450 4520	5200 5150	4170 4010
13	1070	902	908	840	812	807	840	5320	4930	4530	5170	3880
14	1080	883	917	839	815	810	845	5780	4700	4540	5230	3870
15	1070	907	916	834	819	795	832	6620	4650	4540	5250	3830
16	1040	913	914	842	822	785	841	8240	4620	4590	5230	3770
17	1040	912	887	842	824	786	882	7260	4510	4630	5210	3690
18	1040	895	886	869	827	807	951	6340	4510	4700	5210	3610
19	1050	898	900	834	833	804	1030	5810	4460	4770	5190	3560
20	1050	896	900	830	838	826	1050	5760	4450	4830	5190	3510
21	1040	888	929	846	828	846	990	5110	4470	4800	5200	3450
22	1040	892	903	839	832	854	948	4860	4550	4760	5120	3400
23 24	1030 1040	895 893	900 902	829 840	828 828	866 880	950 1040	4960 5330	4640 4660	4720 4770	5010 4920	3360 3260
25	1040	893 896	886	820	828	898	1150	5610	4840	4860	4920	3000
26	1060	915 933	902	823 837	813	907	1340	6020	4700 4670	4930	4860	2780
27 28	1030 1040	933 918	909 893	837 829	810 801	888 868	1650 2040	6160 6200	4670	4960 4920	4810 4730	2620 2610
29	1030	893	908	827		866	2320	5860	4540	4920	4650	2610
30	1020	929	888	830		863	2530	5620	4480	4970	4580	2610
31	996		864	823		836		5340		5100	4600	
TOTAL	34076	27516	28132	26194	22931	25745	32578	158240	142600	142530	157480	112940
MEAN	1099	917	907	845	819	830	1086	5105	4753	4598	5080	3765
MAX	1720	982	939	885	838	907	2530	8240	5530	5100	5270	4610
MIN	996	883 54580	864	820	799	785	832	2930 313900	4450	4180	4580	2610
AC-FT	67590		55800	51960	45480	51070	64620		282800	282700	312400	224000
STATIST	rics of M	IONTHLY MEA	N DATA F	FOR WATER	YEARS 199	5 - 2001	, BY WATER	R YEAR (W	Y)			
MEAN	1531	1137	1061	1112	1220	1583	2626	6234	11210	6213	4130	3595
MAX	2124	1382	1315	1615	2083	3205	4600	8620	18150	7574	5080	5089
(WY)	1998	1998	1998	1997	1997	1997	1997	1997	1997	1997	2001	1998
MIN	1099 2001	917 2001	907 2001	845 2001	819 2001	830 2001	1086 2001	2531 1995	4753 2001	3439 2000	2433 2000	2063 2000
(WY)	ZUUI	ZUUI	ZUUL	ZUUI	ZUUL	ZUUL	ZUUI	T332	ZUUI	∠000	∠000	∠∪∪∪

13013650 SNAKE RIVER AT MOOSE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1995 - 2001
ANNUAL TOTAL	912730	910962	
ANNUAL MEAN	2494	2496	3547
HIGHEST ANNUAL MEAN			4874 1997
LOWEST ANNUAL MEAN			2496 2001
HIGHEST DAILY MEAN	11800 May 30	8240 May 16	24500 Jun 11 1997
LOWEST DAILY MEAN	864 Dec 31	785 Mar 16	785 Mar 16 2001
ANNUAL SEVEN-DAY MINIMUM	893 Dec 25	799 Mar 13	799 Mar 13 2001
MAXIMUM PEAK FLOW		9220 May 16	25300 Jun 11 1997
MAXIMUM PEAK STAGE		11.75 May 16	15.25 Jun 11 1997
10 PERCENT EXCEEDS	5660	5180	8230
50 PERCENT EXCEEDS	1140	1040	2180
90 PERCENT EXCEEDS	910	823	940

13013650 SNAKE RIVER AT MOOSE, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 1995 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE OCT 30 DEC	TIME 1430	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO-METRIC PRES-SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
11 FEB	1410	932	600	11.7	105	8.4	197	-8.0	1.0	81	24.1	5.13	1.73
20 APR	1230	850	602	12.6	122	8.5	199	4.0	4.0	83	24.6	5.21	.57
20 JUN	1115	1090	593	10.5	110	8.6	202	8.5	6.5	88	26.1	5.46	1.73
26 AUG	1030	4800	605	8.7	104	8.4	140	22.5	13.0	51	15.1	3.09	1.61
06	1700	5030	610	8.0	110	8.5	165	30.0	19.5	53	16.0	3.29	1.88
DATE	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
OCT 30	. 4	7.8	86	4.3	2.3	14.9	10.8	.17	339	123	122	<.041	.11
DEC 11	. 4	8.1	82	4.9	.7	16.0	10.2	.16	292	116	120	<.041	E.06
FEB 20	. 4	8.4	86		.5	15.6				126		<.041	E.04
APR 20	.3	7.5	92	4.0	. 4	15.0	11.1	.18	380	129	127	<.041	.14
JUN 26	.5	8.1	55	3.7	.6	13.8	8.4	.13	1210	93	88	<.040	E.07
AUG 06	.6	10.7	61	5.6	.8	14.5	10.5	.14	1360	100	100	<.040	.08
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)
OCT 30	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHORUS TOTAL (MG/L AS P)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L)	CHLOR, WATER FLTRD REC (UG/L)	CHLOR, WATER, DISS, REC, (UG/L)	BHC DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L)
OCT 30 DEC 11	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHORUS TOTAL (MG/L AS P) (00665)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	CHLOR, WATER FLTRD REC (UG/L) (49260)	CHLOR, WATER, DISS, REC, (UG/L) (46342)	BHC DIS- SOLVED (UG/L) (34253)	ZINE, WATER, DISS, REC (UG/L) (39632)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)
OCT 30 DEC 11 FEB 20	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHORUS TOTAL (MG/L AS P) (00665)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	CHLOR, WATER FLITRD REC (UG/L) (49260)	CHLOR, WATER, DISS, REC, (UG/L) (46342)	BHC DIS- SOLVED (UG/L) (34253)	ZINE, WATER, DISS, REC (UG/L) (39632)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)
OCT 30 DEC 11 FEB 20	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018	PHORUS TOTAL (MG/L AS P) (00665) <.060	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	DIS- SOLVED (UG/L AS FE) (01046) <10	NESE, DIS- SOLVED (UG/L AS MN) (01056) <3.2	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002	CHLOR, WATER FLITRD REC (UG/L) (49260)	CHLOR, WATER, DISS, REC, (UG/L) (46342)	BHC DIS- SOLVED (UG/L) (34253)	ZINE, WATER, DISS, REC (UG/L) (39632)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010
OCT 30 DEC 11 FEB 20 APR 20 JUN 26	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 E.024	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 E.011	PHORUS TOTAL (MG/L AS P) (00665) <.060 E.036	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.1	ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689)	DIS- SOLVED (UG/L AS FE) (01046) <10 <10	NESE, DIS- SOLVED (UG/L AS MN) (01056) <3.2 <3.2	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002	CHLOR, WATER FLTR REC (UG/L) (49260) <.004	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	BHC DIS- SOLVED (UG/L) (34253) <.005	ZINE, WATER, DISS, REC (UG/L) (39632) <.007	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010
OCT 30 DEC 11 FEB 20 APR 20 JUN	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 E.024 E.024	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 E.011 E.012	PHORUS TOTAL (MG/L AS P) (00665) <.060 E.036 <.060	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.1 .96 1.0	ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) .3 .3 .4	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 M	NESE, DIS- SOLVED (UG/L AS MN) (01056) <3.2 <3.2 E2.1 4.2	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002	CHLOR, WATER FLITED REC (UG/L) (49260) <.004	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	BHC DIS- DIS- SOLVED (UG/L) (34253) <.005	ZINE, WATER, DISS, REC (UG/L) (39632) <.007	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010
OCT 30 DEC 11 FEB 20 APR 20 JUN 26	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 E.024 E.024 <.047 <.050	PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.018 E.011 E.012 <.020	PHORUS TOTAL (MG/L AS P) (00665) <.060 E.036 <.060 <.060	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.1 .96 1.0	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) .3 .3 .4 1.4	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 M	NESE, DIS- SOLVED (UG/L AS MN) (01056) <3.2 <3.2 E2.1 4.2	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002	CHLOR, WATER FLIRD REC (UG/L) (49260) <.004	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) <.007	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010
OCT 30 DEC 11 FEB 20 APR 20 JUN 26 AUG	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 E.024 <.047 <.050 E.028 BUTYL- ATE, WATER, DISS, REC (UG/L)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 E.011 E.012 <.020 <.020 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	PHORUS TOTAL (MG/L AS P) (00665) <.060 E.036 <.060 <.060 <.060 CARBO-FURAN WATER FLITRD 0.7 U GF, REC (UG/L)	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.1 .96 1.0 1.5 1.3 1.6	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) .3 .4 1.4 .3 CYANA- ZINE, WATER, DISS, REC (UG/L)	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 M <10 <10 DCPA WATER FLTRD 0.7 U GF, REC (UG/L)	NESE, DIS- SOLVED (UG/L AS MN) (01056) <3.2 <3.2 E2.1 4.2 <3.0 <3.0 <3.0 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L)	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 AZINON, DIS- SOLVED (UG/L)	CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 <.004 ELDRIN DIS- SOLVED (UG/L) (UG/L)	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 EPTC WATER FLTRD 0.7 U GF, REC (UG/L)	ZINE, WATER, DISS, REC (UG/L)(39632) <.007 <.007 ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L)
OCT 30 DEC 11 FEB 20 APR 20 JUN 26 AUG 06 DATE	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 E.024 <.047 <.050 E.028 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 E.011 E.012 <.020 <.020 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	PHORUS TOTAL (MG/L AS P) (00665) <.060 E.036 <.060 <.060 <.060 CARBO-FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674)	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.1 .96 1.0 1.5 1.3 1.6 CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) .3 .4 1.4 .3 CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 <10 M <10 <10 DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	NESE, DIS- SOLVED (UG/L AS MN) (01056) <3.2 <3.2 E2.1 4.2 <3.0 <3.0 <3.0 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	ETHYL ANILINE ANILINE 0.7 U GF, REC (UG/L) (82660) <.002 <.002 AZINON, DIS- SOLVED (UG/L) (39572)	CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 <.004 ELDRIN DIS- SOLVED (UG/L) (39381)	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ZINE, WATER, DISS, REC (UG/L)(39632) <.007 <.007 ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)(82663)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)
OCT 30 DEC 11 FEB 20 APR 20 JUN 26 AUG 06 DATE OCT 30 DEC 11 FEB 20	GEN, NO2+NO3 DIS-SOLVED (MG/L AS N) (00631) <.047 E.024 E.024 <.047 <.050 E.028 BUTYL-ATE, WATER, DISS, REC (UG/L) (04028) <.002	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 E.011 E.012 <.020 <.020 CAR- BARYL WATER FLIRD 0.7 U GF, REC (UG/L) (82680) <.041	PHORUS TOTAL (MG/L AS P) (00665) <.060 E.036 <.060 <.060 <.060 CARBO-FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674) <.020	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.1 .96 1.0 1.5 1.3 1.6 CHLOR-PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) .3 .3 .4 1.4 .3 CYANA-ZINE, WATER, WATER, DISS, REC (UG/L) (04041) <.018	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 M <10 <10 DCPA WATER FITRD 0.7 U GF, REC (UG/L) (82682) <.003	NESE, DIS- SOLVED (UG/L AS MN) (01056) <3.2 <3.2 E2.1 4.2 <3.0 <3.0 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.006	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 AZINON, DIS- SOLVED (UG/L) (39572) <.005	CHLOR, WATER FLITED REC (UG/L) (49260) <.004	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 EPTC WATER FLIRD 0.7 U GF, REC (UG/L) (82668) <.002	ZINE, WATER, DISS, REC (UG/L)(39632) <.007 <.007 ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)(82663) <.009	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.005
OCT 30 DEC 11 FEB 20 APR 20 JUN 26 AUG 06 DATE OCT 30 DEC 11 FEB 20 APR 20 APR 20 AUG 20	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 E.024 <.047 <.050 E.028 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) <.002	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 E.011 E.012 <.020 <.020 CAR- BARYL WATER FLIRD 0.7 U GF, REC (UG/L) (82680) <.041	PHORUS TOTAL (MG/L AS P) (00665) <.060 E.036 <.060 <.060 <.060 CARBO-FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674) <.020	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.1 .96 1.0 1.5 1.3 1.6 CHLOR-PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) .3 .3 .4 1.4 .3 CYANA-ZINE, WATER, WATER, DISS, REC (UG/L) (04041) <.018	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 <10 <10 OCPA WATER FLITED 0.7 U GF, REC (UG/L) (82682) <.003	NESE, DIS- SOLVED (UG/L AS MN) (01056) <3.2 <3.2 E2.1 4.2 <3.0 <3.0 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.006	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 AZINON, DIS- SOLVED (UG/L) (39572) <.005	CHLOR, WATER FLITED REC (UG/L) (49260) <.004	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 EPTC WATER FLIRD 0.7 U GF, REC (UG/L) (82668) <.002	ZINE, WATER, DISS, REC (UG/L)(39632) <.007 <.007 <.007 ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)(82663) <.009	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 ETHO- PROP WATER FLITRD 0.7 U GF, REC (UG/L) (82672) <.005
OCT 30 DEC 11 FEB 20 APR 20 AUG 06 DATE OCT 30 DEC 11 FEB 20 APR	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.047 E.024 <.047 <.050 E.028 BUTYL- ATE, WATER, DISS, REC (UG/L) (04028) <.002	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.018 E.011 E.012 <.020 <.020 CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041	PHORUS TOTAL (MG/L AS P) (00665) <.060 E.036 <.060 <.060 <.060 <.060 CARBO-FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674) <.020	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.1 .96 1.0 1.5 1.3 1.6 CHLOR-PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) .3 .3 .4 1.4 .3 CYANA-ZINE, WATER, DISS, REC (UG/L) (04041) <.018	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 <10 OFPA WATER FLIRD 0.7 U GF, REC (UG/L) (82682) <.003	NESE, DIS- SOLVED (UG/L AS MN) (01056) <3.2 <3.2 E2.1 4.2 <3.0 <3.0 DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) <.006	ETHYL ANILINE ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 <.002 AZINON, DIS- SOLVED (UG/L) (39572) <.005	CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 <.004 ELDRIN DIS- SOLVED (UG/L) (39381) <.005	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668) <.002	ZINE, WATER, DISS, REC (UG/L)(39632) <.007 <.007 ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)(82663) <.009	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.005

13013650 SNAKE RIVER AT MOOSE, WY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)
OCT 30 DEC	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002	<.007	<.003	<.007	<.002
11 FEB 20													
APR 20													
JUN 26 AUG	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002	<.007	<.003	<.007	<.002
06													
DATE	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	THIO-BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)
OCT 30	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	METON, WATER, DISS, REC (UG/L)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	CHLOR, WATER, DISS, REC (UG/L)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L)	MAZINE, WATER, DISS, REC (UG/L)	THIURON WATER FLTRD 0.7 U GF, REC (UG/L)	BACIL WATER FLTRD 0.7 U GF, REC (UG/L)	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L)	LATE WATER FLTRD 0.7 U GF, REC (UG/L)
OCT 30 DEC 11	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	METON, WATER, DISS, REC (UG/L) (04037)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	CHLOR, WATER, DISS, REC (UG/L) (04024)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	MAZINE, WATER, DISS, REC (UG/L) (04035)	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)
OCT 30 DEC 11 FEB 20	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	METON, WATER, DISS, REC (UG/L) (04037)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	CHLOR, WATER, DISS, REC (UG/L) (04024)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	MAZINE, WATER, DISS, REC (UG/L) (04035)	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	LATE WATER FLITRD 0.7 U GF, REC (UG/L) (82678)
OCT 30 DEC 11 FEB 20	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	METON, WATER, DISS, REC (UG/L) (04037)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	CHLOR, WATER, DISS, REC (UG/L) (04024)	PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679)	PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685)	MAZINE, WATER, DISS, REC (UG/L) (04035)	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	BENCARB WATER FLIRD 0.7 U GF, REC (UG/L) (82681) <.005	LATE WATER FLIRD 0.7 U GF, REC (UG/L) (82678) <.002
OCT 30 DEC 11 FEB 20	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	METON, WATER, DISS, REC (UG/L) (04037)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	CHLOR, WATER, DISS, REC (UG/L) (04024)	PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679)	PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685)	MAZINE, WATER, DISS, REC (UG/L) (04035)	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	BENCARB WATER FLIRD 0.7 U GF, REC (UG/L) (82681) <.005	LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.002

DATE	(UG/L)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SUS- PENDED (T/DAY)
OCT 30 DEC	<.009	2	5.5
11		3	7.5
FEB 20 APR		5	11
20		14	41
JUN 26	<.009	14	181
AUG 06		21	285

E -- Estimated value. M -- Presence verified, not quantified.

13015000 GROS VENTRE RIVER AT ZENITH, WY

LOCATION.--Lat $43^{\circ}33^{\circ}26^{\circ}$, long $110^{\circ}45^{\circ}46^{\circ}$ (revised), in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $SW^{1}/_{4}$ sec.34., T.42 N., R.116 W., Teton County, Wyoming, Hydrologic Unit 17040102, on left bank, 20 ft upstream from county road bridge, 0.5 mi southwest of Jackson Hole Country Club, and 5.5 mi north of Jackson, Wyoming.

DRAINAGE AREA. -- 683 mi².

PERIOD OF RECORD.--July to September 1917, July to September 1918 (monthly discharge only, published in WSP 1317), October 1987 to current year (no winter records).

GAGE.--Water-stage recorder. Elevation of gage is 6,260 ft above sea level, from topographic map.

REMARKS.--Records fair. Station equipment includes satellite telemetry. Diversions of about 300 ${\rm ft}^3/{\rm s}$ for irrigation above station. No regulation. Station operated and record provided by the Idaho District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 202 14 2 ___ ___ ___ ---___ ___ 47 208 206 14 0.0 .00 3 .00 ------176 221 ------------49 13 .00 ---------___ ___ ___ 5 46 106 115 11 .00 .00 6 7 ---------44 128 10 .00 .00 ---___ ___ 45 149 20 9 9 0.0 .00 8 ---23 9.1 .00 ------47 134 .00 ------------------44 169 26 .00 10 37 204 17 8.3 .00 .00 ---28 25 11 ---217 18 6.0 .00 .00 ------------12 228 29 5.9 .00 .00 13 26 269 33 5.1 .00 .00 ---------26 24 14 ___ 385 30 5 0 .00 .00 ------15 639 28 3.9 .00 .00 16 17 ___ ___ ___ ___ ___ 22 1150 26 3 4 0.0 0.0 ------------------22 24 1400 .00 2.8 .00 22 24 18 896 2.2 .00 .00 19 ___ ___ ___ ---___ ___ 33 38 665 22 0.0 0.0 22 20 1.5 551 .00 .00 21 ___ ___ ___ ___ ___ ___ 39 450 23 1 1 0.0 0.0 22 ------35 ---272 24 .00 .00 .65 23 17 .59 .00 .00 24 ___ ___ ___ ___ ___ ___ 30 202 24 59 0.0 0.0 25 29 293 24 .59 .00 .00 26 ___ ___ ___ ___ ___ ___ 34 380 15 53 0.0 0.0 27 51 490 15 .26 .00 .00 28 ---------74 530 16 .13 .00 .00 ___ ___ ---29 ___ ___ ___ 102 467 16 11 0.0 0.0 30 160 335 15 .08 .00 .00 31 ------------------257 .05 .00 TOTAL 1304 11871 1508 151.88 0.02 0.00 MEAN ------------------43.5 383 50.3 4.90 .001 .000 ------___ ---MAX ------160 1400 221 14 .02 .00 ___ ___ ___ ___ ___ ___ 15 .05 .00 .00 AC-FT ------------------2590 23550 2990 301 .04 .00 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1917 -2001, BY WATER YEAR (WY)* 64.9 140 870 MEAN 64.4 29.5 1226 513 157 71.0 ---------MAX 89.4 81.3 29.5 231 2954 3189 1410 406 215 (WY) 1990 1990 1988 2000 1997 1997 1995 1917 1997 50.3 49.2 29.5 41.1 293 50.3 4.90 .001 .000 MIN (WY) 1988 1988 1988 ---___ ---1993 1995 2001 2001 2001 1994

13015000 GROS VENTRE RIVER AT ZENITH, WY--Continued

FOR 2001 WATER YEAR* WATER YEARS 1917 - 2001* SUMMARY STATISTICS

HIGHEST DAILY MEAN LOWEST DAILY MEAN

0 May 17 .00 Many days 1400

Jun 6 1997 Many days, some years Jun 10 1996 .00

INSTANTANEOUS PEAK STAGE

22.77

13016305 GRANITE CREEK ABOVE GRANITE CREEK SUPPLEMENTAL, NEAR MOOSE, WY

LOCATION.--Lat $43^{\circ}36'14"$, long $110^{\circ}48'17"$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec.18, T.42 N., R.116 W., Teton County, Hydrologic Unit 17040103, Grand Teton National Park, on right bank 0.7 mi upstream from Granite Creek Supplemental, and 5.7 mi southwest of Moose.

DRAINAGE AREA. -- 14.9 mi².

PERIOD OF RECORD. -- June 1995 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,400 ft above sea level, from topographic map.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. No diversions upstream from station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES NOV SEP DAY OCT DEC FEB MAR APR MAY MUTL JUL AUG JAN 6.5 6.5 7.0 e1.7 e1.7 8.2 7.7 1 5.5 e1.9 4.9 40 187 49 19 2 e7.0 e1.8 e1.8 4.9 187 47 18 5.5 e1.8 36 6.4 e2.0 7.5 e6.6 e1.8 e2.0 32 4 6.4 e6 4 5 5 e1 7 e1 9 e2.0 4 8 29 108 43 18 7 3 5 34 6.4 e6.5 5.5 e1.8 e2.4 e2.2 4.8 93 42 18 7.6 8.7 6.3 e6.5 5.3 e1.9 e1 9 4.8 35 83 18 6 e2.5 40 6.2 e2.7 4.9 37 8.3 e6.2 5.4 e2.0 83 38 e17 e1.7 8 6.1 e5.8 e2.9 5.0 97 47 e12 8.0 46 9 6 1 e6 1 5 4 e1 5 e1 6 e2 9 6 4 58 117 41 12 7 6 10 6.8 e3.6 5.4 e1.6 e1.8 e2.9 5.8 61 124 38 12 7.3 11 7.2 e3.7 5.4 e1.6 e1.9 e3.2 5.8 70 120 12 7.0 36 6.7 e3.9 e3.3 4.8 87 7.0 12 e4.8 115 34 11 e1.7 e1.7 114 7.2 7.3 13 7.3 e4.2 e3.8 e1.8 e3.2 5.0 94 11 14 6.9 e4.4 e4.3 e1.8 e1.6 e3.34.8 138 82 32 11 15 6.9 e4.7 e4.5 e1.8 e1.5 e3.4 5.4 208 75 31 11 7.0 6.7 e5.3 e1.7 e1.6 4.9 73 29 11 6.8 16 e3.4 e3.4 446 6.7 e5.4 e3.5 e1.5 e1.6 e3.6 247 28 10 6.7 6.8 e4.9 e5.2 e1.6 e1.7 6.6 27 27 18 e3.5 e1.5 4.0 192 81 10 6.6 19 e2.8 172 80 9.7 6.5 e1.6 4.1 7.1 20 e5.4 e2.6 e1.7 e1.7 4.4 9.6 174 80 26 9.6 6.4 21 7.2 e1.7 8.5 121 81 25 9.5 e5.4 e2.4 e1.6 4.3 6.4 6.9 e2.4 4.3 22 e5.6 e1.6 e1.7 118 6.3 6.8 7.1 5.6 5.6 e2.7 e2.3 e1.6 e1.5 4.4 6.2 6.1 23 e1.7 8.2 156 82 24 9 0 8.4 23 24 202 83 e1.8 8.8 25 7.5 5.5 9.9 239 22 6.0 e2.2 e1.6 e1.7 4.8 83 8.5 26 7.2 5.5 e2.0 e1.6 e1.7 4.8 15 254 71 22 8.3 6.0 7.1 7.1 7.1 27 5.6 e2.0 e1.5 e1.9 22 247 21 6.0 28 5.5 5.5 e2.0 e1 5 e1.8 4 9 30 230 62 57 21 8.0 5 9 e2.0 4.8 20 7.9 6.0 29 e1.4 37 194 30 5.7 36 181 53 20 7.9 6.0 31 6.9 e2.1 e1.6 ___ 5 1 170 19 8 6 TOTAL 211.0 164.3 116.9 51.0 49.5 110.9 296.3 4368 2821 974 362.2 207.6 6.81 7.5 5.48 7.0 3.77 5.5 1.65 1.9 1.77 3.58 5.1 11.7 19 7.9 MEAN 9.88 141 94 0 31 4 6.92 2.4 37 446 187 49 8.7 MAX MIN 6.1 2.0 1.4 1.5 4.8 29 53 19 5.9 8660 AC-FT 419 326 232 101 98 220 588 5600 1930 718 412 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1995 - 2001, BY WATER YEAR (WY) MEAN 10.1 8.50 6.56 5.29 4.60 4.92 10.7 98.7 194 122 29.7 13.6 MAX 16.0 14.5 8.73 8.10 6.32 6.12 16.2 149 349 184 48.7 22.5 1997 1998 1998 1997 1998 1999 1999 2000 1997 1998 1997 (WY) 1998 MIN 6.81 5.48 3.77 1.65 1.77 3.46 8.54 52.2 94.0 31.4 11.7 6.92 (WY) 2001 2001 2001 2001 2001 1996 1999 1999 2001 2001 2001 2001

13016305 GRANITE CREEK ABOVE GRANITE CREEK SUPPLEMENTAL, NEAR MOOSE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1995 - 2001
ANNUAL TOTAL	11857.0	9732.7	
ANNUAL MEAN	32.4	26.7	41.5
HIGHEST ANNUAL MEAN			63.2 1997
LOWEST ANNUAL MEAN			26.7 2001
HIGHEST DAILY MEAN	300 May 29	446 May 16	490 Jun 9 1997
LOWEST DAILY MEAN	2.0 Dec 26	1.4 Jan 29	1.2 Jan 9 1996
ANNUAL SEVEN-DAY MINIMUM	2.0 Dec 25	1,5 Jan 24	1,3 Jan 5 1996
MAXIMUM PEAK FLOW		599 ^a , May 16	599 ^a May 16 2001
MAXIMUM PEAK STAGE		5.60 May 15	6.58 Jun 9 1997
ANNUAL RUNOFF (AC-FT)	23520	19300	30070
10 PERCENT EXCEEDS	112	82	155
50 PERCENT EXCEEDS	7.1	6.5	9.9
90 PERCENT EXCEEDS	4.6	1.7	4.3

Gage height, 5.02 ft. Discharge, 375 ft³/s. Estimated. a b e

13016450 FISH CREEK AT WILSON, WY

LOCATION.--Lat 43°30'03", long 110°52'15", in $NW^1/_4$ $NW^1/_4$ $SE^1/_4$ sec.22, T.41 N., R.117 W., Teton County, Hydrologic Unit 17040103, on left bank 20 ft downstream from bridge on Fish Creek Road (County Road 3) in Wilson.

DRAINAGE AREA. -- 71.1 mi².

PERIOD OF RECORD. -- March 1994 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,150 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Natural flow of stream affected by transbasin diversion from Snake River through Granite Creek Supplemental for irrigation in Fish Creek Basin and by additional diversions upstream from station within Fish Creek Basin. See station 13016305.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUL AUG SEP e35 e34 e32 e36 e36 290 121 41 31 32 371 285 e34 e34 114 383 52 ___ TOTAL. MEAN 71.1 35.0 31.8 38.6 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1994 - 2001, BY WATER YEAR (WY) MEAN 94.9 57.0 46.1 42.5 57.3 39.7 44.3 71.1 57.3 45.0 MAX 51.1 (WY) MTN 69 7 48.3 40.1 35.0 31 8 38.6 49.5 (WY)

13016450 FISH CREEK AT WILSON, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	CER YEAR	WATER YE	ARS 1994 - 2001
ANNUAL TOTAL	63989		61305			
ANNUAL MEAN	175		168		182	
HIGHEST ANNUAL MEAN					222	1997
LOWEST ANNUAL MEAN					161	1995
HIGHEST DAILY MEAN	674	Jun 8	608	May 16	1350	Jun 9,10 1997
LOWEST DAILY MEAN	37	Feb 6-14	31	Feb 10,18,19,	31	Feb 10,18,19,
		Feb 24-Mar 3		21-24,26,		24-24,26,
				Mar 4-12		Mar 4-12 2001
ANNUAL SEVEN-DAY MINIMUM	37	Feb 6	31	Mar 4	31	Mar 4 2001
MAXIMUM PEAK FLOW			686	May 16	1430	Jun 8 1997
MAXIMUM PEAK STAGE			3.78	May 16	5.41	Jun 8 1997
INSTANTANEOUS LOW FLOW					34	Jan 31 1998
ANNUAL RUNOFF (AC-FT)	126900		121600		131700	
10 PERCENT EXCEEDS	404		378		440	
50 PERCENT EXCEEDS	105		88		84	
90 PERCENT EXCEEDS	38		32		39	

13018300 CACHE CREEK NEAR JACKSON, WY (Hydrologic Benchmark Station)

LOCATION.--Lat $43^{\circ}27^{\circ}08^{\circ}$, long $110^{\circ}42^{\circ}12^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec.1, T.40 N., R.116 W., Teton County, Hydrologic Unit 17040103, Teton National Forest, on right bank 0.7 mi upstream from Salt Lick Draw, 2.4 mi southeast of Jackson, and 4.0 mi upstream from mouth.

DRAINAGE AREA. -- 10.6 mi².

PERIOD OF RECORD .-- June 1962 to current year.

REVISED RECORDS. -- WDR WY-76-2: Drainage area.

GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,750 ft above sea level, from topographic map.

REMARKS.--Records fair except those for estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY NOV DEC JAN FEB MAY AUG SEP 10 e5.6 7.0 3.9 9.8 4.5 1 4.6 4.3 3.6 4.2 18 6.3 4.2 4.2 3.7 2 6.2 4.3 3.6 3.9 17 10 6.1 4.4 e5.4 4.6 9.4 4.0 3 e5 2 4.6 4.3 8 5 18 10 6 1 4 1 7.0 4.0 e5.0 17 4 4.6 4.3 3.6 4.1 8.3 10 6.4 5 4.2 3.3 3.6 8.7 16 9.8 6.0 4.1 6 e4.7 6.5 4.0 4.1 8.8 15 10 4.9 4.6 3.1 3.6 5.6 e4.4 e6.0 4.6 3.5 3.1 3.6 4.1 8.9 15 9.8 5.6 4.6 9.7 8 e4.5 e5.5 4.6 3.4 e3.5 3.6 4.0 14 9.7 5.6 4.6 e4.8 3.3 3.6 e4.4 9.4 e4.6 4.6 3.4 11 14 6.0 4.4 10 e4.0 4.6 3.4 3.8 3.6 e4.9 11 14 9.1 6.0 4.1 11 6.1 e3.0 4.4 3.5 3.8 3.5 e5.6 12 14 9.1 5.6 4.0 12 13 4.1 4.1 3.5 15 15 9.1 6.0 e2.0 4.3 3.6 4.6 13 5.6 3.9 6.1 e2.1 4.4 3.6 4.5 15 5.3 4.0 4.3 14 6.1 e2.2 4.4 3.5 14 8.8 e2.3 15 6.1 4.4 3.3 4.2 3.2 5.4 22 14 9.3 5.2 4.3 2.9 13 9.4 4.1 16 6.3 e2.5 4.1 4.2 3.3 4.4 33 5.2 17 6.3 2.5 e2.0 4.3 2.9 4.1 e3.3 3.2 4.7 5.3 27 24 13 13 9.0 5.1 4.9 4.0 18 e1.7 5.8 23 7.9 4.3 4.3 12 3.8 20 6.5 e1.8 4.3 3.2 4.4 3.3 5.8 22 12 7.8 4.6 3.8 21 4.3 3.2 3.5 5.7 20 12 3.8 6.3 e1.8 6.3 6.4 e1.9 e1.9 4.3 3.2 3.5 3.5 5.4 5.2 12 12 7.5 7.5 4.6 3.8 22 3.8 18 23 3.8 18 3.4 3.8 3.5 3.7 5.2 19 12 25 6.6 e4.4 4.3 3.4 3.5 5.6 20 12 7.3 4.3 3.6 26 6.6 5.4 4.3 3.2 3.6 3.9 6.6 20 12 7.3 3.6 3.7 6.8 6.8 5.2 5.0 4.3 4.3 3.3 3.3 e4.0 3.7 7.7 9.0 4.2 4.2 3.6 3.6 27 20 11 7.1 28 20 11 6.9 3.6 29 6.8 4.7 4.3 3.3 3.6 10 19 11 6.7 4.3 6.8 7.1 ---30 4.6 4 3 3 4 3 6 10 19 11 6 6 4 3 3.6 3.6 3.9 6.3 31 4.3 18 TOTAL 185.1 120.5 136.5 108.4 106.5 111.2 162.4 513.1 409 120.5 263.5 159.3 5.97 4.02 4.40 3.50 3.80 3.59 5.41 16.6 8.50 5.14 4.02 7.1 7.1 4.3 4.2 3.2 6.4 MAX 4.6 4.4 10 33 18 10 4.9 8.3 4.4 3.1 3.9 6.3 MIN 4.1 11 3.6 271 215 211 221 811 523 316 239 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1962 - 2001, BY WATER YEAR (WY) 5.71 7.57 6.51 14.2 ME AN 6.83 5.02 4.35 4.04 4.07 25.9 49.5 24.1 12.1 8.34 12.3 5.91 103 6.09 7.25 MAX 9.43 6.85 52.1 42.0 18.5 (WY) 1972 1997 1999 1981 1984 1984 1987 1997 1971 1965 1971 1971 MTN 3.83 3.14 1.53 2.42 2.06 2.23 3.21 5.86 10.6 6.51 4.19 3.83 (WY) 1993 1978 1991 1978 1992 1991 1991 1977 1992 1977 1992 1992

13018300 CACHE CREEK NEAR JACKSON, WY--Continued (Hydrologic Benchmark Station)

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1962 - 2001
ANNUAL TOTAL	3473.1	2396.0	
ANNUAL MEAN	9.49	6.56	13.0
HIGHEST ANNUAL MEAN			20.5 1997
LOWEST ANNUAL MEAN			5.64 1992
HIGHEST DAILY MEAN	40 May 29,30	33 May 16	161 Jun 24 1971
LOWEST DAILY MEAN	1.7 Nov 19	1.7 Nov 19	1.1 Dec 23 1990
ANNUAL SEVEN-DAY MINIMUM	1.9 Nov 17	1.9 Nov 17	1,3 Dec 20 1990
MAXIMUM PEAK FLOW		37 May 16	225 ^a Jun 24 1971
MAXIMUM PEAK STAGE		3.27 May 16	4.30 Jun 10 1996
ANNUAL RUNOFF (AC-FT)	6890	4750	9450
10 PERCENT EXCEEDS	21	13	33
50 PERCENT EXCEEDS	6.3	4.6	6.6
90 PERCENT EXCEEDS	4.4	3.3	3.6

a Gage height, 3.90 ft. e Estimated.

13018350 FLAT CREEK BELOW CACHE CREEK, NEAR JACKSON, WY

LOCATION.--Lat $43^{\circ}27^{\circ}30^{\circ}$, long $110^{\circ}47^{\circ}46^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 6, T.40 N., R.116 W., Teton County, Hydrologic Unit 17040103, on left bank 8 ft upstream from county bridge on High School Road, 2.1 mi southwest of Post Office in Jackson, and 3.0 mi downstream from Cache Creek.

DRAINAGE AREA. -- 129 mi².

PERIOD OF RECORD. -- April 1989 to September 1996 (no winter records), October 1999 to current year.

GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,130 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY NOV MAR SEP OCT DEC FEB APR MAY MUTL JUL AUG JAN e66 e56 e60 e61 e56 e66 e63 e61 e56 e65 e65 e65 e58 e66 e66 e58 e70 7 e63 e56 e64 e54 e56 e63 e50 e51 e62 e62 e48 e50 e62 e50 e53 e70 e60 e51 e55 e51 e54 e68 e58 e67 e62 e54 e66 e64 e54 e69 e62 e54 e67 e52 e60 e69 e62 e48 73 75 77 e66 e62 e47 e65 e61 e49 e65 e58 e52 e66 e55 e50 e68 e60 e50 75 76 e66 e62 e50 e60 e51 e66 e69 e60 e51 e59 e50 e58 e50 e66 e56 e49 e60 73 e63 e56 e46 ---e57 e58 e55 ___ TOTAL 77.5 96 68.3 73 51.8 58 60.8 70 60.4 73 95.2 137 25.7 46 MEAN 61.0 69 8 82 8 65 4 33.5 MAX MIN 2.7 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1989 - 2001, BY WATER YEAR (WY)* MEAN 94.4 79.6 68.5 70.8 74.3 62.7 99.1 83.6 56.7 MAX 97.7 98.2 85.3 80.4 78.9 70.1 84.2 (WY) MIN 77.5 68.3 61.0 51.8 60.8 69.8 55.3 82.1 57.1 58.3 33.5 25.7 (WY)

13018350 FLAT CREEK BELOW CACHE CREEK, NEAR JACKSON, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALENI	DAR YEAR	FOR 2001 WAT	ER YEAR	WATER YEARS	S 1989 - 2001*
ANNUAL TOTAL	29785		22886			
ANNUAL MEAN	81.4		62.7		76.3	
HIGHEST ANNUAL MEAN					89.8	2000
LOWEST ANNUAL MEAN					62.7	2001
HIGHEST DAILY MEAN	154	May 31	137	Jun 4	256	Jul 13 1995
LOWEST DAILY MEAN	48	Several days	14	Sep 22	14	Sep 22 2001
ANNUAL SEVEN-DAY MINIMUM	48	Apr 25	15	Sep 19	15	Sep 19 2001
MAXIMUM PEAK FLOW			165 ^a h	Mar 20	277	Jul 12 1995
MAXIMUM PEAK STAGE			2.84	Jan 31	2.95	Jul 12 1995
ANNUAL RUNOFF (AC-FT)	59080		45390		55260	
10 PERCENT EXCEEDS	115		89		156	
50 PERCENT EXCEEDS	75		62		75	
90 PERCENT EXCEEDS	60		30		45	

For period of operation. Gage height, 2.37 ft. Backwater from ice. Estimated.

a b e

13018750 SNAKE RIVER BELOW FLAT CREEK, NEAR JACKSON, WY

LOCATION.--Lat $43^{\circ}22^{\circ}20^{\circ}$, long $110^{\circ}44^{\circ}19^{\circ}$ (revised), in $NE^{1}/_{4}$ SE $^{1}/_{4}$ sec.3, T.39 N., R.116 W., Teton County, Wyoming, Hydrologic Unit 17040103, on left bank 20 ft upstream from county road bridge, about 1 mi downstream from Flat Creek, 4.8 mi upstream from Hoback River, 7.0 mi south of Jackson, and at mile 938.9.

DRAINAGE AREA. -- 2,627 mi².

(WY)

PERIOD OF RECORD. -- November 1975 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 5,950 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are fair. Station equipment includes satellite telemetry. Station operated and record provided by the Idaho District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT JAN FEB AUG SEP e1300 e1100 e1100 e1200 e1100 e1100 e1200 e1100 e1100 e1200 e1100 e1200 e1200 e1100 e1100 e1100 e1100 e1000 e1000 e1100 e1100 e1100 e1100 e1100 e1200 e1100 e1200 e1100 e1200 e1100 e1100 e1100 e1300 e1100 e1100 1690 e1400 e950 e1000 e1100 e1100 1130 1360 8140 5120 3740 e1300 e1300 e1300 e1100 e1100 e1200 e1100 e1100 e1400 e1200 e1100 1620 1400 e1300 e1300 e1100 e1100 e1300 e1100 e1300 e1200 e1200 e1100 e1200 e1100 e1100 7200 e1200 e1100 e1100 e1200 e1100 e1300 e1200 ___ e1300 e1200 TOTAL. MEAN MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1976 - 2001, BY WATER YEAR (WY) MEAN MAX (WY) MTN

13018750 SNAKE RIVER BELOW FLAT CREEK, NEAR JACKSON, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001	WATER YEAR	WATER YEA	ARS 1976 - 2001
ANNUAL TOTAL	1139870		1045490			
ANNUAL MEAN	3114		2864		3684	
HIGHEST ANNUAL MEAN					6110	1997
LOWEST ANNUAL MEAN					2469	1977
HIGHEST DAILY MEAN	14400	May 30	9620	May 17	30200	Jun 11 1997
LOWEST DAILY MEAN	1200	Dec 20,21, 26-29	950	Jan 17	690	Jan 19 1988
ANNUAL SEVEN-DAY MINIMUM	1240	Dec 23	1060	Jan 15	785	Feb 4 1989
ANNUAL RUNOFF (AC-FT)	2261000		2074000		2669000	
10 PERCENT EXCEEDS	6660		5140		8620	
50 PERCENT EXCEEDS	1860		1640		2100	
90 PERCENT EXCEEDS	1400		1100		1140	

13022500 SNAKE RIVER ABOVE RESERVOIR, NEAR ALPINE, WY

LOCATION.--Lat 43°11'46", long 110°53'22"(revised), Lincoln County, Wyoming, Hydrologic Unit 17040103, on right bank 0.3 mi downstream from Wolf Creek, 6.4 mi upstream from Greys River, 7.4 mi east of Alpine, 16.1 mi upstream from Palisades Dam, and at mile 917.5.

DRAINAGE AREA. -- 3,465 mi².

PERIOD OF RECORD.--March 1937 to March 1939 (published as "above Greys River, near Alpine"), July 1953 to current year.

GAGE.--Water-stage recorder. Datum of gage is 5,683.90 ft above sea level, unadjusted. Mar. 16, 1937 to Mar. 31, 1939 at site 6.0 mi downstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Station equipment includes satellite telemetry. Station operated and record provided by the Idaho District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e1500 e1300 e1300 e1600 e1400 e1300 e1300 e1400 e1400 e1300 e1600 e1400 e1400 e1600 e1400 e1400 e1600 e1400 e1300 e1500 e1300 e1300 e1500 e1300 e1200 e1600 e1300 e1200 e1300 e1300 e1300 e1300 e1400 e1300 e1600 e1400 e1300 e1400 e1600 e1300 e1600 e1300 e1300 e1500 e1200 e1300 50an e1500 e1100 e1300 e1500 e1200 e1300 e1500 e1300 e1300 e1400 e1300 e1300 e1400 e1300 e1500 e1300 e1300 e1500 e1500 e1300 e1500 e1400 e1400 e1300 e1400 e1300 e1300 e1400 e1300 e1300 e1400 e1300 e1500 e1400 e1500 e1400 TOTAL MEAN MAX AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1937 - 2001, BY WATER YEAR (WY) MEAN MAX (WY) MIN (WY)

13022500 SNAKE RIVER ABOVE RESERVOIR, NEAR ALPINE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 W	ATER YEAR	WATER YEA	ARS 1937 - 2001
ANNUAL TOTAL	1353810		1215800			
ANNUAL MEAN	3699		3331		4573	
HIGHEST ANNUAL MEAN					7525	1997
LOWEST ANNUAL MEAN					2726	1977
HIGHEST DAILY MEAN	16500	May 30	13200	May 16	38100	Jun 11 1997
LOWEST DAILY MEAN	1400	Jan 31,	1100	Jan 17	900	Dec 31 1978
		Dec 20,21,2	26-29			
ANNUAL SEVEN-DAY MINIMUM	1440	Dec 23	1240	Jan 15	957	Jan 9 1964
ANNUAL RUNOFF (AC-FT)	2685000		2412000		3313000	
10 PERCENT EXCEEDS	8520		6060		10800	
50 PERCENT EXCEEDS	2160		1910		2450	
90 PERCENT EXCEEDS	1600		1300		1320	

462 GREYS RIVER BASIN

13023000 GREYS RIVER ABOVE RESERVOIR, NEAR ALPINE, WY

LOCATION.--Lat $43^{\circ}08'34"$, long $110^{\circ}58'36"$ (revised), in $SW^1/_4$ SE $^1/_4$ sec.34, T.37 N., R.118 W. (unsurveyed), Lincoln County, Wyoming, Hydrologic Unit 17040103, on right bank at Bridge Campground, 3.6 mi southeast of Alpine, 3.0 mi upstream from maximum flowline of Palisades Reservoir.

DRAINAGE AREA.--448 mi². Mean elevation, 8,080 ft.

PERIOD OF RECORD.--July to September 1917, June to September 1918, March 1937 to March 1939, October 1953 to current year. Published as "Greys River near Alpine, Idaho", 1917-1918, and as "Greys River near Alpine, Wyo.", 1937-39.

GAGE.--Water-stage recorder. Elevation of gage is 5,729 ft above sea level, from topographic map. July 6 to Sept. 30, 1917, and June 4 to Sept. 30, 1918, nonrecording gage, and Mar. 17, 1937 to Mar. 31, 1939, water-stage recorder, at site 1.8 mi downstream, and Oct. 1953 to Sept. 22, 1965, water-stage recorder at site 1 mi downstream at different datums.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Station equipment includes satellite telemetry.

Less than 500 acres irrigated by diversions from Greys River and tributaries upstream from station. Station operated and record provided by the Idaho District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e210 e200 e170 e170 e200 e190 e170 e160 e200 e190 e180 e180 e170 e170 e200 e190 e210 e200 e180 e190 e210 e170 e200 e180 e240 e200 e190 e170 e180 e240 e200 e180 e160 e180 e210 e190 e180 e240 e150 e240 e210 e190 e160 e200 e240 e180 e160 1 9 9 e230 e190 e190 e160 e220 e200 e190 e170 e220 e210 e190 251 e160 e220 e210 e180 e170 e210 e2nn e160 e180 e210 e220 e140 e170 e210 e220 e160 e170 e210 e200 e170 e180 e200 e200 e170 e180 e200 e190 e160 e190 e210 e200 e160 e180 e210 e210 e160 e180 e210 e210 e160 e170 e210 e210 e170 e170 e200 e170 e170 e220 e160 e220 e190 e160 e210 e190 e160 e150 e200 e190 e150 e210 e160 e200 e160 TOTAL MEAN MAX MIN AC-FT CFSM .49 2.90 1.54 .76 .67 .51 .45 .39 .38 .99 .55 .48 .77 .56 .45 .56 1.11 1.71 .87 IN. STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1937 - 2001, BY WATER YEAR (WY) MEAN MAX (WY) MTN (WY)

GREYS RIVER BASIN 463

13023000 GREYS RIVER ABOVE RESERVOIR, NEAR ALPINE, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001	WATER YEAR	WATER YEAR	S 1937 - 2001
ANNUAL TOTAL	209053		138117			
ANNUAL MEAN	571		378		647	
HIGHEST ANNUAL MEAN					1022	1971
LOWEST ANNUAL MEAN					259	1977
HIGHEST DAILY MEAN	2640	May 26	2620	May 16	6170	Jun 19 1971
LOWEST DAILY MEAN	160	Jan 31	140	Jan 17	92	Jan 2 1978
ANNUAL SEVEN-DAY MINIMUM	174	Jan 28	160	Jan 16	124	Feb 26 1993
ANNUAL RUNOFF (AC-FT)	414700		274000		468700	
10 PERCENT EXCEEDS	1480		793		1730	
50 PERCENT EXCEEDS	318		246		320	
90 PERCENT EXCEEDS	200		170		190	

464 SALT RIVER BASIN

13027500 SALT RIVER ABOVE RESERVOIR, NEAR ETNA, WY

LOCATION.--Lat $43^{\circ}04'47"$, long $111^{\circ}02'14"$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.28, T.36 N., R.119 W., Lincoln County, Wyoming, Hydrologic Unit 17040105, on right bank 3.4 mi northwest of Etna, and 8.0 mi upstream from maximum flowline of Palisades Reservoir.

DRAINAGE AREA. -- 829 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1953 to current year.

GAGE.--Water-stage recorder. Datum of gage is 5,675.78 ft above sea level (levels by U.S. Bureau of Reclamation).

REMARKS.--Records good. Station equipment includes satellite telemetry. Diversions above station for power developments, industry, municipal supply, and irrigation of about 60,500 acres of which about 1,000 acres are below station (1966 determination). For details on adjudication of diversions, see Remarks for this station in WSP 1347. Station operated and record provided by the Idaho District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY NOV DEC FEB MAY AUG SEP 13 358 351 372 e370 372 347 ___ TOTAL MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1954 - 2001, BY WATER YEAR (WY) ME AN MAX (WY) MTN (WY)

SALT RIVER BASIN 465

13027500 SALT RIVER ABOVE RESERVOIR, NEAR ETNA, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 W	ATER YEAR	WATER YEA	RS 1954 - 2001
ANNUAL TOTAL	216592		144891			
ANNUAL MEAN	592		397		782	
HIGHEST ANNUAL MEAN					1272	1997
LOWEST ANNUAL MEAN					397	2001
HIGHEST DAILY MEAN	1520	May 27	651	May 1	5030	Jun 2 1986
LOWEST DAILY MEAN	365	Dec 21	275	Aug 19	180	Jan 7 1971
ANNUAL SEVEN-DAY MINIMUM	387	Dec 16	281	Aug 7	226	May 10 1977
ANNUAL RUNOFF (AC-FT)	429600		287400		566900	
10 PERCENT EXCEEDS	1180		525		1530	
50 PERCENT EXCEEDS	454		371		578	
90 PERCENT EXCEEDS	407		297		381	

466 SALT RIVER BASIN

13027500 SALT RIVER ABOVE RESERVOIR, NEAR ETNA, WY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1995 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 31 FEB	0955	504	618	9.6	98	8.0	472	5.5	7.0	<.041	.987	E.004	<.018
21	1015	331	624	10.3	91	8.1	486	3.0	2.0	<.041	1.01	.008	<.018
APR 19 JUN	1545	557	630	10.1	105	8.2	483	13.0	8.5	<.041	.639	E.003	<.018
27	1100	306	625	10.0	114	8.2	471	22.0	12.0	E.022	.800	.007	<.020
AUG 07	0925	265	630	7.5	85	8.1	477	23.0	12.0	E.021	.934	.008	<.020

		COLI-		SEDI-
		FORM,		MENT,
	E COLI,	FECAL,	SEDI-	DIS-
	MTEC MF	0.7	MENT,	CHARGE,
	WATER	UM-MF	SUS-	SUS-
DATE	(COL/	(COLS./	PENDED	PENDED
	100 ML)	100 ML)	(MG/L)	(T/DAY)
	(31633)	(31625)	(80154)	(80155)
OCT				
31		E11k	35	48
FEB				
21	E11k	E12k	38	34
APR				
19	45	82	77	116
JUN				
27	E17k	21	21	17
AUG				
07	58	59	34	24

 $[\]mbox{\bf E}$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count).

HENRYS FORK BASIN 467

13046680 BOUNDARY CREEK NEAR BECHLER RANGER STATION, WY

LOCATION.--Lat $44^{\circ}11^{\circ}07^{\circ}$, long $111^{\circ}00^{\circ}28^{\circ}$ (revised), T.49 N., R.118 W., Teton County, Yellowstone National Park, Hydrologic Unit 17040203, on right bank 0.4 mi upstream from confluence with the Bechler River, 3.8 mi north of the Bechler Ranger Station, and 28.0 mi northeast of Ashton, Idaho.

DRAINAGE AREA. -- 86.9 mi².

(WY)

PERIOD OF RECORD. -- August 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 6,360 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are fair. No diversion or regulation. Station operated and record provided by the Idaho District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUL AUG SEP 73 74 73 77 73 75 74 72 77 18 75 72 91 71 62 74 72 71 112 161 62 61 75 72 76 ___ TOTAL. 82.2 75.8 68.5 92.5 70.9 61.5 MEAN 72.5 66.3 67.5 63.3 77 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1984 - 2001, BY WATER YEAR (WY) MEAN 82.6 78.3 74.0 70.3 71.6 85.2 81.7 88.5 91.3 MAX (WY) MTN 61.6 61.9 58 8 58.1 53 8 58 N 68.8 83.3 68.1 62.2 59 4

468 HENRYS FORK BASIN

13046680 BOUNDARY CREEK NEAR BECHLER RANGER STATION, WY--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 W	ATER YEAR	WATER YEAR	RS 1984 - 2001
ANNUAL TOTAL	39264		30179			
ANNUAL MEAN	107		82.7		114	
HIGHEST ANNUAL MEAN					169	1997
LOWEST ANNUAL MEAN					82.7	2001
HIGHEST DAILY MEAN	317	Apr 28	293	Apr 29	810	Jun 2 1986
LOWEST DAILY MEAN	70	Dec 26-31	60	Sep 25	53	Feb 4 1989
ANNUAL SEVEN-DAY MINIMUM	70	Dec 25	60	Sep 24	53	Feb 12 1989
ANNUAL RUNOFF (AC-FT)	77880		59860		82560	
10 PERCENT EXCEEDS	222		122		225	
50 PERCENT EXCEEDS	81		73		83	
90 PERCENT EXCEEDS	75		62		62	

Annual maximum discharge at miscellaneous sites during water year 2001

-					Measurement	is
Characan	mad but a see to	Location	Period of	Data	Gage height	Discharge
Stream	Tributary to		Record	Date	(feet)	(cfs)
Crow Creek at 5th Street, in Cheyenne	South Platte River	Platte River Basin Lat 41°07'20", long 104°48'38", in SE¹/4 NE¹/4 SE¹/4 sec.6, T.13 N., R.66 W., Laramie County, Hydrologic Unit 10190009, 15 ft upstream from bridge on 5th Street, in Cheyenne.	1995-01	7-13-01	7.35	379
Crow Creek on C.P. Organ property, in Cheyenne	South Platte River	Lat $41^{\circ}07'26^{\circ}$, long $104^{\circ}47'20^{\circ}$, in $NW^{1}/4$ $NW^{1}/4$ $SW^{1}/4$ sec.4, T.13 N., R.66 W., Laramie County, Hydrologic Unit 10190009, 100 ft downstream from bridge over Crow Creek on private land, and approximately 1,700 ft east of Morrie Avenue, in Cheyenne.	1996-01	7-13-01	4.45	389
Clear Creek at Parsley Boulevard, in Cheyenne	Crow Creek	Lat $41^{\circ}07'30"$, long $104^{\circ}49'22"$, in $SW^1/4$ $SE^1/4$ $NW^1/4$ sec.6, T.13 N., R.66 W., Laramie County, Hydrologic Unit 10190009, 15 ft upstream from culvert under Parsley Boulevard, in Cheyenne.	1996-01	7-13-01	7.81	15.2
Henderson Drain at Nationway in Cheyenne	Crow Creek	Lat 41°08'08", long 104°46'19", in SE ¹ /4 NE ¹ /4 SE ¹ /4 sec.33, T.14 N., R.66 W., Laramie County, Hydrologic Unit 10190009, 40 ft upstream from culvert on Nationway, in Cheyenne.	1994, 1996-01	7-13-01	9.52	223
Dry Creek at Vista Lane, in Cheyenne 06756030	Crow Creek	Lat $41^{\circ}10'27^{\circ}$, long $104^{\circ}50'31^{\circ}$, in $NW^{1}/4$ $NE^{1}/4$ $NW^{1}/4$ sec.24, T.14 N., R.67 W., Laramie County, Hydrologic Unit 10190009, 30 ft upstream from culvert on Vista Lane, in Cheyenne.	1987-01	7-13-01	3.91	55.5
Dry Creek at Smalley Park, in Cheyenne	Crow Creek	Lat $41^{\circ}10'02"$, long $104^{\circ}49'07"$, in $\mathrm{NE}^1/4~\mathrm{NE}^1/4~\mathrm{SW}^1/4~\mathrm{sec.}$ 19, T.14 N., R.66 W., Laramie County, Hydrologic Unit 10190009, 30 ft upstream from culvert on Seminole Road in Cheyenne.	1994-01	7-13-01	15.32	428
Dry Creek tributary at Briarwood Road, in Cheyenne	Dry Creek	Lat $41^{\circ}09'53$ ", long $104^{\circ}47'15$ ", in SE ¹ /4 NW ¹ /4 SW ¹ /4 sec.21, T.14 N., R.66 W., Laramie County, Hydrologic Unit 10190009, 15 ft upstream from culvert on Briarwood Road, in Cheyenne.	1994, 1996-01	7-13-01	12.44	4.65
Dry Creek at Windmill Road,in Cheyenne	Crow Creek	Lat $41^{\circ}09'39$ ", long $104^{\circ}46'45$ ", in $SW^{1}/4 SW^{1}/4 SE^{1}/4$ sec.21, T.14 N., R.66 W., Laramie County, Hydrologic Unit 1019000, 50 ft upstream from culvert on Windmill Road in Cheyenne.	1994-01	7-13-01	10.41	420
Dry Creek at College Drive, in Cheyenne	Crow Creek	Lat $41^{\circ}09'26"$, long $104^{\circ}45'38"$, in $SE^1/4$ $NE^1/4$ $NW^1/4$ sec.27, T.14 N., R.66 W., Laramie County, Hydrologic Unit 10190009, 40 ft upstream from culvert on College Drive, in Cheyenne.	1994-01	7-13-01	12.92	472
Dry Creek at Rawlins Street,in Cheyenne	Crow Creek	Lat $41^{\circ}09'11"$, long $104^{\circ}45"03"$, in $SW^{1}/4 SW^{1}/4 NW^{1}/4 sec.26$, T.14 N., R.66 W., Laramie County, Hydrologic Unit 10190009, 30 ft upstream from culvert on Rawlins Street, in Cheyenne.	1994-01	7-13-01	16.70	355

Discharge measurements made at miscellaneous sites during water year 2001

				Measured pre-	Measurements	
Stream	Tributary to	Location	Drainage area (sq mi)	viously (water years)	Date	Discharge (cfs)
		Yellowstone River Basin				
Dinwoody Canal 432302109215601	Wind River	Lat 41°23'02", long 109°21'56",in NE¹/4 SW¹/4 NW¹/4 sec.28, T.5 N., R.5 W., Fremont County, Hydrologic Unit 10080001, Wind River Indian Reservation, on left bank 600 ft downstream from headgate, 2.7 mi upstream from aqueduct, and 2.7 mi south of Wilderness.		1988-96 1999	05-31-01 07-19-01 08-10-01 09-12-01	175 187 226 88.3
37-C Lateral 425716108520401	Little Wind River	Lat 42°57′16", long 108°52′04", in SW ¹ /4 SE ¹ /4 SW ¹ /4 sec.22, T.1 S., R.1 W., Fremont County, Hydrologic Unit 10080002, Wind River Indian Reservation, on right bank at headgate, 1.1 mi upstream from crossing on unimproved dirt road, and 2.4 mi southeast of Wind River.		1988-97 1999	06-19-01 07-20-01 08-22-01 09-18-01	60.8 28.6 7.77 5.54
65-C Lateral at Headworks 425515108485401	Little Wind River	Lat 42°55′15", long 108°48′54", in NE¹/4 SE¹/4 NE¹/4 sec.1, T.2 S., R.1 W., Fremont County, Hydrologic Unit 10080002, Wind River Indian Reservation, on left bank at headgate, 1.1 mi upstream from crossing on light-duty road, and 3.4 mi northwest of Milford.		1988-97, 1999	06-23-01 07-23-01 08-22-01 09-18-01	55.7 14.9 9.54 6.48
Ray Canal below 65 "C" Lateral 425513108485801	Little Wind River	Lat 42°55′13", long 108°48′58", in NE¹/4 SE¹/4 NE¹/4 sec.1, T.2 S., R.1 W., Fremont County, Hydrologic Unit 10080002, Wind River Indian Reservation, on left bank 400 ft downstream from 65-C Lateral, 0.9 mi upstream from crossing on unimproved dirt road, and 3.4 mi northwest of Milford.		1988-97 1999	06-19-01 07-23-01 08-22-01 09-18-01	12.4 1.36 1.35 1.44
		Snake River Basin				
Fish Creek near Teton Village 433504110493901	Snake River	Lat $43^\circ 35' 04"$, long $110^\circ 49' 39"$, in NE ¹ /4 SW ¹ /4 SE ¹ /4 sec.24, T.42 N., R.117 W., Teton County, Hydrologic Unit 17040103, on right bank 0.2 mi southwest of Teton Village entry from State Hwy 390.		2000	10-12-00 04-04-01 05-23-01 06-28-01 08-08-01 09-19-01	0.96 0.85 1.96 5.01 2.18 0.67
Fish Creek at Resor Bridge, near Teton Village 433243110504501	Snake River	Lat $43^{\circ}32'43"$, long $110^{\circ}50'45"$, in $SW^1/4$ $SE^1/4$ $NE^1/4$ sec.2, T.41 N., R.117 W., Teton County, Hydrologic Unit 17040103, on right bank 1.2 mi west of miscellaneous site 433247110491701 Lake Creek at State Hwy 390, and 3.0 mi southwest of Teton Village.		2000	10-11-00 04-04-01 05-22-01 06-28-01 08-08-01 09-19-01	25.4 11.6 71.2 107 92.3 60.1
Lake Creek at State Hwy 390, near Wilson 433247110491701	Fish Creek	Lat $43^{\circ}32'47^{\circ}$, long $110^{\circ}49'17^{\circ}$, in $SW^{1}/4$ $SW^{1}/4$ $NW^{1}/4$ sec.6, T.41 N., R.116 W., Teton County, Hydrologic Unit 17040103, at bridge on State Hwy 390, 2.8 mi south of Teton Village, and 4.1 mi northeast of Wilson.		1994-00	10-12-00 05-22-01 06-28-01 08-08-01 09-19-01	57.1 170 218 197 180
Phillips Canyon at Fish Creek Road, near Wilson 433234110512601	Fish Creek	Lat $43^{\circ}32'34"$, long $110^{\circ}51'26"$, in $SE^1/4 \ NW^1/4 \ SW^1/4 \ sec.2$, T.41 N., R.117 W., Teton County, Hydrologic Unit 17040103, on right bank 50 ft upstream from culvert on Fish Creek Road, 3.1 mi northeast of Wilson, and 3.4 mi southwest of Teton Village.		2000	10-11-00 04-03-01 05-22-01 06-28-01 08-09-01 09-18-01	3.50 1.44 13.0 7.55 3.48 2.50
Fish Creek at Harmon's, at Wilson 432958110521301	Snake River	Lat $43^{\circ}29'58"$, long $110^{\circ}52'13"$, in $SW^1/4~NW^1/4~SE^1/4~sec.22$, T.41 N., R.117 W., Teton County, Hydrologic Unit 17040103, on left bank at Wilson and 600 ft downstream from station 13016450 Fish Creek at Wilson.		2000	10-11-00 04-04-01 05-22-01 06-28-01 08-09-01 09-19-01	127 59.6 355 421 389 299

DISCHARGE AT MISCELLANEOUS SITES

Discharge measurements made at miscellaneous sites during water year 2001

Stream	Tributary to			Measured pre- viously (water years)	Measurements	
		Location	Drainage area (sq mi)		Date	Discharge (cfs)
Fish Creek above Mosquito Creek, near Wilson 432705110514501	Snake River	Lat 43°27'05", long 110°51'45", in SE ¹ /4 SE ¹ /4 SW ¹ /4 sec.3, T.40 N., R.117 W., Teton County, Hydrologic Unit 17040103, at bridge on Fish Creek Meadow Road and 3.5 mi south of Wilson on Fall Creek Road.		2000	10-11-00 04-03-01 05-22-01 06-28-01 08-09-01 09-18-01	128 71.9 328 391 337 267

BURGER DRAW COAL BED METHANE WATER SAMPLE

YELLOWSTONE RIVER BASIN

440849106083101 BURGER DRAW AT MOUTH, NEAR BUFFALO, WY (LAT 44 08 49 LONG 106 08 31)

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE SEP	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)
11	1655	.31	8.7	4170	24.5	21.5	200	25.4	34.1	45.0	32	1040	2470
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
SEP 11	31.1	1.4	9.4	80.3	3.78	2.32	2780	2740	8	.29	3.7	599	934
11	31.1	1.4	9.4	00.3	3.70	2.32	2760	2740	0	. 29	3.7	399	934
DATE	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)
SEP 11	<.10	186	<.07	<.8	.85	4.0	70	.16	397	4.8	2.5	1.87	.8
			DATE SEP 11	SO (U AS	DIS- DIS- DIS- DIS- DIVED SC G/L (US AG) AS 075) (01	TUM, LI DIS- DI DLVED SOL G/L (U SR) AS	UM, DI S- D VED SC G/L (U TL) AS 057) (01	DIS- I DLVED SC UG/L (U S V) AS 1085) (01	NC, NAT DIS- D DLVED SO G/L (U ZN) AS 090) (22	NIUM URAL IS- LVED G/L U) 703)			

FREMONT COUNTY WEED AND PEST DISTRICT STUDY

YELLOWSTONE RIVER BASIN

425008108445401 SQUAW CREEK AT SMITH STREET, AT LANDER, WY (LAT 42 50 08 LONG 108 44 54)

		DIS- CHARGE, INST. CUBIC	SPE- CIFIC CON-	TEMPER-	TEMPER-					PIC- LORAM	
DATE	TIME	FEET PER SECOND (00061)	DUCT- ANCE (US/CM) (00095)	ATURE AIR (DEG C) (00020)	ATURE WATER (DEG C) (00010)	2,4-DP TOTAL (UG/L) (82183)	2,4,5-T TOTAL (UG/L) (39740)	2,4-D, TOTAL (UG/L) (39730)	DICAMBA TOTAL (UG/L) (82052)	UNFILT RECOVER (UG/L) (39720)	SILVEX, TOTAL (UG/L) (39760)
AUG 13	1125	1.4	1170	26.0	16.0	<.03	<.01	.07	E.01	.12	<.02

E -- Estimated value.

KENDRICK IRRIGATION STUDY

PLATTE RIVER BASIN

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

425841106304702 -- SOUTH FORK CASPER CREEK AT INLET TO 33 MI RESERVOIR, NEAR ILLCO, WY (LAT 42 58 18 LONG 106 29 34)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)
JUN 21 AUG 29	0915 0800	1.1	638 628	9.9 4.9	7.9 7.9	4050 4440	19.0 15.5	14.0 14.0	60.3 58.1

425818106302701 -- THIRTYTHREE MILE RESERVOIR NEAR OUTLET, NR ILLCO, WY (LAT 42 58 18 LONG 106 30 27)

		BARO-		PH				
		METRIC		WATER	SPE-			SELE-
		PRES-		WHOLE	CIFIC			NIUM,
		SURE	OXYGEN,	FIELD	CON-	TEMPER-	TEMPER-	DIS-
		(MM)	DIS-	(STAND-	DUCT-	ATURE	ATURE	SOLVED
DATE	TIME	OF	SOLVED	ARD	ANCE	AIR	WATER	(UG/L
		HG)	(MG/L)	UNITS)	(US/CM)	(DEG C)	(DEG C)	AS SE)
		(00025)	(00300)	(00400)	(00095)	(00020)	(00010)	(01145)
JUN								
21	1015	638	10.7	8.6	2780	22.0	21.0	23.2
AUG								
29	0910	630	7.5	8.4	2920	18.5	17.0	22.9

425818106293401 -- SOUTH FORK CASPER CREEK BELOW 33 MILE RESERVOIR, NEAR CASPER, WY (LAT 42 58 18 LONG 106 29 34)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)
JUN 21 AUG	1100	2.4	639	10.9	8.3	3140	22.0	19.0	21.6
29	0950	4.0	630	7.6	8.0	1710	20.0	16.0	7.1

430020106300801 -- SOUTHWWEST INLET TRIBUTARY TO ILLCO SEEP, NEAR ILLCO, WY (LAT $43\ 00\ 20\ \text{LONG}\ 106\ 30\ 08)$

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	TEMPER- ATURE AIR (DEG C)
JUN 21 AUG	1430	.00	26.5
29	1210	.00	24.0

430014106300301 -- MIDDLE TRIBUTARY ON SOUTH SIDE ILLCO SEEP AT ILLCO, WY (LAT 43 00 14 LONG 106 30 03)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER	TEMPER- ATURE AIR
		SECOND (00061)	(DEG C) (00020)
JUN 21 AUG	1440	.00	26.5
29	1215	.00	24.0

KENDRICK IRRIGATION STUDY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

430012106295901 -- IR-51 NEAR CASPER, WY (LAT 43 00 12 LONG 106 29 59)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)
JUN 21	1450	.13	636	7.3	8.1	3000	26.0	20.0	24.8
AUG 29	1220	. 23	630	8.0	8.2	1860	26.0	14.5	5.5

430018106300201 -- ILLCO SEEP NEAR OUTLET, NEAR ILLCO, WY (LAT 43 00 18 LONG 106 30 02)

DATE	TIME	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)
JUN 21 AUG	1400	636	19.8	8.6	1540	26.5	25.0	4.0
29	1200	630	4.2	8.2	1320	24.0	22.0	.5

430016106295901 -- UNNAMED POND ON E SIDE OF ILLCO SEEP, NR ILLCO, WY (LAT 43 00 16 LONG 106 29 59)

		BARO-		PH				
		METRIC		WATER	SPE-			SELE-
		PRES-		WHOLE	CIFIC			NIUM,
		SURE	OXYGEN,	FIELD	CON-	TEMPER-	TEMPER-	DIS-
		(MM)	DIS-	(STAND-	DUCT-	ATURE	ATURE	SOLVED
DATE	TIME	OF	SOLVED	ARD	ANCE	AIR	WATER	(UG/L
		HG)	(MG/L)	UNITS)	(US/CM)	(DEG C)	(DEG C)	AS SE)
		(00025)	(00300)	(00400)	(00095)	(00020)	(00010)	(01145)
JUN								
21	1500	636	9.9	8.3	1540	26.5	23.0	7.0
AUG								
29	1235	630	6.4	8.2	1750	26.0	20.0	4.5

430013106292001 -- OUTLET TRIB OF ILLCO SEEP AT CULVERT, AT ILLCO, WY (LAT 43 00 13 LONG 106 29 20)

		DIS-	BARO-		PH				
		CHARGE,	METRIC		WATER	SPE-			SELE-
		INST.	PRES-		WHOLE	CIFIC			NIUM,
		CUBIC	SURE	OXYGEN,	FIELD	CON-	TEMPER-	TEMPER-	DIS-
		FEET	(MM	DIS-	(STAND-	DUCT-	ATURE	ATURE	SOLVED
DATE	TIME	PER	OF	SOLVED	ARD	ANCE	AIR	WATER	(UG/L
		SECOND	HG)	(MG/L)	UNITS)	(US/CM)	(DEG C)	(DEG C)	AS SE)
		(00061)	(00025)	(00300)	(00400)	(00095)	(00020)	(00010)	(01145)
JUN									
21	1200	.41	638	8.3	7.9	2000	24.0	19.0	1.6
AUG									
29	1310	.16	630	6.9	7.9	2000	26.0	19.0	1.3

Figure 5. Location of surface-water sampling sites in the Yellowstone River Basin NAWQA study unit, Montana, North Dakota, and Wyoming.

YELLOWSTONE RIVER BASIN

06187915 SODA BUTTE CREEK AT PARK BOUNDARY, AT SILVER GATE, MT (National Water-Quality Assessment Program)

LOCATION.--Lat $45^{\circ}00^{\circ}11^{\circ}$, long $110^{\circ}00^{\circ}04^{\circ}$, in SW $^{1}/_{4}$ NW $^{1}/_{4}$ Sec.33, T.9 S., R.14 E., Park County, Hydrologic Unit 10070001, at Yellowstone National park boundary, 0.25 mi downstream from Silver Creek, 0.75 mi southwest of Silver Gate, and at river mile 17.8.

DRAINAGE AREA.--31.2 \min^2 .

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1998 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 7,340 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. No known regulation or diversion upstream of station.

COOPERATION.--Records collected by the National Park Service and U.S. Department of Agriculture, Forest Service, under the general supervision of the Geological Survey. Record provided by the Montana District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DA:	Y O	CT NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	43 20 15 12	8.2 8.0 e7.5 e7.0 e7.5	e3.5 e3.5 e3.5 e3.5 e3.5	e2.7 e2.6 e2.5 e2.3 e2.0	e2.5 e2.5 e2.5 e2.5 e2.5	e1.1 e1.1 e1.1 e1.1	2.0 1.9 1.8 1.8	33 24 22 28 37	266 264 218 170 147	118 109 102 91 87	28 26 24 23 22	9.1 8.4 8.1 8.0 8.2
6 7 8 9 10	9.5 9.4 8.8 8.5 8.4	e7.5 e7.0 e6.5 e6.0 e5.0	e3.5 e3.5 e3.5 e3.5 e3.0	e2.0 e2.0 e2.0 e2.1 e2.2	e2.5 e2.5 e2.4 e2.0 e2.0	e1.1 e1.2 e1.2 e1.2 e1.2	1.7 1.8 1.8 1.7	37 39 58 71 67	139 130 148 186 200	83 77 71 68 83	21 20 19 19	11 12 12 11 9.5
11 12 13 14 15	8.9 8.6 8.9 9.0 9.0	e5.0 e5.0 e4.5 e4.5 e4.5	e2.5 e2.8 e2.8 e2.8 e2.8	e2.2 e2.2 e2.2 e2.2 e2.2	e2.0 e2.0 e2.0 e2.0 e2.0	e1.1 e1.1 e1.1 e1.1 e1.1	1.6 1.6 1.5 1.5	82 126 182 248 307	177 219 168 153 161	74 66 59 71 89	17 16 16 15 16	8.9 8.7 8.9 9.6 9.4
16 17 18 19 20	9.2 10 10 10 9.6	e4.5 e4.0 e4.0 e4.0 e3.5	e2.8 e2.7 e2.6 e2.5 e2.0	e2.2 e2.0 e2.0 e2.0 e2.0	e1.9 e1.9 e1.9 e1.9	e1.2 e1.3 e1.4 e1.4 e1.4	1.6 3.1 6.1 6.6 4.1	236 206 189 197 188	174 179 183 164 166	69 58 54 50 47	17 15 13 12 12	9.0 8.6 8.5 8.6 8.0
21 22 23 24 25	9.6 9.0 8.4 8.8	e3.5 e3.5 e3.5 e3.5 e3.5	e2.5 e2.5 e2.5 e2.5 e2.5	e2.0 e2.0 e2.0 e2.0 e2.0	e1.8 e1.8 e1.5 e1.5	e1.4 e1.4 e1.5 e1.7	3.5 3.5 3.8 4.6 9.3	147 156 202 249 276	182 205 202 200 177	44 41 39 38 36	12 12 11 10	7.5 7.2 6.9 6.6 6.5
26 27 28 29 30 31	9.6 9.3 9.3 9.1 9.0 8.7	e3.5 e3.5 e3.5 e3.5 e3.5	e2.5 e2.5 e2.5 e2.5 e2.5 e2.5	e2.0 e2.0 e2.0 e2.0 e2.2 e2.5	e1.2 e1.1 e1.0 	e2.0 e2.1 2.2 2.0 2.1 1.8	17 21 24 41 35	318 289 302 346 269 251	158 153 143 133 123	34 32 31 30 28 32	9.6 9.7 9.9 9.7 9.6 9.4	6.2 6.0 5.6 5.1 5.1
TOTAL MEAN MAX MIN AC-FT	339.6 11.0 43 8.4 674	148.7 4.96 8.2 3.5 295	88.3 2.85 3.5 2.0 175	66.3 2.14 2.7 2.0 132	54.6 1.95 2.5 1.0 108	43.6 1.41 2.2 1.1 86	209.8 6.99 41 1.5 416	5182 167 346 22 10280	5288 176 266 123 10490	1911 61.6 118 28 3790	481.9 15.5 28 9.4 956	248.2 8.27 12 5.1 492
STATIST	TICS OF M	ONTHLY MEA	N DATA FO	R WATER Y	EARS 1999	- 2001,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	10.4 11.9 1999 8.21 2000	5.75 6.84 1999 4.96 2001	3.20 3.49 2000 2.85 2001	2.09 2.14 2001 2.01 2000	1.94 2.00 2000 1.86 1999	1.68 1.90 2000 1.41 2001	8.49 14.3 2000 4.23 1999	141 167 2001 95.9 1999	284 345 1999 176 2001	130 212 1999 61.6 2001	28.9 45.0 1999 15.5 2001	13.9 22.4 1999 8.27 2001

06187915 SODA BUTTE CREEK AT PARK BOUNDARY, AT SILVER GATE, MT--Continued (National Water-Quality Assessment Program)

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1999 - 2001
ANNUAL TOTAL	20827.0	14062.0	
ANNUAL MEAN	56.9	38.5	52.7
HIGHEST ANNUAL MEAN			62.9 1999
LOWEST ANNUAL MEAN			38.5 2001
HIGHEST DAILY MEAN	610 Jun 7	346 May 29	610 Jun 7 2000
LOWEST DAILY MEAN	1.4 Mar 17-19	1.0 Feb 28	1.0 Dec 21 1998
ANNUAL SEVEN-DAY MINIMUM	1.5 Mar 17	1.1 Feb 27	1.1 Feb 27 2001
MAXIMUM PEAK FLOW		455 May 28	846 Jun 19 1999
MAXIMUM PEAK STAGE			3.41 Jun 19 1999
ANNUAL RUNOFF (AC-FT)	41310	27890	38200
10 PERCENT EXCEEDS	238	162	203
50 PERCENT EXCEEDS	8.9	7.5	8.2
90 PERCENT EXCEEDS	2.0	1.7	1.8

e Estimated.

YELLOWSTONE RIVER BASIN Fixed Station Network

06187915 SODA BUTTE CREEK AT YNP BOUNDARY, NEAR SILVER GATE, MT (LAT 45 00 10 LONG 110 00 04)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)
OCT	1200	0.1	4.0	650	10.1	100	0.5	100	10.0	1 -	0.2	05.1	25.0
23 NOV	1300	8.1	4.0	659	12.1	100	8.5	199	10.0	1.5	93	27.1	25.8
29 DEC	0830	8.0		582			8.0	212	-11.0	.00	110	32.5	32.5
18 JAN	1530	5.4	.5	587	12.1	108	7.9	228	-8.0	.00	110	33.0	32.3
11 FEB	1400	4.2	.5	575	11.7	106	8.5	245	-1.0	.00	110	32.1	33.0
20 MAR	1400	2.3	1.5	577	12.1	111	8.5	239	2.0	.5	110	33.8	32.4
14 MAY	1230	1.4	.6	575	12.3	114	8.4	236	-2.0	.5	110	33.9	32.4
25 JUN	0800	241	11	584	11.1	106	8.6	88	19.0	2.5	37	10.7	11.1
04 JUL	1400	169	5.4	575	10.4	108	8.3	89	7.0	5.0	47	13.7	13.8
19	1000	51	5.3	578	9.3	110	8.8	158	17.5	10.6	70	20.1	19.8
AUG 09	0900	19	3.8	587	8.8	97	7.5	193	14.0	8.0	86	24.8	24.9
SEP 24	1700	6.3		585	9.2	111	8.4	205	27.0	12.0	96	27.6	27.9
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	SODIUM AD- SORP- TION RATIO	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
OCT	SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	SIUM, DIS- SOLVED (MG/L AS K) (00935)	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)
OCT 23 NOV	SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	SIUM, DIS- SOLVED (MG/L AS K) (00935)	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)
OCT 23 NOV 29 DEC	SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 6.69	SIUM, DIS- SOLVED (MG/L AS K) (00935)	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 4.8	TOTAL RECOV- ERABLE (MG/L AS NA) (00929) 4.0	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)
OCT 23 NOV 29 DEC 18 JAN	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 6.22 7.23	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 6.69 7.38	SIUM, DIS- SOLVED (MG/L AS K) (00935) .47 .49	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	AD-SORP-TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 4.8 4.2	TOTAL RECOV- ERABLE (MG/L AS NA) (00929) 4.0 4.0	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 95 110	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 116 134	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 10.4 10.2
OCT 23 NOV 29 DEC 18 JAN 11 FEB	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 6.22 7.23 7.27 7.07	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 6.69 7.38 7.22 7.35	SIUM, DIS- SOLVED (MG/L AS K) (00935) .47 .49 .38	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) .2 .3 .4 .5	AD- SORP- TION RATIO (00931) .2 .2 .2	DIS- SOLVED (MG/L AS NA) (00930) 4.8 4.2 3.7	TOTAL RECOV-ERABLE (MG/L AS NA) (00929) 4.0 4.0 3.6 3.9	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 95 110 116	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 116 134 141	BONATE WATER WATER DIS IT FIELD MG/L AS C03 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .5 .4 .5	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.2 E.1 E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 10.4 10.2 10.1 9.9
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 6.22 7.23 7.27 7.07	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 6.69 7.38 7.22 7.35	SIUM, DIS- SOLVED (MG/L AS K) (00935) .47 .49 .38 .51	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 4.8 4.2	TOTAL RECOV- ERABLE (MG/L AS NA) (00929) 4.0 4.0 3.6 3.9	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 95 110 116 115	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 116 134 141 140	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.2 E.1 E.1 <.2	DIS- SOLVED (MG/L AS SIO2) (00955) 10.4 10.2 10.1 9.9
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 6.22 7.23 7.27 7.07	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 6.69 7.38 7.22 7.35	SIUM, DIS- SOLVED (MG/L AS K) (00935) .47 .49 .38	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) .2 .3 .4 .5	AD- SORP- TION RATIO (00931) .2 .2 .2	DIS- SOLVED (MG/L AS NA) (00930) 4.8 4.2 3.7	TOTAL RECOV-ERABLE (MG/L AS NA) (00929) 4.0 4.0 3.6 3.9	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 95 110 116	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 116 134 141	BONATE WATER WATER DIS IT FIELD MG/L AS C03 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .5 .4 .5	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.2 E.1 E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 10.4 10.2 10.1 9.9
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR 14	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 6.22 7.23 7.27 7.07	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 6.69 7.38 7.22 7.35	SIUM, DIS- SOLVED (MG/L AS K) (00935) .47 .49 .38 .51	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) .2 .3 .4 .5	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 4.8 4.2 3.7 3.8 4.2	TOTAL RECOV- ERABLE (MG/L AS NA) (00929) 4.0 4.0 3.6 3.9	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 95 110 116 115	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 116 134 141 140	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .5 .4 .5 .6	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.2 E.1 E.1 <.2	DIS- SOLVED (MG/L AS SIO2) (00955) 10.4 10.2 10.1 9.9
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR 14 MAY 25	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 6.22 7.23 7.27 7.07 7.32 7.28	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 6.69 7.38 7.22 7.35 7.27	SIUM, DIS- SOLVED (MG/L AS K) (00935) .47 .49 .38 .51 .45	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) .2 .3 .4 .5 .5	AD- SORP- TION RATIO (00931) .2 .2 .2 .2	DIS- SOLVED (MG/L AS NA) (00930) 4.8 4.2 3.7 3.8 4.2 4.4	TOTAL RECOV-ERABLE (MG/L AS NA) (00929) 4.0 4.0 3.6 3.9 4.2	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 95 110 116 115 115	BONATE WATER WATER DIS IT FIELD MG/L AS HC03 (00453) 116 134 141 140 140	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .5 .4 .5 .6	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.2 E.1 E.1 <.2 <.2	DIS- SOLVED (MG/L AS SIO2) (00955) 10.4 10.2 10.1 9.9 10.5
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR 14 MAY 25 JUN 04 JUL 19	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 6.22 7.23 7.27 7.07 7.32 7.28 2.48	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 6.69 7.38 7.22 7.35 7.27 7.11	SIUM, DIS- SOLVED (MG/L AS K) (00935) .47 .49 .38 .51 .45	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) .2 .3 .4 .5 .5	AD- SORP- TION RATIO (00931) .2 .2 .2 .2 .2	DIS- SOLVED (MG/L AS NA) (00930) 4.8 4.2 3.7 3.8 4.2 4.4	TOTAL RECOV- ERABLE (MG/L AS NA) (00929) 4.0 4.0 3.6 3.9 4.2 4.4	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 95 110 116 115 115 41	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 116 134 141 140 140 50	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .5 .4 .5 .6 .6	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.2 E.1 E.1 <.2 <.2	DIS- SOLVED (MG/L AS SIO2) (00955) 10.4 10.2 10.1 9.9 10.5 10.5
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR 14 MAY 25 JUN 04 JUL	SIUM, DIS- SOLVED (MG/L AS MG) (00925) 6.22 7.23 7.27 7.07 7.32 7.28 2.48 3.11	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 6.69 7.38 7.22 7.35 7.27 7.11 3.32 3.61	SIUM, DIS- SOLVED (MG/L AS K) (00935) .47 .49 .38 .51 .45 .49 .28	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) .2 .3 .4 .5 .5 .6 .5	AD- SORP- TION RATIO (00931) .2 .2 .2 .2 .2 .2	DIS- SOLVED (MG/L AS NA) (00930) 4.8 4.2 3.7 3.8 4.2 4.4 3.2	TOTAL RECOV- ERABLE (MG/L AS NA) (00929) 4.0 4.0 3.6 3.9 4.2 4.4 3.1	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 95 110 116 115 115 41 50	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 116 134 141 140 140 50 62	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .5 .4 .5 .6 .6 .6	RIDE, DIS- SOLVED (MG/L AS F) (00950) <.2 E.1 E.1 <.2 <.2 E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 10.4 10.2 10.1 9.9 10.5 10.5 9.3

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

06187915 SODA BUTTE CREEK AT YNP BOUNDARY, NEAR SILVER GATE, MT (LAT 45 00 10 LONG 110 00 04)

				SOLIDS,	SOLIDS,	NITRO-	NITRO-	NITRO-	NITRO-	NITRO-	NITRO-		PHOS-
DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN,PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 23	9.5	.16	2.54	116	116	<.041	<.10	.17	E.042	<.006		.028	.024
NOV													
29 DEC	10	.19	2.98	138	135	<.041	<.10	E.07	.134	<.006		.022	.023
18 JAN	9.7	.18	1.97	135	131	<.041	.12	<.08	.150	<.006		.022	.019
11 FEB	10.0	.18	1.52	134	134	<.041	<.10	E.05	.135	<.006	<.022	.025	.023
20 MAR	10.6	.19	.88	143	137	<.041	<.10	<.08	.114	.007	<.022	.024	.023
14 MAY	9.7	.18	.51	135	136	<.041	<.10	E.05	.071	<.006	<.022	.021	.021
25 JUN	3.5	.07	35.8	55	55	<.040	E.07	.08	.061	<.006	.022	.035	.025
04 JUL	4.9	.10	34.2	75	67	<.040	<.10	E.07	E.040	<.006	.026	.036	.026
19 AUG	6.9	.13	12.8	93	91	<.040	<.10	E.06	E.034	E.004	<.022	.034	.025
09 SEP	8.9	.15	5.69	111	111	.050	<.10	.09	.047	<.006	E.006	.021	E.016
24	8.6	.17	2.11	124	122	<.040	E.08	.10	E.027	<.006	<.022	.022	.021
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
OCT	PHORUS TOTAL (MG/L AS P) (00665)	INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	MTEC MF WATER (COL/ 100 ML) (31633)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
OCT 23 NOV	PHORUS TOTAL (MG/L AS P) (00665)	INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	MTEC MF WATER (COL/ 100 ML) (31633)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)
OCT 23 NOV 29 DEC	PHORUS TOTAL (MG/L AS P) (00665)	INORG + ORGANIC PARTIC: TOTAL (MG/L AS C) (00694)	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.00	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	MTEC MF WATER (COL/ 100 ML) (31633) E5k E4k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k	INUM, DIS- SOLVED (UG/L AS AL) (01106)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL (UG/L AS AS) (01002) <2 <2	DIS- SOLVED (UG/L AS BA) (01005) 16.2 18.8	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 16.4 19.0
OCT 23 NOV 29 DEC 18 JAN	PHORUS TOTAL (MG/L AS P) (00665) .042 .026	INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.00 .72	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) .4 .3 <.2	MTEC MF WATER (COL/ 100 ML) (31633) E5k E4k E5k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E8k	INUM, DIS- SOLVED (UG/L AS AL) (01106)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) 252 49 E25	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 16.2 18.8	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 16.4 19.0
OCT 23 NOV 29 DEC 18 JAN 11 FEB	PHORUS TOTAL (MG/L AS P) (00665) .042 .026 .023	INORG + ORGANIC PARTIC TOTAL (MG/L AS C) (00694)	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.00 .72 .48	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) .4 .3 <.2	MTEC MF WATER (COL/ 100 ML) (31633) E5k E4k E5k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E8k E2k E4k	INUM, DIS- SOLVED (UG/L AS AL) (01106)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) 252 49 E25 E20	MONY, DIS- SOLVED (UG/L AS SB) (01095) .06 .05	DIS- SOLVED (UG/L AS AS) (01000) .7 .6	TOTAL (UG/L AS AS) (01002) <2 <2 <2 <3 <2	DIS- SOLVED (UG/L AS BA) (01005) 16.2 18.8 18.5	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 16.4 19.0 17.7
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR	PHORUS TOTAL (MG/L AS P) (00665) .042 .026 .023 .024	INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.00 .72 .48 .57	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) .4 .3 <.2	MTEC MF WATER (COL/ 100 ML) (31633) E5k E4k E5k E4k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E8k E2k E4k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 2 2 2 2	INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) 252 49 E25 E20	MONY, DIS- SOLVED (UG/L AS SB) (01095) .06 .05 E.03	DIS- SOLVED (UG/L AS AS) (01000) .7 .6 .6	TOTAL (UG/L AS AS) (01002) <2 <2 <3 <2 <3 <2 <2	DIS- SOLVED (UG/L AS BA) (01005) 16.2 18.8 18.5	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 16.4 19.0 17.7 18.1
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20	PHORUS TOTAL (MG/L AS P) (00665) .042 .026 .023	INORG + ORGANIC PARTIC TOTAL (MG/L AS C) (00694)	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.00 .72 .48	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) .4 .3 <.2	MTEC MF WATER (COL/ 100 ML) (31633) E5k E4k E5k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E8k E2k E4k	INUM, DIS- SOLVED (UG/L AS AL) (01106)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) 252 49 E25 E20	MONY, DIS- SOLVED (UG/L AS SB) (01095) .06 .05	DIS- SOLVED (UG/L AS AS) (01000) .7 .6	TOTAL (UG/L AS AS) (01002) <2 <2 <2 <3 <2	DIS- SOLVED (UG/L AS BA) (01005) 16.2 18.8 18.5	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 16.4 19.0 17.7
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR 14	PHORUS TOTAL (MG/L AS P) (00665) .042 .026 .023 .024	INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.00 .72 .48 .57	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) .4 .3 <.2	MTEC MF WATER (COL/ 100 ML) (31633) E5k E4k E5k E4k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E8k E2k E4k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 2 2 2 2	INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) 252 49 E25 E20	MONY, DIS- SOLVED (UG/L AS SB) (01095) .06 .05 E.03	DIS- SOLVED (UG/L AS AS) (01000) .7 .6 .6	TOTAL (UG/L AS AS) (01002) <2 <2 <3 <2 <3 <2 <2	DIS- SOLVED (UG/L AS BA) (01005) 16.2 18.8 18.5	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 16.4 19.0 17.7 18.1
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR 14 MAY 25	PHORUS TOTAL (MG/L AS P) (00665) .042 .026 .023 .024 .032	INORG + ORGANIC PARTIC TOTAL (MG/L AS C) (00694) <.1 .2 <.1	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.00 .72 .48 .57 .65	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) .4 .3 <.2	MTEC MF WATER (COL/ 100 ML) (31633) E5k E4k E5k E4k E1k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E8k E2k E4k E1k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 2 2 2 1	INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) 252 49 E25 E20 96 <28	MONY, DIS- SOLVED (UG/L AS SB) (01095) .06 .05 E.03 E.04	DIS- SOLVED (UG/L AS AS) (01000) .7 .6 .6 .6	TOTAL (UG/L AS AS) (01002) <2 <2 <3 <2 <2 <2 <2 <2	DIS- SOLVED (UG/L AS BA) (01005) 16.2 18.8 18.5 17.0	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 16.4 19.0 17.7 17.7 18.1 15.7
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR 14 MAY 25 JUN 04 JUL 19	PHORUS TOTTAL (MG/L AS P) (00665) .042 .026 .023 .024 .032 .027	INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694) <.1 .2 <.1 .5	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.00 .72 .48 .57 .65 .70	ORGANIC PARTIC- ULATE TOTAL (MG/L AS () (00689) .4 .3 <.2	MTEC MF WATER (COL/ 100 ML) (31633) E5k E4k E5k E4k E1k 25	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E8k E2k E4k E1k 25	INUM, DIS- SOLVED (UG/L AS AL) (01106) 2 2 2 2 1 1	INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) 252 49 E25 E20 96 <28	MONY, DIS- SOLVED (UG/L AS SB) (01095) .06 .05 E.03 E.04 .07	DIS- SOLVED (UG/L AS AS) (01000) .7 .6 .6 .6 .7	TOTAL (UG/L AS AS) (01002) <2 <2 <3 <2 <2 <2 <2 <2 <2	DIS- SOLVED (UG/L AS BA) (01005) 16.2 18.8 18.5 17.0 17.4 7.8	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 16.4 19.0 17.7 17.7 18.1 15.7 19.1
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR 14 MAY 25 JUN 04 JUL	PHORUS TOTAL (MG/L AS P) (00665) .042 .026 .023 .024 .032 .027 .074	INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694) <.1 .2 <.1 .5 .2	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 1.00 .72 .48 .57 .65 .70 1.8	ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) .4 .3 <.2	MTEC MF WATER (COL/ 100 ML) (31633) E5k E4k E5k E4k E1k 25 E3k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E8k E2k E4k E1k 25 E4k <1	INUM, DIS- SOLVED (UG/L AS AL) (01106) 2 2 2 1 1 10	INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) 252 49 E25 E20 96 <28 943	MONY, DIS- SOLVED (UG/L AS SB) (01095) .06 .05 E.03 E.04 .07	DIS- SOLVED (UG/L AS AS) (01000) .7 .6 .6 .6 .7 .4	TOTAL (UG/L AS AS) (01002) <2 <2 <3 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	DIS- SOLVED (UG/L AS BA) (01005) 16.2 18.8 18.5 17.0 17.4 7.8	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 16.4 19.0 17.7 17.7 18.1 15.7 19.1

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

06187915 SODA BUTTE CREEK AT YNP BOUNDARY, NEAR SILVER GATE, MT (LAT 45 00 10 LONG 110 00 04)

DATE	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)
OCT 23 NOV	<.06	<2.50	7	<.04	<.11	<.8	<1	.08	<2	.7	<20.0	<10	580
29 DEC	<.06	<2.50	E7	E.02	<.11	<.8	M	.07	<2	.6	<20.0	<10	110
18		<2.50			<.11		<1		<2		<20.0	<10	60
JAN 11	<.06	<2.50	7	<.04	<.11	<.8	<1	.07	<2	.6	<20.0	<10	40
FEB 20	<.06	<2.50	9	<.04	<.11	<.8	<1	.06	<2	.6	<20.0	<10	130
MAR 14	<.06	<2.50	15	<.04	<.11	<.8	<1	.07	<2	.7	<20.0	<10	<10
MAY 25	<.06	<2.50	7	<.04	<.10	E.4	М	.04	E1	1.5	<20.0	30	1160
JUN 04	<.06	<2.50	E6	<.04	<.10	<.8	<1	.04	<2	1.2	<20.0	10	520
JUL 19	<.06	<2.50	7	<.04	<.10	<.8	<1	.04	<2	.7	E10.6	<10	850
AUG 09	<.06	<2.50	18	<.04	<.10	<.8	<1	.04	<2	.8	<20.0	<10	250
SEP 24	<.06	<2.50	25	E.02	<.10	E.4	<1	.05	<2	.9	<20.0	<10	170
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	LITHIUM TOTAL RECOV- ERABLE (UG/L AS LI) (01132)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)
OCT	DIS- SOLVED (UG/L AS PB) (01049)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	DIS- SOLVED (UG/L AS LI) (01130)	TOTAL RECOV- ERABLE (UG/L AS LI) (01132)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	DIS- SOLVED (UG/L AS HG) (71890)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062)	DIS- SOLVED (UG/L AS NI) (01065)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)
OCT 23 NOV	DIS- SOLVED (UG/L AS PB) (01049)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	DIS- SOLVED (UG/L AS LI) (01130)	TOTAL RECOV- ERABLE (UG/L AS LI) (01132)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	DIS- SOLVED (UG/L AS HG) (71890)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062)	DIS- SOLVED (UG/L AS NI) (01065)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)
OCT 23 NOV 29 DEC	DIS- SOLVED (UG/L AS PB) (01049)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1	DIS- SOLVED (UG/L AS LI) (01130)	TOTAL RECOV- ERABLE (UG/L AS LI) (01132) <7.0	NESE, DIS- SOLVED (UG/L AS MN) (01056)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	DIS- SOLVED (UG/L AS HG) (71890) <.23	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062)	DIS- SOLVED (UG/L AS NI) (01065)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)
OCT 23 NOV 29 DEC 18 JAN	DIS- SOLVED (UG/L AS PB) (01049) <.08 <.08	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1	DIS- SOLVED (UG/L AS LI) (01130)	TOTAL RECOV- ERABLE (UG/L AS LI) (01132) <7.0 <7.0 <7.0	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.8 2.3 E1.8	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	DIS- SOLVED (UG/L AS HG) (71890) <.23 <.23	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14 <.14	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 2.2 E1.0	DIS- SOLVED (UG/L AS NI) (01065)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 3 <2 <2	NIUM, DIS- SOLVED (UG/L AS SE) (01145) E.3 <.3
OCT 23 NOV 29 DEC 18 JAN 11 FEB	DIS- SOLVED (UG/L AS PB) (01049) <.08 <.08	TOTAL RECOV-ERABLE (UG/L AS PB) (01051) <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS LI) (01130) .9 .9	TOTAL RECOV-ERABLE (UG/L AS LI) (01132) <7.0 <7.0 <7.0 <7.0	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.8 2.3 E1.8	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 7 4 E2 E2	DIS- SOLVED (UG/L AS HG) (71890) <.23 <.23 <.23	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.14	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.1 1.2	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 2.2 E1.0 1.6	DIS- SOLVED (UG/L AS NI) (01065) .35 .39 	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 3 <2 <2 <2 <2	NIUM, DIS- SOLVED (UG/L AS SE) (01145) E.3 <.3
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR	DIS- SOLVED (UG/L AS PB) (01049) <.08 <.08 <.08	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS LI) (01130) .9 .9 1.0	TOTAL RECOV- ERABLE (UG/L AS LI) (01132) <7.0 <7.0 <7.0 <7.0 <7.0	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.8 2.3 E1.8 1.4	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 7 4 E2 E2	DIS- SOLVED (UG/L AS HG) (71890) <.23 <.23 <.23 <.23	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.14 <.14	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.1 1.2 1.2	DENUM, TOTAL RECOV- ERABLE (UG/L) AS MO) (01062) <1.5 2.2 E1.0 1.6 E1.1	DIS- SOLVED (UG/L AS NI) (01065) .35 .39 .43	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 3 <2 <2 <2 <2 <2	NIUM, DIS- SOLVED (UG/L AS SE) (01145) E.3 <.3 <.3
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR 14	DIS- SOLVED (UG/L AS PB) (01049) <.08 <.08 <.08 <.08	TOTAL RECOV- BRABLE (UG/L AS PB) (01051) <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS LI) (01130) .9 .9 1.0	TOTAL RECOV-ERABLE (UG/L AS LI) (01132) <7.0 <7.0 <7.0 <7.0 <7.0 <7.0	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.8 2.3 E1.8 1.4 .9	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 7 4 E2 E2 5 <3	DIS- SOLVED (UG/L AS HG) (71890) <.23 <.23 <.23 <.23	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.14 <.14 <.14	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.1 1.2 1.2 1.1	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 2.2 E1.0 1.6 E1.1 <1.5	DIS- SOLVED (UG/L AS NI) (01065) .35 .39 .43 .22	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 3 <2 <2 <2 <2 <2 <2 <2	NIUM, DIS- SOLVED (UG/L AS SE) (01145) E.3 <.3 <.3
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR 14 MAY 25 JUN	DIS- SOLVED (UG/L AS PB) (01049) <.08 <.08 <.08 <.08 <.08	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 <1 <1 <1 <1 <m< td=""><td>DIS- SOLVED (UG/L AS LI) (01130) .9 .9 1.0 1.0</td><td>TOTAL RECOV-ERABLE (UG/L AS LI) (01132) <7.0 <7.0 <7.0 <7.0 <7.0 <7.0 <7.0 <7.0</td><td>NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.8 2.3 E1.8 1.4 .9 .8</td><td>NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 7 4 E2 E2 5 <3</td><td>DIS- SOLVED (UG/L AS HG) (71890) <.23 <.23 <.23 <.23 <.23 <.23</td><td>TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.14 <.14 <.14 <.11 <.10</td><td>DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.1 1.2 1.2 1.1 1.0</td><td>DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 2.2 E1.0 1.6 E1.1 <1.5 <1.5</td><td>DIS- SOLVED (UG/L AS NI) (01065) .35 .39 .43 .22 .10</td><td>TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 3 <2 <2 <2 <2 <2 <2 <2 <2</td><td>NIUM, DIS- SOLVED (UG/L AS SE) (01145) E.3 <.3 <.3 <.3</td></m<>	DIS- SOLVED (UG/L AS LI) (01130) .9 .9 1.0 1.0	TOTAL RECOV-ERABLE (UG/L AS LI) (01132) <7.0 <7.0 <7.0 <7.0 <7.0 <7.0 <7.0 <7.0	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.8 2.3 E1.8 1.4 .9 .8	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 7 4 E2 E2 5 <3	DIS- SOLVED (UG/L AS HG) (71890) <.23 <.23 <.23 <.23 <.23 <.23	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.14 <.14 <.14 <.11 <.10	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.1 1.2 1.2 1.1 1.0	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 2.2 E1.0 1.6 E1.1 <1.5 <1.5	DIS- SOLVED (UG/L AS NI) (01065) .35 .39 .43 .22 .10	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 3 <2 <2 <2 <2 <2 <2 <2 <2	NIUM, DIS- SOLVED (UG/L AS SE) (01145) E.3 <.3 <.3 <.3
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR 14 MAY 25 JUN 04 JUL	DIS- SOLVED (UG/L AS PB) (01049) <.08 <.08 <.08 <.08 <.08 <.08	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS LI) (01130) .9 .9 1.0 1.0 1.0	TOTAL RECOV-ERABLE (UG/L AS LI) (01132) <7.0 <7.0 <7.0 <7.0 <7.0 <7.0 <7.0 <7.	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.8 2.3 E1.8 1.4 .9 .8 1.6	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 7 4 E2 E2 5 <3 41	DIS- SOLVED (UG/L AS HG) (71890) <.23 <.23 <.23 <.23 <.23 <.23 <.21 <.23	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.14 <.14 <.14 <.01 <.01	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.1 1.2 1.2 1.1 1.0 .3 .4	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 2.2 E1.0 1.6 E1.1 <1.5 <1.5	DIS- SOLVED (UG/L AS NI) (01065) .35 .39 .43 .22 .10 .30	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 3 <2 <2 <2 <2 <2 <2 <2 E1	NIUM, DIS- SOLVED (UG/L AS SE) (01145) E.3 <.3 <.3 <.3 <.3
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR 14 MAY 25 JUN 04 JUL 19 AUG	DIS- SOLVED (UG/L AS PB) (01049) <.08 <.08 <.08 <.08 <.08 <.08 <.08	TOTAL RECOV-ERABLE (UG/L AS PB) (01051) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS LI) (01130) .9 .9 1.0 1.0 .5 .5	TOTAL RECOV-ERABLE (UG/L AS LI) (01132) <7.0 <7.0 <7.0 <7.0 <7.0 <7.0 <7.0 <7.	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.8 2.3 E1.8 1.4 .9 .8 1.6	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 7 4 E2 E2 5 <3 41 12	DIS- SOLVED (UG/L AS HG) (71890) <.23 <.23 <.23 <.23 <.23 <.21 <.01 <.01	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.14 <.14 <.01 <.01 <.01 <.01	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.1 1.2 1.2 1.1 1.0 .3 .4 .7	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 2.2 E1.0 1.6 E1.1 <1.5 <1.5	DIS- SOLVED (UG/L AS NI) (01065) .35 .39 .43 .22 .10 .30	TOTAL RECOV- BRABLE (UG/L AS NI) (01067) 3 <2 <2 <2 <2 <2 <2 <2 E1 E1	NIUM, DIS- SOLVED (UG/L AS SE) (01145) E.3 <.3 <.3 <.3 <.3 <.3 <.3
OCT 23 NOV 29 DEC 18 JAN 11 FEB 20 MAR 14 MAY 25 JUN 04 JUL 19	DIS- SOLVED (UG/L AS PB) (01049) <.08 <.08 <.08 <.08 <.08 <.08	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS LI) (01130) .9 .9 1.0 1.0 1.0	TOTAL RECOV-ERABLE (UG/L AS LI) (01132) <7.0 <7.0 <7.0 <7.0 <7.0 <7.0 <7.0 <7.	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2.8 2.3 E1.8 1.4 .9 .8 1.6	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 7 4 E2 E2 5 <3 41	DIS- SOLVED (UG/L AS HG) (71890) <.23 <.23 <.23 <.23 <.23 <.23 <.21 <.23	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <.14 <.14 <.14 <.14 <.14 <.14 <.01 <.01	DENUM, DIS- SOLVED (UG/L AS MO) (01060) 1.1 1.2 1.2 1.1 1.0 .3 .4	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 2.2 E1.0 1.6 E1.1 <1.5 <1.5	DIS- SOLVED (UG/L AS NI) (01065) .35 .39 .43 .22 .10 .30	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 3 <2 <2 <2 <2 <2 <2 <2 E1	NIUM, DIS- SOLVED (UG/L AS SE) (01145) E.3 <.3 <.3 <.3 <.3

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

06187915 SODA BUTTE CREEK AT YNP BOUNDARY, NEAR SILVER GATE, MT (LAT 45 00 10 LONG 110 00 04)

DATE	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) (01082)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT								_				
23 NOV	<2.6	<1.0	< .43	106	99.0	<.04	2.5	<1	<31	.18	3	.07
29	<2.6	<1.0	<.43	130	127	<.04	1.9	1	<31	.22	2	.04
DEC 18	<2.6		<.43		125				<31		1	.01
JAN	\2.0		V. 43		123				731		_	.01
11	<2.6	<1.0	<.43	134	127	<.04	3.5	<1	<31	.24	1	.01
FEB 20	<2.6	<1.0	<.43	138	127	<.04	3.3	1	<31	.24	5	.03
MAR												
14	<2.6	<1.0	<.43	142	128	<.04	2.7	1	<31	.21	2	.01
MAY 25	<3.0	<1.0	<.40	41.4	46.7	<.04	2.3	1	<31	.04	41	27
JUN												
04	<3.0	<1.0	< .40	52.5	50.1	<.04	2.7	2	<31	.07	15	6.8
JUL	2 0	1 0	4.0	50.0	70.0	0.4	2 1		2.1	1.0		1 0
19	<3.0	<1.0	<.40	78.0	72.9	<.04	3.1	<1	<31	.13	14	1.9
AUG 09	<3.0	<1.0	<.40	98.9	99.4	<.04	2.3	4	<31	.17	5	. 26
SEP	-5.0	-1.0	1.10	20.2	22.4	1.01	2.5	-	-21	/	3	.20
24	<3.0	<1.0	<.40	107	112	<.04	2.5	6	<31	.19	2	.03

 $[\]begin{array}{lll} E \ -- \ Estimated \ value. \\ M \ -- \ Presence \ verified, \ not \ quantified. \\ k \ -- \ Counts \ outside \ acceptable \ range \ (non-ideal \ colony \ count). \end{array}$

YELLOWSTONE RIVER BASIN Fixed Station Network

06191500 YELLOWSTONE RIVER AT CORWIN SPRINGS, MT (LAT 45 06 43 LONG 110 47 37)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
OCT 24	0800	1110	2.0	634	9.8	98	8.2	246	3.0	7.5	68	18.0	5.59
NOV 29	1315	787	2.0	630	11.1	93	8.3	281	-11.0	.5	77	20.2	6.37
DEC 19	0900	693	2.0	635	12.6	105	8.0	342	-3.0	.5	81	21.7	6.56
JAN 12	0900	705	2.6	626	11.7	106	8.2	342	8.0	3.0	83	21.7	6.77
FEB 20	1800	703	3.0	633		109	8.3	330	.00	4.5	85		6.91
MAR					11.7						78	22.5	
15 MAY	0900	807	2.5	634	11.3	102	7.7	e	5.0	3.5		20.7	6.33
25 JUN	1300	7980	25	633	10.3	109	8.0	89	26.0	9.5	27	7.08	2.37
04 JUL	1800	E5830	6.7	627	10.2	98	7.9	96	12.0	5.0	32	8.18	2.75
19 AUG	1500	E2660	5.8	631	8.8	116	8.3	167	23.5	19.5	44	11.1	3.89
23 SEP	1015	1390		632	10.5	137	8.4	219	27.5	19.0	58	14.8	5.04
24	1400	961	1.3	635	10.6	146	8.6	264	25.5	22.0	70	18.3	5.90
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 24	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 24 NOV 29 DEC	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.81 5.85	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 24.1 27.3	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12.3	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 24.9	DIS- SOLVED (MG/L AS SO4) (00945) 33.5	DIS- SOLVED (TOMS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 521 431	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 24 NOV 29 DEC 19 JAN	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.81 5.85 6.02	AD- SORP- TION RATIO (00931) 1 1	DIS- SOLVED (MG/L AS NA) (00930) 24.1 27.3 27.8	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 71 85	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 87 104	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12.3 15.2	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 24.9 30.1	DIS- SOLVED (MG/L AS SO4) (00945) 33.5 43.1	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 521 431 438	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 174 203 234
OCT 24 NOV 29 DEC 19 JAN 12 FEB	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.81 5.85	AD-SORP-TION RATIO (00931) 1 1 1	DIS- SOLVED (MG/L AS NA) (00930) 24.1 27.3 27.8 30.9	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 71 85 84	BONATE WATER WATER DIS IT FIELD MG/L AS HC03 (00453) 87 104 103	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12.3 15.2 17.4	RIDE, DIS- SOLVED (MG/L AS F) (00950) .9 1.0	DIS- SOLVED (MG/L AS SIO2) (00955) 24.9 30.1 33.2 33.7	DIS- SOLVED (MG/L AS SO4) (00945) 33.5	DIS- SOLVED (TONS PER AC-FT) (70303) .24 .28 .32	DIS- SOLVED (TONS PER DAY) (70302) 521 431 438 438	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 174 203 234 230
OCT 24 NOV 29 DEC 19 JAN 12 FEB 20 MAR	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.81 5.85 6.02 6.98 7.14	AD- SORP- TION RATIO (00931) 1 1	DIS- SOLVED (MG/L AS NA) (00930) 24.1 27.3 27.8 30.9	LINITY WAT DIS TOT IT FIELD MG/L AS CACC3 (39086) 71 85 84 82	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 87 104 103 100	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12.3 15.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) .9 1.0 1.3 1.2	DIS- SOLVED (MG/L AS SIO2) (00955) 24.9 30.1 33.2 33.7	DIS- SOLVED (MG/L AS SO4) (00945) 33.5 43.1 51.2 50.0 51.3	DIS- SOLVED (TONS PER AC-FT) (70303) .24 .28 .32 .31	DIS- SOLVED (TONS PER DAY) (70302) 521 431 438	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 174 203 234 230 234
OCT 24 NOV 29 DEC 19 JAN 12 FEB 20	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.81 5.85 6.02 6.98	AD-SORP-TION RATIO (00931) 1 1 1	DIS- SOLVED (MG/L AS NA) (00930) 24.1 27.3 27.8 30.9	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 71 85 84	BONATE WATER WATER DIS IT FIELD MG/L AS HC03 (00453) 87 104 103	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12.3 15.2 17.4	RIDE, DIS- SOLVED (MG/L AS F) (00950) .9 1.0	DIS- SOLVED (MG/L AS SIO2) (00955) 24.9 30.1 33.2 33.7	DIS- SOLVED (MG/L AS SO4) (00945) 33.5 43.1 51.2	DIS- SOLVED (TONS PER AC-FT) (70303) .24 .28 .32	DIS- SOLVED (TONS PER DAY) (70302) 521 431 438 438	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 174 203 234 230
OCT 24 NOV 29 DEC 19 JAN 12 FEB 20 MAR 15	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.81 5.85 6.02 6.98 7.14	AD- SORP- TION RATIO (00931) 1 1 1	DIS- SOLVED (MG/L AS NA) (00930) 24.1 27.3 27.8 30.9	LINITY WAT DIS TOT IT FIELD MG/L AS CACC3 (39086) 71 85 84 82	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 87 104 103 100	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12.3 15.2 17.4 17.7	RIDE, DIS- SOLVED (MG/L AS F) (00950) .9 1.0 1.3 1.2	DIS- SOLVED (MG/L AS SIO2) (00955) 24.9 30.1 33.2 33.7	DIS- SOLVED (MG/L AS SO4) (00945) 33.5 43.1 51.2 50.0 51.3	DIS- SOLVED (TONS PER AC-FT) (70303) .24 .28 .32 .31	DIS- SOLVED (TONS PER DAY) (70302) 521 431 438 438	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 174 203 234 230 234
OCT 24 NOV 29 DEC 19 JAN 12 FEB 20 MAR 15 MAY 25 JUN 04	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.81 5.85 6.02 6.98 7.14 6.36	AD- SORP- TION RATIO (00931) 1 1 1 1	DIS- SOLVED (MG/L AS NA) (00930) 24.1 27.3 27.8 30.9 30.8 27.6	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 71 85 84 82 77	BONATE WATER WATER DIS IT FIELD MG/L AS HC03 (00453) 87 104 103 100 94	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12.3 15.2 17.4 17.7	RIDE, DIS- SOLVED (MG/L AS F) (00950) .9 1.0 1.3 1.2	DIS- SOLVED (MG/L AS SIO2) (00955) 24.9 30.1 33.2 33.7 34.9	DIS- SOLVED (MG/L AS SO4) (00945) 33.5 43.1 51.2 50.0 51.3	DIS- SOLVED (TONS PER AC-FT) (70303) .24 .28 .32 .31	DIS- SOLVED (TONS PER DAY) (70302) 521 431 438 438 453	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 174 203 234 230 234
OCT 24 NOV 29 DEC 19 JAN 12 FEB 20 MAR 15 MAY 25 JUN 04 JUL 19	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.81 5.85 6.02 6.98 7.14 6.36	AD- SORP- TION RATIO (00931) 1 1 1 1 1 1	DIS- SOLVED (MG/L AS NA) (00930) 24.1 27.3 27.8 30.9 30.8 27.6	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 71 85 84 82 77 28	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 87 104 103 100 94 34	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12.3 15.2 17.4 17.7 17.5 14.9	RIDE, DIS- SOIVED (MG/L AS F) (00950) .9 1.0 1.3 1.2 1.3	DIS- SOLVED (MG/L AS SIO2) (00955) 24.9 30.1 33.2 33.7 34.9 29.9	DIS- SOLVED (MG/L AS SO4) (00945) 33.5 43.1 51.2 50.0 51.3 42.2 6.7	DIS- SOLVED (TONS PER AC-FT) (70303) .24 .28 .32 .31 .32 .27	DIS- SOLVED (TONS PER DAY) (70302) 521 431 438 438 453 427 1290	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 174 203 234 230 234 196 60
OCT 24 NOV 29 DEC 19 JAN 12 FEB 20 MAR 15 MAY 25 JUN 04 JUL	SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.81 5.85 6.02 6.98 7.14 6.36 .23	AD- SORP- TION RATIO (00931) 1 1 1 1 1 1 1 .5	DIS- SOLVED (MG/L AS NA) (00930) 24.1 27.3 27.8 30.9 30.8 27.6 6.2 8.3	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 71 85 84 82 77 28 39	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 87 104 103 100 94 34 48	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12.3 15.2 17.4 17.7 17.5 14.9 3.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) .9 1.0 1.3 1.2 1.3	DIS- SOLVED (MG/L AS SIO2) (00955) 24.9 30.1 33.2 33.7 34.9 29.9 15.0	DIS- SOLVED (MG/L AS SO4) (00945) 33.5 43.1 51.2 50.0 51.3 42.2 6.7	DIS- SOLVED (TONS PER AC-FT) (70303) .24 .28 .32 .31 .32 .27	DIS- SOLVED (TONS PER DAY) (70302) 521 431 438 438 453 427 1290	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 174 203 234 230 234 196 60 82

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

06191500 YELLOWSTONE RIVER AT CORWIN SPRINGS, MT (LAT 45 06 43 LONG 110 47 37)

DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN,PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)
OCT													
24	168	E.023	.10	.17	.181	.013		.006	<.018	.017			1.5
NOV 29	197	.157	. 23	.30	.238	.007		.010	E.009	.021			1.3
DEC													
19	218	.187	.28	. 25	.355	.011		.015	E.009	.022			1.2
JAN 12	222	.133	.24	. 45	.367	.009	.032	.018	E.011	.029	.3		1.3
FEB													
20	223	.122	.20	.28	.347	.015	.081	.017	E.012	.029	.5		1.4
MAR 15	196	.107	.16	. 28	.262	.010	.029	.013	E.011	.029	. 2		1.4
MAY	100	.107	.10	. 20	.202	.010	.025	.013	D.011	.025			1.1
25	58	E.037	.15	.27	E.043	<.006	.115	.028	E.016	.110	1.5	<.1	3.1
JUN 04	76	<.040	E.09	.18	E.036	<.006	.055	.020	E.011	.047	.5	<.1	2.3
JUL	76	<.040	E.09	.10	E.030	<.000	.055	.020	E.UII	.047	.5	<.1	2.3
19	102	<.040	E.09	.13	.074	.008	.038	.017	<.020	.035	.3	<.1	2.5
AUG	1.47	. 040	10	1.2	004	000	020	000	. 000	015	2	. 1	1 7
23 SEP	147	<.040	.10	.13	.094	.009	.038	.008	<.020	.015	.3	<.1	1.7
24		<.040	.14	.14		.009	.036	.020	E.010	.015	.4	<.1	1.7

DATE	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT								
24	.3	E3k	E6k		40	3.8	2	6.0
NOV 29	. 4	E3k	E2k		50	10.2	7	15
DEC	_	,						
19 JAN	.3	E4k	E3k		50	19.3	3	5.6
12		<1	E2k		50	15.5	5	9.5
FEB 20		E3k	<1		60	14.7	5	9.7
MAR			· -				-	
15 MAY		E1k	E1k	41.6	40	14.9	5	11
25	1.5	<1	29	6.6	30	3.8	93	2000
JUN								
04 JUL	.5	E2k	E2k	10.3	20	4.8	23	
19	.3	E9k	E18k	15.9	20	E2.4	11	
AUG								
23	.3			29.6	20	2.6	2	7.5
SEP 24	. 4	E3k	E1k	35.1	20	3.9	2	5.2
44	. 7	אכם	nTV	JJ.1	20	٥.۶	2	3.2

 $[\]tt E$ -- Estimated value. k -- Counts outside acceptable range (non-ideal colony count). e -- Required equipment not functional/avail.

YELLOWSTONE RIVER BASIN Fixed Station Network

06208500 CLARKS FORK YELLOWSTONE RIVER AT EDGAR, MT (LAT 45 27 58 LONG 108 50 35)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
OCT 03 31	1100 0930	910 557	 18	675 690	 11.6	 108	8.2 8.4	510 623	12.0 6.0	12.0 8.0	210 270	56.9 70.0	17.3 22.0
NOV 17	1100	487	5.2	678	14.8	114	7.7	684	.00	.00	290	76.6	22.8
DEC 13	1000	537	5.0	670			8.0	851	-7.0	.00	380	103	30.1
JAN 09	1100	694	6.0	668	13.5	106	7.9	723	4.0	.00	290	77.6	23.2
FEB 23	1000	808		663	12.3	97	8.2	657	2.0	.00	300	83.2	23.4
MAR 08	1500	335	13	669	11.9	116	8.2	705	17.0	8.5	290	76.7	23.9
APR 18	1000	282	9.0	667	9.3	95	8.3	757	14.0	10.0	290	79.1	23.7
MAY 22	1630	1510	28	674	10.3	113	8.1	200	24.0	14.0	76	20.6	5.91
JUN 06	1400	1420	24	674	9.8	110	8.2	263	19.0	15.0	93	24.9	7.51
JUL 20	1400	637	84	670	8.4	110	8.3	520	26.5	22.0	200	52.4	17.2
AUG 20	1400	100		669			7.6	1030	29.8	21.0	390	90.0	41.0
SEP 06	1400	120	21	671	8.2	94	7.6	1200	17.0	15.5	400	99.2	37.0
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
DATE OCT 03 31	SIUM, DIS- SOLVED (MG/L AS K)	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	BONATE WATER DIS IT FIELD MG/L AS HCO3	BONATE WATER DIS IT FIELD MG/L AS CO3	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT 03 31 NOV 17	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 03 31 NOV 17 DEC 13	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 24.0 31.5	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 03 31 NOV 17 DEC 13 JAN 09	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.07 2.07	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 24.0 31.5	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 158 226 244	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 9.5 7.1	DIS- SOLVED (MG/L AS SO4) (00945) 92.2 148	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 03 31 NOV 17 DEC 13 JAN 09 FEB 23	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.07 2.07 1.96 2.48	AD- SORP- TION RATIO (00931) .7 .8 .8	DIS- SOLVED (MG/L AS NA) (00930) 24.0 31.5 30.7	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 134 186 200 246	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 158 226 244 300	BONATE WATER WATER DIS IT FIELD MG/L AS (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 2.3 2.8 2.3	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 9.5 7.1 9.1	DIS- SOLVED (MG/L AS SO4) (00945) 92.2 148 162 243	DIS- SOLVED (TONS PER AC-FT) (70303) .44 .56 .60	DIS- SOLVED (TONS PER DAY) (70302) 791 624 577 819	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 322 415 439 565
OCT 03 31 NOV 17 DEC 13 JAN 09 FEB 23 MAR 08	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.07 2.07 1.96 2.48 1.83	AD- SORP- TION RATIO (00931) .7 .8 .8	DIS- SOLVED (MG/L AS NA) (00930) 24.0 31.5 30.7 39.7	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 134 186 200 246 194	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 158 226 244 300 237	BONATE WATER DIS IT FIELD MG/L AS C03 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 2.3 2.8 2.3 3.6 2.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) .2 .3 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 9.5 7.1 9.1 11.5	DIS- SOLVED (MG/L AS SO4) (00945) 92.2 148 162 243	DIS- SOLVED (TONS PER AC-FT) (70303) .44 .56 .60 .77	DIS- SOLVED (TONS PER DAY) (70302) 791 624 577 819 901	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 322 415 439 565 481
OCT 03 31 NOV 17 DEC 13 JAN 09 FEB 23 MAR 08 APR 18	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.07 2.07 1.96 2.48 1.83	AD- SORP- TION RATIO (00931) .7 .8 .8 .9	DIS- SOLVED (MG/L AS NA) (00930) 24.0 31.5 30.7 39.7 31.6	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 134 186 200 246 194 174	BONATE WATER DIS 1T FIELD MG/L AS HCO3 (00453) 158 226 244 300 237 212	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 2.3 2.8 2.3 3.6 2.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) .2 .3 .3 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 9.5 7.1 9.1 11.5 8.8 9.5	DIS- SOLVED (MG/L AS SO4) (00945) 92.2 148 162 243 186	DIS- SOLVED (TONS PER AC-FT) (70303) .44 .56 .60 .77 .65	DIS- SOLVED (TONS PER DAY) (70302) 791 624 577 819 901	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 322 415 439 565 481 464
OCT 03 31 NOV 17 DEC 13 JAN 09 FEB 23 MAR 08 APR 18 MAY 22	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.07 2.07 1.96 2.48 1.83 1.84 2.09	AD- SORP- TION RATIO (00931) .7 .8 .8 .9 .8	DIS- SOLVED (MG/L AS NA) (00930) 24.0 31.5 30.7 39.7 31.6 28.4	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 134 186 200 246 194 174 196	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 158 226 244 300 237 212 239	BONATE WATER WATER DIS IT FIELD MG/L AS (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 2.3 2.8 2.3 3.6 2.9 2.6	RIDE, DIS- SOLVED (MG/L AS F) (00950) .2 .3 .3 .4 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 9.5 7.1 9.1 11.5 8.8 9.5 7.4	DIS- SOLVED (MG/L AS SO4) (00945) 92.2 148 162 243 186 177	DIS- SOLVED (TOMS PER AC-FT) (70303) .44 .56 .60 .77 .65	DIS- SOLVED (TONS PER DAY) (70302) 791 624 577 819 901 1010	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 322 415 439 565 481 464
OCT 03 31 NOV 17 DEC 13 JAN 09 FEB 23 MAR 08 APR 18 MAY 22 JUN 06	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.07 2.07 1.96 2.48 1.83 1.84 2.09 2.00	AD- SORP- TION RATIO (00931) .7 .8 .8 .9 .8 .7 .9	DIS- SOLVED (MG/L AS NA) (00930) 24.0 31.5 30.7 39.7 31.6 28.4 33.5	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 134 186 200 246 194 174 196 181	BONATE WATER DIS 1T FIELD MG/L AS HC03 (00453) 158 226 244 300 237 212 239 221	BONATE WATER DIS IT FIELD MG/L AS C03 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 2.3 2.8 2.3 3.6 2.9 2.6 3.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) .2 .3 .3 .4 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 9.5 7.1 9.1 11.5 8.8 9.5 7.4 6.8	DIS- SOLVED (MG/L AS SO4) (00945) 92.2 148 162 243 186 177 198 220	DIS- SOLVED (TONS PER AC-FT) (70303) .44 .56 .60 .77 .65 .63 .68	DIS- SOLVED (TONS PER DAY) (70302) 791 624 577 819 901 1010 451 399	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 322 415 439 565 481 464 499 524
OCT 03 31 NOV 17 DEC 13 JAN 09 FEB 23 MAR 18 MAY 22 JUN 06 JUL 20	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.07 2.07 1.96 2.48 1.83 1.84 2.09 2.00	AD- SORP- TION RATIO (00931) .7 .8 .8 .9 .8 .7 .9	DIS- SOLVED (MG/L AS NA) (00930) 24.0 31.5 30.7 39.7 31.6 28.4 33.5 33.2	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 134 186 200 246 194 174 196 181 66	BONATE WATER DIS 1T FIELD MG/L AS HCO3 (00453) 158 226 244 300 237 212 239 221 80	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 2.3 2.8 2.3 3.6 2.9 2.6 3.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) .2 .3 .4 .4 .4 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 9.5 7.1 9.1 11.5 8.8 9.5 7.4 6.8 8.1	DIS- SOLVED (MG/L AS SO4) (00945) 92.2 148 162 243 186 177 198 220 29.5	DIS- SOLVED (TONS PER AC-FT) (70303) .44 .56 .60 .77 .65 .63 .68 .71	DIS- SOLVED (TONS PER DAY) (70302) 791 624 577 819 901 1010 451 399 554	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 322 415 439 565 481 464 499 524
OCT 03 31 NOV 17 DEC 13 JAN 09 FEB 23 MAR 08 APR 18 MAY 22 JUN 06 JUL	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.07 2.07 1.96 2.48 1.83 1.84 2.09 2.00	AD- SORP- TION RATIO (00931) .7 .8 .8 .9 .8 .7 .9 .8	DIS- SOLVED (MG/L AS NA) (00930) 24.0 31.5 30.7 39.7 31.6 28.4 33.5 33.2 9.2	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 134 186 200 246 194 174 196 181 66 81	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 158 226 244 300 237 212 239 221 80 99	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452) 2	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 2.3 2.8 2.3 3.6 2.9 2.6 3.2 3.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) .2 .3 .3 .4 .4 .4 .4 .4 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 9.5 7.1 9.1 11.5 8.8 9.5 7.4 6.8 8.1	DIS- SOLVED (MG/L AS SO4) (00945) 92.2 148 162 243 186 177 198 220 29.5 48.2	DIS- SOLVED (TONS PER AC-FT) (70303) .44 .56 .60 .77 .65 .63 .68 .71 .18	DIS- SOLVED (TONS PER DAY) (70302) 791 624 577 819 901 1010 451 399 554 671	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 322 415 439 565 481 464 499 524 136

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

06208500 CLARKS FORK YELLOWSTONE RIVER AT EDGAR, MT (LAT 45 27 58 LONG 108 50 35)

DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN,PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)
OCT													
03	287	<.020	.13	1.0	.528	<.010		.006	<.010	.285		2.2	4.3
31	398	<.041	.10	.28	.609	E.004		<.006	<.018	.037		1.6	.6
NOV													_
17	429	<.041	E.06	.16	.811	E.004		<.006	<.018	.013		1.4	.5
DEC 13	586	<.041	.10	.19	1.13	E.004		E.003	<.018	.012		1.7	. 4
JAN	300	<.041	.10	.19	1.13	E.004		E.003	<.010	.012		1./	. 4
09	452	<.041	.11	.23	.876	E.004	<.022	E.005	<.018	.022	.3	1.3	
FEB													
23	434	<.041	.11	. 24	.767	E.004	.071	<.006	<.018	.036	1.0	1.4	
MAR	465	. 041	1.77	26	550	D 005	0.60	T 005	. 010	020	-	0 1	
08 APR	465	<.041	.17	.26	.552	E.005	.069	E.005	<.018	.039	.7	2.1	
18	479	E.024	.13	.30	.486	.006	.048	E.004	<.018	.040	.9	1.9	
MAY		2.021	•==	.50	. 100		.010	2.001		.010	.,		
22	116	<.040	.13	.28	.263	E.004	.133	.033	.020	.136	1.4	2.7	
JUN													
06	150	<.040	E.07	.21	. 293	E.004	1.1	.021	E.012	.096	1.1	2.9	
JUL 20	310	<.040	. 27	.45	.570	.007	.251	.025	E.017	.153	2.6	2.8	
AUG	310	V.040	.27	.43	.370	.007	.231	.023	E.U17	.133	2.0	2.0	
20	676	<.040	.40	.56	.701	.016	.365	.006	<.020	.053	1.3	4.1	
SEP													
06	776	E.021	.33	.52	.892	.021	.214	E.005	<.020	.056	1.2	3.6	

DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	0.7 UM-MF (COLS./ 100 ML)		MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MENT, SUS- PENDED (MG/L)	
OCT						
03 31	 24	 42	<10 <10	4.4 8.0	287 46	705 69
NOV	24	42	<10	0.0	40	09
17	20	E15k	<10	8.7	37	49
DEC 13	66	41	<10	17.7	46	67
JAN						
09	80	73	<10	13.7	27	51
FEB 23	<1	<1	<10	10.3	40	87
MAR						
08 APR	<1	E1k	<10	19.0	29	26
18	<2	91	<10	23.8	33	25
MAY		0.4			0.0	265
22 JUN	E50k	94	M	6.0	90	367
06	90	170	<10	5.2	71	272
JUL						
20 AUG	<2	120	<10	10.7	121	208
20	54	E3k	50	28.5	32	8.6
SEP						
06	600	360	<10	30.9	101	33

E -- Estimated value. M -- Presence verified, not quantified. k -- Counts outside acceptable range (non-ideal colony count).

YELLOWSTONE RIVER BASIN Fixed Station Network

06214500 YELLOWSTONE RIVER AT BILLINGS, MT (LAT 45 48 00 LONG 108 28 00)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
OCT 30	1400	3240	7.0	681	11.3	110	8.5	394	9.0	9.0	140	36.2	12.0
NOV 16	1030	2680	6.0	684	13.9	106	8.2	434	-4.0	.00	170	44.2	14.9
DEC 13	1300	6580	4.0	678			7.9	532	.00	.00	210	52.8	18.2
JAN 09	1400	1680	2.0	675	14.1	112	8.1	444	7.0	1.1	160	42.4	13.9
FEB 05	1100	1880	2.6	681	15.7		8.1	e	6.0	.00	160	43.2	13.7
MAR 07	0900	2130		686	13.8		7.7	e	5.0	.5	150	38.2	12.1
APR 23	1000	2290	18	684	10.2	99	8.1	364	7.0	9.0	130	35.4	11.3
MAY 21	1230	11800	35	684	10	103	8.5	143	18.0	12.0	53	14.3	4.11
JUN 25	1000	12800	25	680	8.7	105	8.2	152	21.0	19.0	62	16.4	5.05
JUL 03	1300	7360	11	684	8.8	117	8.3	218	30.5	23.5	80	21.1	6.74
AUG 22	1615	1300		678			8.6	423	32.0	24.9	150	35.9	14.9
SEP 25	1200	1670		680	8.1	98	8.3	475	25.0	19.0	170	42.2	16.2
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 30	SIUM, DIS- SOLVED (MG/L AS K)	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	BONATE WATER DIS IT FIELD MG/L AS HCO3	BONATE WATER DIS IT FIELD MG/L AS CO3	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT 30 NOV 16	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 30 NOV 16 DEC 13	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 30 NOV 16 DEC 13 JAN 09	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 22.1 24.1	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 11.9	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 2140	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 245 271
OCT 30 NOV 16 DEC 13 JAN 09 FEB 05	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.95 3.15	AD- SORP- TION RATIO (00931) .8 .8	DIS- SOLVED (MG/L AS NA) (00930) 22.1 24.1 29.6	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 128 128	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 156 156 210	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 6.5 8.0	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 11.9 17.4	DIS- SOLVED (MG/L AS SO4) (00945) 63.2 68.2	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 2140 1960 6270	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 245 271 353
OCT 30 NOV 16 DEC 13 JAN 09 FEB 05 MAR 07	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.95 3.15 3.74	AD- SORP- TION RATIO (00931) .8 .8 .9	DIS- SOLVED (MG/L AS NA) (00930) 22.1 24.1 29.6 24.8	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 128 128 172 148	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 156 156 210	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 6.5 8.0 10.2 7.6	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 11.9 17.4 18.3	DIS- SOLVED (MG/L AS SO4) (00945) 63.2 68.2 100 76.3	DIS- SOLVED (TONS PER AC-FT) (70303) .33 .37 .48	DIS- SOLVED (TONS PER DAY) (70302) 2140 1960 6270 1250	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 245 271 353 275
OCT 30 NOV 16 DEC 13 JAN 09 FEB 05 MAR 07 APR 23	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.95 3.15 3.74 3.52 3.34	AD- SORP- TION RATIO (00931) .8 .8 .9	DIS- SOLVED (MG/L AS NA) (00930) 22.1 24.1 29.6 24.8 25.7	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 128 128 172 148 131	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 156 156 210 181 160	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 6.5 8.0 10.2 7.6	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .7	DIS- SOLVED (MG/L AS SIO2) (00955) 11.9 17.4 18.3 15.4	DIS- SOLVED (MG/L AS SO4) (00945) 63.2 68.2 100 76.3 73.7	DIS- SOLVED (TONS PER AC-FT) (70303) .33 .37 .48 .37	DIS- SOLVED (TONS PER DAY) (70302) 2140 1960 6270 1250	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 245 271 353 275 286
OCT 30 NOV 16 DEC 13 JAN 09 FEB 05 MAR 07 APR 23 MAY 21	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.95 3.15 3.74 3.52 3.34	AD- SORP- TION RATIO (00931) .8 .8 .9 .8	DIS- SOLVED (MG/L AS NA) (00930) 22.1 24.1 29.6 24.8 25.7 22.7	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 128 128 172 148 131 116	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 156 210 181 160 142	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 6.5 8.0 10.2 7.6 8.2 7.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .7	DIS- SOLVED (MG/L AS SIO2) (00955) 11.9 17.4 18.3 15.4 15.8	DIS- SOLVED (MG/L AS SO4) (00945) 63.2 68.2 100 76.3 73.7 69.6	DIS- SOLVED (TONS PER AC-FT) (70303) .33 .37 .48 .37 .39	DIS- SOLVED (TONS PER DAY) (70302) 2140 1960 6270 1250 1450	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 245 271 353 275 286 257
OCT 30 NOV 16 DEC 13 JAN 09 FEB 05 MAR 07 APR 23 MAY 21 JUN 25	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.95 3.15 3.74 3.52 3.34 3.49	AD- SORP- TION RATIO (00931) .8 .8 .9 .8	DIS- SOLVED (MG/L AS NA) (00930) 22.1 24.1 29.6 24.8 25.7 22.7	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 128 128 172 148 131 116 113	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 156 156 210 181 160 142 138	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 6.5 8.0 10.2 7.6 8.2 7.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .7 .5 .6	DIS- SOLVED (MG/L AS SIO2) (00955) 11.9 17.4 18.3 15.4 15.8 13.9	DIS- SOLVED (MG/L AS SO4) (00945) 63.2 68.2 100 76.3 73.7 69.6 61.4	DIS- SOLVED (TONS PER AC-FT) (70303) .33 .37 .48 .37 .39	DIS- SOLVED (TONS PER DAY) (70302) 2140 1960 6270 1250 1450 1480	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 245 271 353 275 286 257 237
OCT 30 NOV 16 DEC 13 JAN 09 FEB 05 MAR 07 APR 23 MAY 21 JUN 25 JUL 03	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.95 3.15 3.74 3.52 3.34 3.49 3.33	AD- SORP- TION RATIO (00931) .8 .8 .9 .8 .9	DIS- SOLVED (MG/L AS NA) (00930) 22.1 24.1 29.6 24.8 25.7 22.7 22.2	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 128 128 172 148 131 116 113 51	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 156 156 210 181 160 142 138 62	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 6.5 8.0 10.2 7.6 8.2 7.9 8.0 2.6	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .7 .5 .6 .6	DIS- SOLVED (MG/L AS SIO2) (00955) 11.9 17.4 18.3 15.4 15.8 13.9 14.8	DIS- SOLVED (MG/L AS SO4) (00945) 63.2 68.2 100 76.3 73.7 69.6 61.4 14.6	DIS- SOLVED (TONS PER AC-FT) (70303) .33 .37 .48 .37 .39 .35	DIS- SOLVED (TONS PER DAY) (70302) 2140 1960 6270 1250 1450 1480 1470	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 245 271 353 275 286 257 237
OCT 30 NOV 16 DEC 13 JAN 09 FEB 05 MAR 23 APR 23 MAY 21 JUN 25 JUL	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.95 3.15 3.74 3.52 3.34 3.49 3.33 1.42	AD- SORP- TION RATIO (00931) .8 .8 .9 .8 .9 .8 .9 .8 .9 .8 .5	DIS- SOLVED (MG/L AS NA) (00930) 22.1 24.1 29.6 24.8 25.7 22.7 22.7 22.2	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 128 128 128 172 148 131 116 113 51 48	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 156 156 210 181 160 142 138 62 59	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 6.5 8.0 10.2 7.6 8.2 7.9 8.0 2.6 3.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .7 .5 .6 .6	DIS- SOLVED (MG/L AS SIO2) (00955) 11.9 17.4 18.3 15.4 15.8 13.9 14.8 13.1	DIS- SOLVED (MG/L AS SO4) (00945) 63.2 68.2 100 76.3 73.7 69.6 61.4 14.6 17.5	DIS- SOLVED (TONS PER AC-FT) (70303) .33 .37 .48 .37 .39 .35 .32	DIS- SOLVED (TONS PER DAY) (70302) 2140 1960 6270 1250 1450 1440 1470 3310 3390	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 245 271 353 275 286 257 237 104 98

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

06214500 YELLOWSTONE RIVER AT BILLINGS, MT (LAT 45 48 00 LONG 108 28 00)

		00	Z14300 IE	THOMSTOME	KIVEK AI	DITITINGS	, III (LAI	42 40 00	TONG 100	20 00)			
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN,PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)
OCT													
30	233	<.041	.16	.58	.135	E.004		<.006	<.018	.021		1.7	.6
NOV 16 DEC	259	E.040	E.08	.20	.425	.006		<.006	<.018	.016		1.9	.8
13	339	<.041	.10	.18	.516	E.005		E.004	<.018	.010		1.7	. 4
JAN 09 FEB	275	E.033	.15	.23	.380	E.005	<.022	E.004	<.018	.013	.2	1.3	
05	264	.043	.18	. 24	.306	E.003		E.004	<.018	.012		1.3	
MAR 07	239	<.041	.14	. 27	.206	E.003	.063	E.005	<.018	.036	.6	1.6	
APR 23	225	<.041	.15	.36	.118	E.004	.111	E.005	<.018	.047	.8	2.6	
MAY 21	88	<.040	.14	.37	.097	<.006	.122	.025	.030	.152	1.6	2.8	
JUN 25	91	E.022	E.08	.34	E.042	E.004	.249	.009	<.020	.081	1.6	2.0	
JUL 03	124	E.031	E.09	. 27	E.036	.008	.072	.009	<.020	.039	E.7	2.0	
AUG 22	251	<.040	. 20	. 26	.060	E.003	.058	.006	<.020	.025	. 4	2.0	
SEP													
25	278	<.040	.18	.37	.150	E.004	.155	<.006	<.020	.037	1.1	2.0	
		DA	TE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)			
		OCT 3	0	E21k	24		М	3.4	12	105			
		NOV		20	30		10	8.3	9	65			
		DEC	!										
		JAN		92	130		<10	14.1	9	160			
		0 FEB	9	E2k	E3k		<10	7.6	4	18			
		0 MAR	5	120	130		10	4.5	5	25			
			7	E9k	75	13.1	М	10.2	16	92			
		2	3	E14k	140	14.7	20	11.1	30	185			
		MAY 2 JUN	1	E20k	81	5.4	20	E2.9	118	3760			
			5	E75k	83	4.9	М	<3.0	69	2380			
		0	3	E25k	E38k	7.5	М	E1.7	25	497			
			2	E24k	E20k	13.5	М	4.6	7	25			
		SEP	'										

SEP 25...

15

41

10.5

М

7.8

23

104

 $[\]begin{array}{lll} E \ -- & \text{Estimated value.} \\ \text{M -- Presence verified, not quantified.} \\ k \ -- & \text{Counts outside acceptable range (non-ideal colony count).} \\ e \ -- & \text{Required equipment not functional/avail.} \end{array}$

YELLOWSTONE RIVER BASIN Fixed Station Network

06279500 BIGHORN RIVER AT KANE, WY (LAT 44 45 31 LONG 108 10 51)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE - SIUM, DIS- SOLVED (MG/L AS MG) (00925)
OCT 12	1210	1280	47	666	8.2	83	8.3	982	15.0	9.5	340	87.8	28.4
NOV 29	0945	1240	10	675	14.4	112	7.7	945	-10.0	.00	340	90.4	28.6
DEC 28	0845	1190	8.0	677	13.8	107	7.5	938	1.0	.00	320	82.4	27.3
JAN 10	1100	1080	8.0	663	13.2	104	8.1	986	5.0	.00	320	81.7	27.9
FEB 22	1100	E1170		665	12.6	99	8.3	935	3.0	.00	320	82.3	26.8
MAR 08	1100	1230	86	668	11.1	88	8.0	927	13.0	.5	320	80.4	28.1
APR 27	1030	834	220	666	9.3	108	8.4	1110	24.0	16.0	370	92.9	32.8
MAY 22	1100	1080	69	669	10.3	119	8.3	731	22.5	15.5	230	61.0	18.9
JUN 06	1000	1270	110	667	8.8	102	8.1	843	19.0	16.0	290	76.3	24.7
JUL 05	1200	648	3.5	665	9.2	129	8.5	1050	34.0	25.0	330	82.5	30.1
AUG 08 SEP	1420	395		667	9.5	135	8.3	1080	35.0	26.0	300	70.9	29.6
06	0900	544		661	8.2	102	8.1	1070	16.5	19.0	300	73.4	27.7
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
DATE OCT 12	SIUM, DIS- SOLVED (MG/L AS K)	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	BONATE WATER DIS IT FIELD MG/L AS HCO3	BONATE WATER DIS IT FIELD MG/L AS CO3	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 12 NOV	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 12 NOV 29 DEC 28 JAN 10	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 88.1	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 14.4	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 7.7	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 2340	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 12 NOV 29 DEC 28 JAN 10 FEB 22	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.89 4.02 3.69	AD- SORP- TION RATIO (00931) 2 2	DIS- SOLVED (MG/L AS NA) (00930) 88.1 78.6 74.6	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 194 189 203	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 237 231 248	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 14.4 16.1	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 7.7 6.3	DIS- SOLVED (MG/L AS SO4) (00945) 315 289 280	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 2340 2240 2090	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 677 669
OCT 12 NOV 29 DEC 28 JAN 10 FEB 22 MAR 08	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.89 4.02 3.69 4.30	AD-SORP-TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 88.1 78.6 74.6	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 194 189 203 202	BONATE WATER DIS IT FIELD MG/L AS HC03 (00453) 237 231 248 246	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 14.4 16.1 16.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 7.7 6.3 6.1 5.5	DIS- SOLVED (MG/L AS SO4) (00945) 315 289 280	DIS- SOLVED (TONS PER AC-FT) (70303) .92 .91 .89	DIS- SOLVED (TONS PER DAY) (70302) 2340 2240 2090	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 677 669 651
OCT 12 NOV 29 DEC 28 JAN 10 FEB 22 MAR 08 APR 27	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.89 4.02 3.69 4.30 4.09	AD-SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 88.1 78.6 74.6 81.0	LINITY WAT DIS TOT IT FIELD MG/L AS CACC3 (39086) 194 189 203 202 198	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 237 231 248 246 242	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 14.4 16.1 16.1 19.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .4 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 7.7 6.3 6.1 5.5	DIS- SOLVED (MG/L AS SO4) (00945) 315 289 280 288 270	DIS- SOLVED (TONS PER AC-FT) (70303) .92 .91 .89	DIS- SOLVED (TONS PER DAY) (70302) 2340 2240 2090 1930	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 677 669 651 660 646
OCT 12 NOV 29 DEC 28 JAN 10 FEB 22 MAR 08 APR 27 MAY	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.89 4.02 3.69 4.30 4.09	AD- SORP- TION RATIO (00931) 2 2 2 2 2 2	DIS- SOLVED (MG/L AS NA) (00930) 88.1 78.6 74.6 81.0 72.4	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 194 189 203 202 198 194	BONATE WATER WATER DIS IT FIELD MG/L AS HC03 (00453) 237 231 248 246 242 217	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452) 10	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 14.4 16.1 16.1 19.2 17.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .4 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 7.7 6.3 6.1 5.5 5.8	DIS- SOLVED (MG/L AS SO4) (00945) 315 289 280 288 270 283	DIS- SOLVED (TONS PER AC-FT) (70303) .92 .91 .89 .90	DIS- SOLVED (TONS PER DAY) (70302) 2340 2240 2090 1930	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 677 669 651 660 646
OCT 12 NOV 29 DEC 28 JAN 10 FEB 22 MAR 08 APR 27 MAY 22 JUN 06	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.89 4.02 3.69 4.30 4.09 4.40	AD- SORP- TION RATIO (00931) 2 2 2 2 2 2 2	DIS- SOLVED (MG/L AS NA) (00930) 88.1 78.6 74.6 81.0 72.4 80.4	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 194 189 203 202 198 194 210	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 237 231 248 246 242 217 251	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 10 2	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 14.4 16.1 16.1 19.2 17.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .4 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 7.7 6.3 6.1 5.5 5.8 5.3	DIS- SOLVED (MG/L AS SO4) (00945) 315 289 280 288 270 283	DIS- SOLVED (TONS PER AC-FT) (70303) .92 .91 .89 .90 .88 .91	DIS- SOLVED (TONS PER DAY) (70302) 2340 2240 2090 1930 2210	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 677 669 651 660 646 666 794
OCT 12 NOV 29 DEC 28 JAN 10 FEB 22 MAR 08 APR 27 MAY 22 JUN 06 JUL 05	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.89 4.02 3.69 4.30 4.09 4.40 4.55 3.01	AD- SORP- TION RATIO (00931) 2 2 2 2 2 2 2 2	DIS- SOLVED (MG/L AS NA) (00930) 88.1 78.6 74.6 81.0 72.4 80.4 101 59.8	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 194 189 203 202 198 194 210 129	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 237 231 248 246 242 217 251 153	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452) 10 2	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 14.4 16.1 16.1 19.2 17.2 18.6 17.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .4 .5 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 7.7 6.3 6.1 5.5 5.8 5.3 7.0 4.9	DIS- SOLVED (MG/L AS SO4) (00945) 315 289 280 288 270 283 354	DIS- SOLVED (TONS PER AC-FT) (70303) .92 .91 .89 .90 .88 .91	DIS- SOLVED (TONS PER DAY) (70302) 2340 2240 2090 1930 2210 1790 1600	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 677 669 651 660 646 666 794 547
OCT 12 NOV 29 DEC 28 JAN 10 FEB 22 MAR 08 APR 27 MAY 22 JUN 06 JUL	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.89 4.02 3.69 4.30 4.09 4.40 4.55 3.01 3.26	AD- SORP- TION RATIO (00931) 2 2 2 2 2 2 2 2 2 2	DIS- SOLVED (MG/L AS NA) (00930) 88.1 78.6 74.6 81.0 72.4 80.4 101 59.8 75.7	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 194 189 203 202 198 194 210 129 176	BONATE WATER WATER DIS IT FIELD MG/L AS HC03 (00453) 237 231 248 246 242 217 251 153 205	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 10 2 2 5	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 14.4 16.1 16.1 19.2 17.2 18.6 17.5 10.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .5 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 7.7 6.3 6.1 5.5 5.8 5.3 7.0 4.9 6.4	DIS- SOLVED (MG/L AS SO4) (00945) 315 289 280 288 270 283 354 220	DIS- SOLVED (TONS PER AC-FT) (70303) .92 .91 .89 .90 .88 .91 1.08 .74	DIS- SOLVED (TONS PER DAY) (70302) 2340 2240 2090 1930 2210 1790 1600 2030	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 677 669 651 660 646 666 794 547 593

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

06279500 BIGHORN RIVER AT KANE, WY (LAT 44 45 31 LONG 108 10 51)

DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)
OCT 12 NOV	664	<.041	.18	.57	.360	<.006		<.006	<.018	.157			3.8
29	628	<.041	.23	.25	.359	<.006	.102	E.003	<.018	.044	.6	<.1	2.7
DEC 28	615	E.034	.26	.32	.401	E.003	.042	.007	<.018	.022	.4	<.1	2.7
JAN 10	631	.041	.27	.37	.373	E.003	<.022	.007	<.018	.019	.2		2.8
FEB 22	599	.042	.23	.31	.301	E.003	.043	.006	<.018	.032	.6		2.8
MAR 08	618	.050	.26	.64	.280	E.003	.245	.007	<.018	.118	2.0		3.1
APR 27	737	<.041	.24	.66	.291	.010	E.063	.006	<.018	.174	E.3		3.7
MAY 22	459	E.031	.32	.66	.880	.026	.188	.021	<.020	.136	1.7		4.2
JUN 06	573	<.040	.31	.46	.671	.008	.423	.027	E.014	.197	3.7		3.7
JUL 05	687	<.040	.41	.47	.294	.019	.405	.008	<.020	.109	E3.2		4.1
AUG 08	701	.051	.38	.74	.427	.010	E.238	E.005	<.020	.063	2.4		4.6
SEP 06	696	<.040	.41	.62	.384	E.004	.184	.007	<.020	.063	1.4		4.2
00	090	<.040	.41	.02	.304	E.004	.104	.007	<.020	.003	1.4		4.2
		DA	TE	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)			

	AS C) (00689)		100 ML) (31625)				(T/DAY) (80155)
OCT							
12	1.5	190	250	<10	<3.2	245	847
NOV 29	.6	29	45	<10	7.8	106	355
DEC	.0	2,5	15	110	7.0	100	333
28	. 4	E32k	42	<10	4.1	61	196
JAN 10		61	130	<10	6.2	30	88
FEB		01	130	<10	0.2	30	00
22		E21k	57	<10	6.5	44	
MAR		<2	67	<10	9.2	131	435
08 APR		<2	67	<10	9.2	131	435
27		<2	56	<10	4.6	231	520
MAY							
22 JUN		E24k	44	<10	5.0	108	315
06		120	210	<10	E2.7	186	638
JUL							
05		120	150	<10	<3.0	123	215
AUG 08		E17k	29	<10	8.9	56	60
SEP		22771	2,	-20	0.,	50	
06		E50k	68	<10	6.8	43	63

 $[\]mbox{\bf E}$ -- Estimated value. $\mbox{\bf k}$ -- Counts outside acceptable range (non-ideal colony count).

YELLOWSTONE RIVER BASIN Fixed Station Network

06295000 YELLOWSTONE RIVER AT FORSYTH, MT (LAT 46 15 58 LONG 106 41 24)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
OCT 26	0900	5870	12	696	10.4	100	8.5	613	8.0	9.5	220	57.7	19.1
NOV 27	1430	8260	10	690	15.3	116	8.6	668	2.5	.00	230	57.4	20.5
DEC 12	1200	3390	3.0	699	17.4	130	8.3	687	-15.0	.00	250	63.9	22.7
JAN 08	1200	10700	6.0	695	12.9	97	8.1	661	.00	.00	240	61.9	20.2
FEB 06	1100	9160	11	698	14.1	105	7.8	644	-7.0	.00	230	59.5	20.4
MAR 05	1100	8680	27	700	13.7	102	8.4	657	2.0	.00	220	56.7	20.0
APR 26	1100	4490	12	697	10.0	107	8.4	718	24.0	14.0	240	59.7	22.5
MAY 23	1200	11600	41	699	9.7	104	8.1	307	23.0	14.5	110	27.4	9.08
JUN 26	1030	15800	46	698	8.2	100	8.3	298	28.0	20.5	90	22.9	7.99
JUL 16	1300	7770	340	692	7.5	98	8.5	506	28.0	23.5	170	42.3	14.8
AUG 21	1200	2420		692	9.6	124	8.4	805	30.5	23.0	250	57.1	25.7
SEP 26	1200	2800	11	692	9.6	110	8.4	709		17.0	220	52.1	22.5
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 26	SIUM, DIS- SOLVED (MG/L AS K)	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	BONATE WATER DIS IT FIELD MG/L AS HCO3	BONATE WATER DIS IT FIELD MG/L AS CO3	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT 26 NOV 27	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 26 NOV 27 DEC 12	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 26 NOV 27 DEC 12 JAN 08	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 47.5	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7.6	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 6360	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 401 432
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.93 3.32	AD- SORP- TION RATIO (00931) 1 1	DIS- SOLVED (MG/L AS NA) (00930) 47.5 48.4 55.6	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 153 162 182	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 180 149 222	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7.6 8.5 9.6	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 6.4 10.1 11.0	DIS- SOLVED (MG/L AS SO4) (00945) 159 166 188	DIS- SOLVED (TONS PER AC-FT) (70303) .55 .59	DIS- SOLVED (TONS PER DAY) (70302) 6360 9630 4330	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 401 432 473
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.93 3.32 3.70	AD-SORP-TION RATIO (00931) 1 1 2	DIS- SOLVED (MG/L AS NA) (00930) 47.5 48.4 55.6	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 153 162 182 155	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 180 149 222 189	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 3 24	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7.6 8.5 9.6	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .4 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 6.4 10.1 11.0	DIS- SOLVED (MG/L AS SO4) (00945) 159 166 188	DIS- SOLVED (TONS PER AC-FT) (70303) .55 .59 .64	DIS- SOLVED (TONS PER DAY) (70302) 6360 9630 4330 12700	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 401 432 473 439
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.93 3.32 3.70 3.12 3.63	AD-SORP-TION RATIO (00931) 1 1 2 1	DIS- SOLVED (MG/L AS NA) (00930) 47.5 48.4 55.6 50.3	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 153 162 182 155 159	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 180 149 222 189 194	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452) 3 24	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7.6 8.5 9.6 9.2	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .4 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 6.4 10.1 11.0 10.8	DIS- SOLVED (MG/L AS SO4) (00945) 159 166 188 170	DIS- SOLVED (TONS PER AC-FT) (70303) .55 .59 .64 .60	DIS- SOLVED (TONS PER DAY) (70302) 6360 9630 4330 12700 10900	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 401 432 473 439 441
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.93 3.32 3.70 3.12 3.63 3.55	AD- SORP- TION RATIO (00931) 1 1 2 1	DIS- SOLVED (MG/L AS NA) (00930) 47.5 48.4 55.6 50.3 51.5	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 153 162 182 155 159 147	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 180 149 222 189 194	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 3 24	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7.6 8.5 9.6 9.2 8.8	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .4 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 6.4 10.1 11.0 10.8 9.4 7.7	DIS- SOLVED (MG/L AS SO4) (00945) 159 166 188 170 174	DIS- SOLVED (TOMS PER AC-FT) (70303) .55 .59 .64 .60	DIS- SOLVED (TONS PER DAY) (70302) 6360 9630 4330 12700 10900	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 401 432 473 439 441 437
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23 JUN 26	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.93 3.32 3.70 3.12 3.63 3.55 4.01	AD- SORP- TION RATIO (00931) 1 1 2 1 1 2	DIS- SOLVED (MG/L AS NA) (00930) 47.5 48.4 55.6 50.3 51.5 50.7	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 153 162 182 155 159 147 160	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 180 149 222 189 194 190	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 3 24 2	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7.6 8.5 9.6 9.2 8.8 9.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .4 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 6.4 10.1 11.0 10.8 9.4 7.7	DIS- SOLVED (MG/L AS SO4) (00945) 159 166 188 170 174 174	DIS- SOLVED (TONS PER AC-FT) (70303) .55 .59 .64 .60 .60	DIS- SOLVED (TONS PER DAY) (70302) 6360 9630 4330 12700 10900 10200 6090	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 401 432 473 439 441 437 502
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23 JUN 26 JUL 16	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.93 3.32 3.70 3.12 3.63 3.55 4.01 2.02	AD- SORP- TION RATIO (00931) 1 1 2 1 1 2 1 2	DIS- SOLVED (MG/L AS NA) (00930) 47.5 48.4 55.6 50.3 51.5 50.7 59.1	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 153 162 182 155 159 147 160 76	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 180 149 222 189 194 190 93	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452) 3 24 2 2	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7.6 8.5 9.6 9.2 8.8 9.1 10.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .4 .5 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 6.4 10.1 11.0 10.8 9.4 7.7 8.1 12.6	DIS- SOLVED (MG/L AS SO4) (00945) 159 166 188 170 174 174 202 63.3	DIS- SOLVED (TONS PER AC-FT) (70303) .55 .59 .64 .60 .59 .68	DIS- SOLVED (TONS PER DAY) (70302) 6360 9630 4330 12700 10900 10200 6090 6200	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 401 432 473 439 441 437 502
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23 JUN 26	SIUM, DIS- SOLVED (MG/L AS K) (00935) 2.93 3.32 3.70 3.12 3.63 3.55 4.01 2.02	AD- SORP- TION RATIO (00931) 1 1 2 1 1 2 .9 .8	DIS- SOLVED (MG/L AS NA) (00930) 47.5 48.4 55.6 50.3 51.5 50.7 59.1 21.4 18.5	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 153 162 182 155 159 147 160 76 78	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 180 149 222 189 194 190 93 94	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 3 24 2 1	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 7.6 8.5 9.6 9.2 8.8 9.1 10.5 4.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .4 .5 .5 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 6.4 10.1 11.0 10.8 9.4 7.7 8.1 12.6 9.0	DIS- SOLVED (MG/L AS SO4) (00945) 159 166 188 170 174 174 202 63.3 57.2	DIS- SOLVED (TONS PER AC-FT) (70303) .55 .59 .64 .60 .60 .59 .68 .27	DIS- SOLVED (TONS PER DAY) (70302) 6360 9630 4330 12700 10900 10200 6090 6200 8110	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 401 432 473 439 441 437 502 198

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN,PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)
OCT 26	394	<.041	.16	.30	.157	E.003		E.003	<.018	.027		2.6	.7
NOV 27	414	<.041	.17	.31	.396	E.005		<.006	<.018	.064		2.5	.9
DEC 12	467	<.041	.17	.28	.443	.006		E.005	<.018	.010		2.5	.5
JAN 08	422	.053	. 25	.26	.479	E.005	<.022	.006	E.013	.012	.2	2.2	
FEB 06	426	<.041	.20	.33	.396	E.004		E.004	<.018	.037		2.4	
MAR 05	412	E.022	.24	.45	.311	.008	.143	.010	<.018	.053	1.1	2.8	
APR 26	464	<.041	.17	.41	.084	E.005	.123	.006	<.018	.045	.6	2.9	
MAY 23	187	<.040	.17	.47	.170	.009	.187	.027	<.020	.136	1.5	3.5	
JUN 26	170	<.040	.12	.40	.049	.018	.267	.010	<.020	.102	2.0	2.4	
JUL 16	302	.069	.30	.79	.396	.020	.473	.037	.027	.298	3.9	3.8	
AUG 21	490	<.040	.28	.42	.052	<.006	.113	E.005	<.020	.032	.7	3.7	
SEP 26	438	<.040	.20	.36	.054	E.003	.132	E.005	<.020	.036	1.0	2.7	
DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
OCT 26	MTEC MF WATER (COL/ 100 ML)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	INUM, DIS- SOLVED (UG/L AS AL)	MONY, DIS- SOLVED (UG/L AS SB)	DIS- SOLVED (UG/L AS AS)	DIS- SOLVED (UG/L AS BA)	LIUM, DIS- SOLVED (UG/L AS BE)	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS CD)	MIUM, DIS- SOLVED (UG/L AS CR)	DIS- SOLVED (UG/L AS CO)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE)
OCT 26 NOV 27	MTEC MF WATER (COL/ 100 ML) (31633)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)
OCT 26 NOV 27 DEC 12	MTEC MF WATER (COL/ 100 ML) (31633)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)
OCT 26 NOV 27 DEC 12 JAN 08	MTEC MF WATER (COL/ 100 ML) (31633) E12k E4k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E9k	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	DIS- SOLVED (UG/L AS BA) (01005) 49.0 50.6	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS CD) (01025) <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046) M
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06	MTEC MF WATER (COL/ 100 ML) (31633) E12k E4k E6k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E9k	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000) 6.2 5.6 5.5	DIS- SOLVED (UG/L AS BA) (01005) 49.0 50.6 53.3	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 157 164 184	DIS- SOLVED (UG/L AS CD) (01025) <.04 <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8	DIS- SOLVED (UG/L AS CO) (01035) .17 .14	DIS- SOLVED (UG/L AS CU) (01040) 1.1 1.4	DIS- SOLVED (UG/L AS FE) (01046) M <10
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05	MTEC MF WATER (COL/ 100 ML) (31633) E12k E4k E6k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E9k E5k	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095) .22 .18 .21	DIS- SOLVED (UG/L AS AS) (01000) 6.2 5.6 5.5	DIS- SOLVED (UG/L AS BA) (01005) 49.0 50.6 53.3 48.6	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 157 164 184	DIS- SOLVED (UG/L AS CD) (01025) <.04 <.04 <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .17 .14 .20	DIS- SOLVED (UG/L AS CU) (01040) 1.1 1.4 1.5	DIS- SOLVED (UG/L AS FE) (01046) M <10 <10
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26	MTEC MF WATER (COL/ 100 ML) (31633) E12k E4k E6k E13k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E9k E5k E9k E9k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 2 2 2 2 2	MONY, DIS- SOLVED (UG/L AS SB) (01095) .22 .18 .21 .21	DIS- SOLVED (UG/L AS AS) (01000) 6.2 5.6 5.5 6.0 7.6	DIS- SOLVED (UG/L AS BA) (01005) 49.0 50.6 53.3 48.6 47.9	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 157 164 184 165	DIS- SOLVED (UG/L AS CD) (01025) <.04 <.04 <.04 <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .17 .14 .20 .19	DIS- SOLVED (UG/L AS CU) (01040) 1.1 1.4 1.5	DIS- SOLVED (UG/L AS FE) (01046) M <10 <10 10
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23	MTEC MF WATER (COL/ 100 ML) (31633) E12k E4k E6k E13k E8k	FORM, FECAL, 0.7 UM-MF (COLS./100 ML) (31625) E4k E9k E5k E9k E9k 24	INUM, DIS- SOLVED (UG/L AS AL) (01106) 2 2 2 2 2 2 2	MONY, DIS- SOLVED (UG/L AS SB) (01095) .22 .18 .21 .21 .19	DIS- SOLVED (UG/L AS AS) (01000) 6.2 5.6 5.5 6.0 7.6	DIS- SOLVED (UG/L AS BA) (01005) 49.0 50.6 53.3 48.6 47.9 46.3	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 157 164 184 165 169	DIS- SOLVED (UG/L AS CD) (01025) <.04 <.04 <.04 <.04 <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .17 .14 .20 .19	DIS- SOLVED (UG/L AS CU) (01040) 1.1 1.4 1.5 1.7 1.7	DIS- SOLVED (UG/L AS FE) (01046) M <10 <10 10
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23 JUN 26	MTEC MF WATER (COL/ 100 ML) (31633) E12k E4k E6k E13k E8k 15	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E9k E5k E9k E9k 24 E8k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 2 2 2 2 2 2 19 2	MONY, DIS- SOLVED (UG/L AS SB) (01095) .22 .18 .21 .21 .19 .23	DIS- SOLVED (UG/L AS AS) (01000) 6.2 5.6 5.5 6.0 7.6 7.0	DIS- SOLVED (UG/L AS BA) (01005) 49.0 50.6 53.3 48.6 47.9 46.3	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 157 164 184 165 169 174 203	DIS- SOLVED (UG/L AS CD) (01025) <.04 <.04 <.04 <.04 <.04 <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8 <.8 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .17 .14 .20 .19 .23 .20	DIS- SOLVED (UG/L AS CU) (01040) 1.1 1.4 1.5 1.7 1.7	DIS- SOLVED (UG/L AS FE) (01046) M <10 <10 <10 <10 <10
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23 JUN 26 JUN 26 JUL 16	MTEC MF WATER (COL/ 100 ML) (31633) E12k E4k E6k E13k E8k 15 E3k E30k	FORM, FECAL, O.7 O.7 UM-MF (COLS./ 100 ML) (31625) E4k E9k E5k E9k E9k E4k E9k E5k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 2 2 2 2 2 19 2 1	MONY, DIS- SOLVED (UG/L AS SB) (01095) .22 .18 .21 .19 .23 .23	DIS- SOLVED (UG/L AS AS) (01000) 6.2 5.6 5.5 6.0 7.6 7.0 8.2 4.9	DIS- SOLVED (UG/L AS BA) (01005) 49.0 50.6 53.3 48.6 47.9 46.3 47.4 26.0	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 157 164 184 165 169 174 203	DIS- SOLVED (UG/L AS CD) (01025) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8 <.8 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .17 .14 .20 .19 .23 .20 .25	DIS- SOLVED (UG/L AS CU) (01040) 1.1 1.4 1.5 1.7 1.7 1.8 1.7	DIS- SOLVED (UG/L AS FE) (01046) M <10 <10 <10 <10 <10
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23 JUN 26 JUL JUL	MTEC MF WATER (COL/ 100 ML) (31633) E12k E4k E6k E13k E8k 15 E3k E3k E30k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E4k E9k E5k E9k E9k E4k E9k E5k E9k E4k E9k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 2 2 2 2 2 19 2 1 9 4	MONY, DIS- SOLVED (UG/L AS SB) (01095) .22 .18 .21 .21 .19 .23 .23 .15	DIS- SOLVED (UG/L AS AS) (01000) 6.2 5.6 5.5 6.0 7.6 7.0 8.2 4.9	DIS- SOLVED (UG/L AS BA) (01005) 49.0 50.6 53.3 48.6 47.9 46.3 47.4 26.0 27.6	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.0	DIS- SOLVED (UG/L AS B) (01020) 157 164 184 165 169 174 203 89 75	DIS- SOLVED (UG/L AS CD) (01025) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.7 <.8 <.8 <.8 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .17 .14 .20 .19 .23 .20 .25 .11 .09	DIS- SOLVED (UG/L AS CU) (01040) 1.1 1.4 1.5 1.7 1.7 1.8 1.7 1.2	DIS- SOLVED (UG/L AS FE) (01046) M <10 <10 <10 <10 <10

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)
OCT 26	<.08	40.3	3.5	2.1	.40	1.3	<1.0	548	<.04	1.6	<1	<.002	<.004
NOV 27	<.08	42.4	3.8	2.0	.50	1.4	<1.0	575	<.04	1.4	2	<.002	<.004
DEC 12	<.08	45.6	8.6	2.2	1.04	1.4	<1.0	619	<.04	1.5	1	<.002	<.004
JAN 08	<.08	41.7	5.0	2.2	1.77	1.5	<1.0	599	<.04	2.3	2	<.002	<.004
FEB 06	E.04	43.0	8.9	2.2	1.81	1.7	<1.0	588	<.04	2.5	1	<.002	<.004
MAR 05	E.05	47.6	10.8	2.2	.40	1.6	<1.0	571	<.04	2.3	2	<.002	<.004
APR 26	<.08	50.0	12.2	2.1	.15	1.3	<1.0	630	<.04	2.5	1	<.002	<.004
MAY 23	<.08	21.2	4.0	1.1	.90	.6	<1.0	221	<.04	2.0	2	<.002	<.004
JUN 26	.08	21.0	1.4	1.2	.54	.6	<1.0	244	<.04	1.5	<1	<.002	<.004
JUL 16	<.08	31.8	. 4	1.9	<.06	.9	<1.0	398	<.04	2.3	<1	<.002	<.004
AUG 21	<.08	43.1	4.6	2.8	<.06	1.3	<1.0	667	<.04	1.6	1	<.002	<.004
SEP 26	E.06	46.5	3.0	2.5	<.06	1.2	<1.0	610	<.04	1.3	8	<.002	<.004
20	1.00	10.5	3.0	2.5	1.00	1.2	11.0	010	1.01	1.5	Ü	1.002	1.001
DATE	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)
OCT 26	CHLOR, WATER, DISS, REC, (UG/L)	BHC DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L)	ATE, WATER, DISS, REC (UG/L)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	PYRIFOS DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	ATRA- ZINE, WATER, DISS, REC (UG/L)	AZINON, DIS- SOLVED (UG/L)	ELDRIN DIS- SOLVED (UG/L)
OCT 26 NOV 27	CHLOR, WATER, DISS, REC, (UG/L) (46342)	BHC DIS- SOLVED (UG/L) (34253)	ZINE, WATER, DISS, REC (UG/L) (39632)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933)	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, DIS- SOLVED (UG/L) (39572)	ELDRIN DIS- SOLVED (UG/L) (39381)
OCT 26 NOV 27 DEC 12	CHLOR, WATER, DISS, REC, (UG/L) (46342)	BHC DIS- SOLVED (UG/L) (34253)	ZINE, WATER, DISS, REC (UG/L) (39632)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933)	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, DIS- SOLVED (UG/L) (39572)	ELDRIN DIS- SOLVED (UG/L) (39381)
OCT 26 NOV 27 DEC 12 JAN 08	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	BHC DIS- SOLVED (UG/L) (34253) <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.007	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002	BARYL WATER FLIRD 0.7 U GF, REC (UG/L) (82680) <.041	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.004	AZINON, DIS- SOLVED (UG/L) (39572) <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002	BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.007 E.004	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 E.005	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.004	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002	BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.007 E.004 E.005	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 E.005 <.018	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.004 E.005 <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002	BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.007 E.004 E.005	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002	BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041	FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 E.005 <.018 E.010	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.004 E.005 <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002	BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.007 E.004 E.005 .007 .008	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 E.003 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 E.005 <.018 E.010 .018 E.010	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003	ATRA-ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.004 E.005 <.006 <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23 JUN 26	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.007 E.004 E.005 .007 .008 .008	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041	FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 E.005 <.018 E.010 .018 E.008 <.018	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003	ATRA-ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.004 E.005 <.006 <.006 <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23 JUN 26 JUL 16	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.007 E.004 E.005 .007 .008 .008 E.006	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 E.003 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002	BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041	FURAN WATER FILTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 E.005 <.018 E.010 .018 E.008 <.018	WATER FILTRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.004 E.005 <.006 <.006 <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23 JUN 26 JUL	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.007 E.004 E.005 .007 .008 .008 E.006 .011	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 E.003 <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) <.018 E.005 <.018 E.010 .018 E.008 <.018 <.018 <.018	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	ATRA-ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.004 E.005 <.006 <.006 <.006 <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)
OCT 26	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002
NOV 27	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002
DEC 12	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002
JAN 08	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	E.002	<.006	<.002
FEB 06 MAR	<.021	E.001	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	E.003	<.006	<.002
05 APR	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	E.003	<.006	<.002
26 MAY	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	E.004	<.006	<.002
23 JUN	<.021	.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	E.002	<.006	<.002
26 JUL	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002
16 AUG	<.021	<.030	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.030	E.009	<.006	<.002
21 SEP	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	E.007	<.006	<.002
26	<.021	<.005	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002
DATE	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)
OCT	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	DDE DISSOLV (UG/L) (34653)	THION, DIS- SOLVED (UG/L) (39542)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	METON, WATER, DISS, REC (UG/L) (04037)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	CHLOR, WATER, DISS, REC (UG/L) (04024)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	MAZINE, WATER, DISS, REC (UG/L) (04035)
	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	DDE DISSOLV (UG/L)	THION, DIS- SOLVED (UG/L)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	METON, WATER, DISS, REC (UG/L)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	CHLOR, WATER, DISS, REC (UG/L)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L)	MAZINE, WATER, DISS, REC (UG/L)
OCT 26 NOV	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	DDE DISSOLV (UG/L) (34653)	THION, DIS- SOLVED (UG/L) (39542)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	METON, WATER, DISS, REC (UG/L) (04037)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	CHLOR, WATER, DISS, REC (UG/L) (04024)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	MAZINE, WATER, DISS, REC (UG/L) (04035)
OCT 26 NOV 27 DEC 12 JAN 08	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007	DDE DISSOLV (UG/L) (34653) <.003	THION, DIS- SOLVED (UG/L) (39542) <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) < .004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010	PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679) <.011	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007	DDE DISSOLV (UG/L) (34653) <.003 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <-007 <-007 <-007	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 <.015	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010	PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 E.001	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 <.015 E.003	AMIDE WATER FILTED 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010	PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011	PARGITE WATER WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 E.001 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 <.015 <.015 E.003 E.003	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011	PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023 <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011 <.011
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23 JUN 26	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007 <.007 <.007	ULATE WATER FILITRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 <.015 E.003 E.003 E.004 <.015	AMIDE WATER FILTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011	PARGITE WATER FLITED 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011 <.011 <.011
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23 JUN	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007 <.007 <.007 <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006	WATER FILTRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 <.015 E.003 E.003 E.004 <.015 <.015	AMIDE WATER FILTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	PARGITE WATER FLITED 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011 <.011 <.011 <.011
OCT 26 NOV 27 DEC 12 JAN 08 FEB 06 MAR 05 APR 26 MAY 23 JUN 26 JUL 16	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	ULATE WATER WATER D.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	WATER FILTRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 <.015 E.003 E.003 E.004 <.015 <.015 <.015	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011 <.011 <.011 <.011 <.011

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT									
26	<.016	<.034	<.017	<.005	<.005	<.009	3.83	18	285
NOV 27	<.016	<.034	<.017	<.005	<.002	<.009	4.14	106	2360
DEC	<.010	<.034	<.017	<.005	<.002	<.009	4.14	100	2300
12	<.016	<.034	<.017	<.005	<.002	<.009	4.17	4	37
JAN 08	<.016	<.034	<.017	<.005	<.002	<.009	4.62	4	116
FEB	<.016	<.034	<.U17	<.005	<.002	<.009	4.62	4	110
06	<.016	<.034	<.017	<.005	E.001	E.002	4.09	18	445
MAR									
05 APR	<.016	<.034	<.017	<.005	E.003	<.009	3.93	30	703
26	<.016	<.034	<.017	<.005	.008	<.009	4.01	29	352
MAY									
23	<.016	<.034	<.017	<.005	.010	<.009	1.41	95	2980
JUN 26	<.016	<.034	<.017	<.005	E.001	<.009	1.45	98	4180
JUL	1.010	1.031	1.017	1.005	1.001	1.005	1.15	50	1100
16	<.016	<.034	<.017	<.005	.005	<.009	2.53	249	5220
AUG	<.016	<.034	<.017	<.005	<.002	<.009	4.99	18	118
21 SEP	<.016	<.034	<.017	<.005	<.002	<.009	4.99	18	118
26	<.016	<.034	<.017	<.005	<.002	<.009	4.26	24	181

E -- Estimated value. M -- Presence verified, not quantified. k -- Counts outside acceptable range (non-ideal colony count).

YELLOWSTONE RIVER BASIN Fixed Station Network

06298000 TONGUE RIVER NEAR DAYTON, WY (LAT 44 50 58 LONG 107 18 14)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
OCT 23	1530	53	1.1	663	11.2	101	7.6	252	15.5	5.0	130	32.7	11.2
NOV 28 DEC	1450	54	1.0	663	12.7	100	7.4	257	.5	.00	140	36.9	12.3
14 JAN	1045	63	1.0	650	11.7	94	7.3	268	-5.0	.00	150	37.3	13.0
12 FEB	0750	46			11.5		7.7	264	-1.0	1.0	130	33.5	11.5
12 MAR	1615	59	1.3	650			7.3	268	-5.0	.00	130	34.5	11.8
12 APR	1345	51	1.3	651	11.1	98	7.9	319	10.5	3.5	140	35.2	12.3
11 MAY	1100	54	2.0	655	11.8	98	7.7	252	4.5	1.5	140	34.9	12.0
10 29	1215 1400	273 227	14 4.7	659 655	10.1 8.8	96 92	7.8 7.4	146 163	20.0 19.0	7.0 10.5	72 80	19.6 21.3	5.61 6.61
JUN 08	0830	150	2.6	661	10.0	104	7.2	184	19.0	10.5	93	24.1	7.89
JUL 18	1330	64	1.3	659	8.3	100	8.3	213	25.5	17.5	110	27.3	10.0
AUG 15	1440	53	1.8	661	8.2	99	8.5	228	29.0	17.5	120	28.5	10.9
SEP 12	1420	40	.9				8.7	231	20.5	12.5	120	28.7	10.6
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 23	SIUM, DIS- SOLVED (MG/L AS K)	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	BONATE WATER DIS IT FIELD MG/L AS HCO3	BONATE WATER DIS IT FIELD MG/L AS CO3	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT 23 NOV 28	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 23 NOV 28 DEC 14	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 23 NOV 28 DEC 14 JAN 12	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 5.9 7.0	DIS- SOLVED (MG/L AS SO4) (00945) 4.8	DIS- SOLVED (TOMS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 23 NOV 28 DEC 14 JAN 12 FEB 12	SIUM, DIS- SOLVED (MG/L AS K) (00935) .67	AD- SORP- TION RATIO (00931) .0 .1	DIS- SOLVED (MG/L AS NA) (00930) 1.3 1.5	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 127 121 133	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 155 148	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1.0 .8	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1 E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 5.9 7.0	DIS- SOLVED (MG/L AS SO4) (00945) 4.8 5.3 5.6	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 19.2 21.7 25.9	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 23 NOV 28 DEC 14 JAN 12 FEB 12 MAR 12	SIUM, DIS- SOLVED (MG/L AS K) (00935) .67 .75 .67	AD- SORP- TION RATIO (00931) .0 .1 .1	DIS- SOLVED (MG/L AS NA) (00930) 1.3 1.5 1.6	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 127 121 133 135	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 155 148 162 165	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1.0 .8 .6	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1 E.1 E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 5.9 7.0 7.3 6.6	DIS- SOLVED (MG/L AS SO4) (00945) 4.8 5.3 5.6 5.3	DIS- SOLVED (TONS PER AC-FT) (70303) .18 .20 .21	DIS- SOLVED (TONS PER DAY) (70302) 19.2 21.7 25.9 18.5	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 134 149 152
OCT 23 NOV 28 DEC 14 JAN 12 FEB 12 MAR 12 APR 11	SIUM, DIS- SOLVED (MG/L AS K) (00935) .67 .75 .67	AD- SORP- TION RATIO (00931) .0 .1 .1	DIS- SOLVED (MG/L AS NA) (00930) 1.3 1.5 1.6 1.4	LINITY WAT DIS TOT IT FIELD MG/L AS CACCO3 (39086) 127 121 133 135 140	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 155 148 162 165 171	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1.0 .8 .6 1.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1 E.1 E.1 E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 5.9 7.0 7.3 6.6	DIS- SOLVED (MG/L AS SO4) (00945) 4.8 5.3 5.6 5.3	DIS- SOLVED (TONS PER AC-FT) (70303) .18 .20 .21 .20	DIS- SOLVED (TONS PER DAY) (70302) 19.2 21.7 25.9 18.5 25.3	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 134 149 152 149
OCT 23 NOV 28 DEC 14 JAN 12 FEB 12 MAR 12 APR 11 MAY 10 29	SIUM, DIS- SOLVED (MG/L AS K) (00935) .67 .75 .67 .65	AD- SORP- TION RATIO (00931) .0 .1 .1 .1	DIS- SOLVED (MG/L AS NA) (00930) 1.3 1.5 1.6 1.4	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 127 121 133 135 140 138	BONATE WATER WATER DIS IT FIELD MG/L AS HC03 (00453) 155 148 162 165 171 168	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1.0 .8 .6 1.1 1.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1 E.1 E.1 E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 5.9 7.0 7.3 6.6 6.4	DIS- SOLVED (MG/L AS SO4) (00945) 4.8 5.3 5.6 5.3 5.4	DIS- SOLVED (TOMS PER AC-FT) (70303) .18 .20 .21 .20 .22	DIS- SOLVED (TONS PER DAY) (70302) 19.2 21.7 25.9 18.5 25.3	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 134 149 152 149 159
OCT 23 NOV 28 DEC 14 JAN 12 FEB 12 MAR 12 APR 11 MAY 10 29 JUN 08	SIUM, DIS- SOLVED (MG/L AS K) (00935) .67 .75 .67 .65 .67 .60	AD- SORP- TION RATIO (00931) .0 .1 .1 .1 .1	DIS- SOLVED (MG/L AS NA) (00930) 1.3 1.5 1.6 1.4 1.4	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 127 121 133 135 140 138 122 72	BONATE WATER DIS IT FIELD MG/L AS HC03 (00453) 155 148 162 165 171 168 149 88	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1.0 .8 .6 1.1 1.0 .7	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1 E.1 E.1 E.1 E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 5.9 7.0 7.3 6.6 6.4 6.4 5.8	DIS- SOLVED (MG/L AS SO4) (00945) 4.8 5.3 5.6 5.3 5.4 5.3	DIS- SOLVED (TONS PER AC-FT) (70303) .18 .20 .21 .20 .22	DIS- SOLVED (TONS PER DAY) (70302) 19.2 21.7 25.9 18.5 25.3 20.0 22.5 68.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 134 149 152 149 159 145 154
OCT 23 NOV 28 DEC 14 JAN 12 FEB 12 MAR 12 MAR 11 MAY 10 29 JUN 08 JUL 18	SIUM, DIS- SOLVED (MG/L AS K) (00935) .67 .75 .67 .65 .67 .60 .57	AD-SORP- SORP- TION RATIO (00931) .0 .1 .1 .1 .1	DIS- SOLVED (MG/L AS NA) (00930) 1.3 1.5 1.6 1.4 1.5 1.4	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 127 121 133 135 140 138 122 72 81	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 155 148 162 165 171 168 149 88 99	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1.0 .8 .6 1.1 1.0 1.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1 E.1 E.1 E.1 E.1 E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 5.9 7.0 7.3 6.6 6.4 6.4 5.8	DIS- SOLVED (MG/L AS SO4) (00945) 4.8 5.3 5.6 5.3 5.4 5.3	DIS- SOLVED (TONS PER AC-FT) (70303) .18 .20 .21 .20 .22 .20 .21	DIS- SOLVED (TONS PER DAY) (70302) 19.2 21.7 25.9 18.5 25.3 20.0 22.5 68.6 57.0	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 134 149 152 149 159 145 154 93 93
OCT 23 NOV 28 DEC 14 JAN 12 FEB 12 MAR 12 MAR 12 APR 11 APR 11 MY 10 29 JUN 08 JUL	SIUM, DIS- SOLVED (MG/L AS K) (00935) .67 .75 .67 .65 .67 .60 .57	AD-SORP- TION RATIO (00931) .0 .1 .1 .1 .1 .1 .1	DIS- SOLVED (MG/L AS NA) (00930) 1.3 1.5 1.6 1.4 1.5 1.4 1.5 1.4	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 127 121 133 135 140 138 122 72 81 95	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 155 148 162 165 171 168 149 88 99 116	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1.0 .8 .6 1.1 1.0 1.0 .7 .6 .5	RIDE, DIS- SOLVED (MG/L AS F) (00950) E.1 E.1 E.1 E.1 E.1 E.1 E.1	DIS- SOLVED (MG/L AS SIO2) (00955) 5.9 7.0 7.3 6.6 6.4 6.4 5.8 5.6 6.5	DIS- SOLVED (MG/L AS SO4) (00945) 4.8 5.3 5.6 5.3 5.4 5.3 2.8 3.0	DIS- SOLVED (TOMS PER AC-FT) (70303) .18 .20 .21 .20 .22 .20 .21 .13 .13	DIS- SOLVED (TONS PER DAY) (70302) 19.2 21.7 25.9 18.5 25.3 20.0 22.5 68.6 57.0	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 134 149 152 149 159 145 154 93 93

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

06298000 TONGUE RIVER NEAR DAYTON, WY (LAT 44 50 58 LONG 107 18 14)

DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)
OCT 23	134	<.041	<.10	E.06	E.046	<.006		<.006	<.018	<.004			1.1
NOV 28 DEC	138	<.041	<.10	E.04	.201	<.006	.046	<.006	<.018	<.004	.3	<.1	.91
14	147	<.041	E.08	.12	.247	<.006	.045	E.004	<.018	.006	.4		1.0
JAN 12	142	<.041	E.07	.08	.229	<.006	<.022	<.006	<.018	.004	.3		.82
FEB 12	146	<.041	E.07	<.08	.222	<.006	.055	E.004	.019	.005	.5		.73
MAR 12	145	<.041	<.10	<.08	.082	<.006	<.022	<.006	<.018	.005	.2		.86
APR 11	134	<.041	E.06	.09	E.046	<.006	.023	E.003	<.018	.007	.3		1.3
MAY 10 29	79 89	<.041	.20	.41	E.032	E.004	.050	.007	<.018	.051	1.0		4.6 3.2
JUN 08	101	<.040	E.08	.13	E.023	<.006	<.022	E.004	<.020	.014	.5		2.5
JUL 18	114	<.040	.10	.13	.135	<.006	<.022	<.006	<.020	.009	.3		2.0
AUG 15	125	E.021	E.08	.12	E.026	<.006	.044	<.006	<.020	.010	.3		1.5
SEP 12	123	<.040	E.08	.09	E.029	E.003	<.022	<.006	<.020	E.003	.2		1.5
		DA	TE	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)			
			23	.3	E2k	E2k	<10	<3.2	1	.14			
			8	.3	E4k	E10k	М	<3.2	3	.44			
			4		E2k	E5k	<10	<3.2	6	1.0			
			2		E2k	E3k	<10	<3.2	1	.12			
			2		E1k	E1k	<10	<3.2	2	.32			
			.2		<1	<1	М	<3.2	1	.14			
			.1		<1	<1	<10	<3.2	2	.29			
		2	.0 29		24 42	20 43	50 20	<3.2 <3.0	19 7	14 4.3			
			18		49	38	10	<3.0	4	1.6			
			8		E8k	10	<10	<3.0	1	.17			
			.5		30	27	М	E1.7	3	.43			
		SEP 1	.2		E14k	E8k	М	E1.9	2	.22			

 $[\]mbox{E}$ -- Estimated value. M -- Presence verified, not quantified. k -- Counts outside acceptable range (non-ideal colony count).

YELLOWSTONE RIVER BASIN Fixed Station Network

06324970 LITTLE POWDER RIVER ABOVE DRY CREEK NEAR WESTON, WY (LAT 44 55 37 LONG 105 21 10)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
OCT 16 25 NOV	1125 0800	31 1.8	180 150	675 673	 7.9	 76	8.3 7.9	3940 1740	15.0 9.5	9.0 8.0	1100 350	201 71.4	153 40.9
15 DEC	1340	1.6	10	670	11.5	91	7.9	3690	-3.5	.00	1100	231	138
12 JAN	1600	1.2	16	675			7.7	3610	-20.0	.00	1100	215	129
10 FEB	1430	1.5					7.9	3480	6.5	.00	920	185	111
15	1640	1.6					7.7	3540	-10.0	.00	970	206	111
MAR 05 14 APR	1215 1445	64 70	150 350	679 670	10 10.5	77 87	7.6 7.5	656 1230	4.5 1.0	.00 2.0	130 250	29.3 48.0	14.8 31.5
12 MAY	0815	15	500	674	9.3	81	8.0	2290	2.0	4.0	610	112	79.0
08	1530	4.7	39	675	9.9	116	8.0	3280	26.0	16.5	860	164	110
JUN 06 JUL	0845	3.2	13	665	6.8	80	8.0	3570	15.0	16.0	900	150	127
13 25 AUG	0900 1235	8.4 314	170 	680 676	5.9 4.8	78 60	7.9 7.4	3250 358	24.0 21.0	23.0 20.0	820 75	149 17.6	108 7.38
15 SEP	0800	.53	120	678	5.9	74	7.8	3120	19.5	19.5	830	159	104
11	0830	.29	70				8.1	3770	12.0	13.0	1100	217	140
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)
OCT 16 25	SIUM, DIS- SOLVED (MG/L AS K)	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	BONATE WATER DIS IT FIELD MG/L AS HCO3	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
OCT 16 25 NOV 15	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)
OCT 16 25 NOV 15 DEC 12	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)
OCT 16 25 NOV 15 DEC 12 JAN 10	SIUM, DIS- SOLVED (MG/L AS K) (00935) 25.7 14.3	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 552 239	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 37.8 27.3	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 6.9 5.9	DIS- SOLVED (MG/L AS SO4) (00945) 2060 681	DIS- SOLVED (TONS PER AC-FT) (70303) 4.63 1.71 4.22	DIS- SOLVED (TONS PER DAY) (70302) 285 6.12	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 3400 1260	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15	SIUM, DIS- SOLVED (MG/L AS K) (00935) 25.7 14.3 29.2 25.1	AD- SORP- TION RATIO (00931) 7 6 7	DIS- SOLVED (MG/L AS NA) (00930) 552 239 514 582	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 260 199 379 483	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 317 243 462 589	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 37.8 27.3	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 6.9 5.9 11.1	DIS- SOLVED (MG/L AS SO4) (00945) 2060 681 1680	DIS- SOLVED (TONS PER AC-FT) (70303) 4.63 1.71 4.22 4.40	DIS- SOLVED (TONS PER DAY) (70302) 285 6.12 13.4 10.5	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 3400 1260 3100 3230	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 3190 1200 2940 3060
OCT	SIUM, DIS- SOLVED (MG/L AS K) (00935) 25.7 14.3 29.2 25.1 21.4 21.9	AD- SORP- TION RATIO (00931) 7 6 7 8 7	DIS- SOLVED (MG/L AS NA) (00930) 552 239 514 582 482 552 73.6	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 260 199 379 483 471 485 98	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 317 243 462 589 575 592 120	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 37.8 27.3 103 65.5 44.3 80.5 14.7	RIDE, DIS- SOLVED (MG/L AS F) (00950) .7 .6 .8 .9 .8	DIS- SOLVED (MG/L AS SIO2) (00955) 6.9 5.9 11.1 12.6 12.0	DIS- SOLVED (MG/L AS SO4) (00945) 2060 681 1680 1730 1520 1500	DIS- SOLVED (TONS PER AC-FT) (70303) 4.63 1.71 4.22 4.40 3.82 3.95	DIS- SOLVED (TONS PER DAY) (70302) 285 6.12 13.4 10.5 11.4 12.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 3400 1260 3100 3230 2810 2910 500	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 3190 1200 2940 3060 2660 2780 413
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR	SIUM, DIS- SOLVED (MG/L AS K) (00935) 25.7 14.3 29.2 25.1 21.4 21.9 10.8 11.8	AD- SORP- TION RATIO (00931) 7 6 7 8 7 8	DIS- SOLVED (MG/L AS NA) (00930) 552 239 514 582 482 552 73.6	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 260 199 379 483 471 485 98 122	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 317 243 462 589 575 592 120 149	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 37.8 27.3 103 65.5 44.3 80.5 14.7 12.2	RIDE, DIS- SOIVED (MG/L AS F) (00950) .7 .6 .8 .9 .8 .9	DIS- SOLVED (MG/L AS SIO2) (00955) 6.9 5.9 11.1 12.6 12.0 13.7 5.1 7.7	DIS- SOLVED (MG/L AS SO4) (00945) 2060 681 1680 1730 1520 1500 202 376	DIS- SOLVED (TONS PER AC-FT) (70303) 4.63 1.71 4.22 4.40 3.82 3.95 .68 1.04	DIS- SOLVED (TONS PER DAY) (70302) 285 6.12 13.4 10.5 11.4 12.6 86.4	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 3400 1260 3100 3230 2810 2910 500 764	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 3190 1200 2940 3060 2780 413 684
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12 MAY	SIUM, DIS- SOLVED (MG/L AS K) (00935) 25.7 14.3 29.2 25.1 21.4 21.9 10.8 11.8	AD- SORP- TION RATIO (00931) 7 6 7 8 7 8 3 3 5	DIS- SOLVED (MG/L AS NA) (00930) 552 239 514 582 482 552 73.6 120	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 260 199 379 483 471 485 98 122 250	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 317 243 462 589 575 592 120 149 305	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 37.8 27.3 103 65.5 44.3 80.5 14.7 12.2 6.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) .7 .6 .8 .9 .8 .9 .2 .3 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 6.9 5.9 11.1 12.6 12.0 13.7 5.1 7.7	DIS- SOLVED (MG/L AS SO4) (00945) 2060 681 1680 1730 1520 1500 202 376 971	DIS- SOLVED (TONS PER AC-FT) (70303) 4.63 1.71 4.22 4.40 3.82 3.95 .68 1.04 2.46	DIS- SOLVED (TONS PER DAY) (70302) 285 6.12 13.4 10.5 11.4 12.6 86.4 144 71.8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 3400 1260 3100 3230 2810 2910 500 764 1810	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 3190 1200 2940 3060 2660 2780 413 684 1650
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12 MAY 08 JUN	SIUM, DIS- SOLVED (MG/L AS K) (00935) 25.7 14.3 29.2 25.1 21.4 21.9 10.8 11.8 14.2	AD- SORP- TION RATIO (00931) 7 6 7 8 7 8 3 3 5	DIS- SOLVED (MG/L AS NA) (00930) 552 239 514 582 482 552 73.6 120 303 460	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 260 199 379 483 471 485 98 122 250 359	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 317 243 462 589 575 592 120 149 305 438	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 37.8 27.3 103 65.5 44.3 80.5 14.7 12.2 6.1 40.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) .7 .6 .8 .9 .8 .9 .2 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 6.9 5.9 11.1 12.6 12.0 13.7 5.1 7.7	DIS- SOLVED (MG/L AS SO4) (00945) 2060 681 1680 1730 1520 1500 202 376 971 1490	DIS- SOLVED (TONS PER AC-FT) (70303) 4.63 1.71 4.22 4.40 3.82 3.95 .68 1.04 2.46 3.69	DIS- SOLVED (TONS PER DAY) (70302) 285 6.12 13.4 10.5 11.4 12.6 86.4 144 71.8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 3400 1260 3100 3230 2810 2910 500 764 1810 2720	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 3190 1200 2940 3060 2660 2780 413 684 1650 2510
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12 MAY 08 JUN 06 JUL	SIUM, DIS- SOLVED (MG/L AS K) (00935) 25.7 14.3 29.2 25.1 21.4 21.9 10.8 11.8 14.2 19.2 24.0	AD- SORP- TION RATIO (00931) 7 6 7 8 7 8 3 3 5 7	DIS- SOLIVED (MG/L AS NA) (00930) 552 239 514 582 482 552 73.6 120 303 460	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 260 199 379 483 471 485 98 122 250 359 249	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 317 243 462 589 575 592 120 149 305 438 304	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 37.8 27.3 103 65.5 44.3 80.5 14.7 12.2 6.1 40.9 50.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) .7 .6 .8 .9 .8 .9 .2 .3 .4 .6 .6	DIS- SOLVED (MG/L AS SIO2) (00955) 6.9 5.9 11.1 12.6 12.0 13.7 5.1 7.7 10.4 7.5 4.0	DIS- SOLVED (MG/L AS SO4) (00945) 2060 681 1680 1730 1520 1500 202 376 971 1490 1680	DIS- SOLVED (TONS PER AC-FT) (70303) 4.63 1.71 4.22 4.40 3.82 3.95 .68 1.04 2.46 3.69 4.07	DIS- SOLVED (TONS PER DAY) (70302) 285 6.12 13.4 10.5 11.4 12.6 86.4 144 71.8 34.4 26.0	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 3400 1260 3100 3230 2810 2910 500 764 1810 2720 3000	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 3190 1200 2940 3060 2660 2780 413 684 1650 2510 2680
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12 MAY 08 JUN 06	SIUM, DIS- SOLVED (MG/L AS K) (00935) 25.7 14.3 29.2 25.1 21.4 21.9 10.8 11.8 14.2	AD- SORP- TION RATIO (00931) 7 6 7 8 7 8 3 3 5	DIS- SOLVED (MG/L AS NA) (00930) 552 239 514 582 482 552 73.6 120 303 460	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 260 199 379 483 471 485 98 122 250 359	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 317 243 462 589 575 592 120 149 305 438	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 37.8 27.3 103 65.5 44.3 80.5 14.7 12.2 6.1 40.9	RIDE, DIS- SOLVED (MG/L AS F) (00950) .7 .6 .8 .9 .8 .9 .2 .3	DIS- SOLVED (MG/L AS SIO2) (00955) 6.9 5.9 11.1 12.6 12.0 13.7 5.1 7.7	DIS- SOLVED (MG/L AS SO4) (00945) 2060 681 1680 1730 1520 1500 202 376 971 1490	DIS- SOLVED (TONS PER AC-FT) (70303) 4.63 1.71 4.22 4.40 3.82 3.95 .68 1.04 2.46 3.69	DIS- SOLVED (TONS PER DAY) (70302) 285 6.12 13.4 10.5 11.4 12.6 86.4 144 71.8	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 3400 1260 3100 3230 2810 2910 500 764 1810 2720	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 3190 1200 2940 3060 2660 2780 413 684 1650 2510
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12 MAY 08 JUN 06 JUL 13 25	SIUM, DIS- SOLVED (MG/L AS K) (00935) 25.7 14.3 29.2 25.1 21.4 21.9 10.8 11.8 14.2 19.2 24.0	AD- SORP- TION RATIO (00931) 7 6 7 8 7 8 3 3 5 7 7	DIS- SOLVED (MG/L AS NA) (00930) 552 239 514 582 482 552 73.6 120 303 460 492	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 260 199 379 483 471 485 98 122 250 359 249 235	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 317 243 462 589 575 592 120 149 305 438 304 287	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 37.8 27.3 103 65.5 44.3 80.5 14.7 12.2 6.1 40.9 50.5 37.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .7 .6 .8 .9 .8 .9 .2 .3 .4 .6 .6 .6 .7	DIS- SOLVED (MG/L AS SIO2) (00955) 6.9 5.9 11.1 12.6 12.0 13.7 5.1 7.7 10.4 7.5 4.0	DIS- SOLVED (MG/L AS SO4) (00945) 2060 681 1680 1730 1520 1500 202 376 971 1490 1680 1510	DIS- SOLVED (TONS PER AC-FT) (70303) 4.63 1.71 4.22 4.40 3.82 3.95 .68 1.04 2.46 3.69 4.07 3.55	DIS- SOLVED (TONS PER DAY) (70302) 285 6.12 13.4 10.5 11.4 12.6 86.4 144 71.8 34.4 26.0 59.1	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 3400 1260 3100 3230 2810 2910 500 764 1810 2720 3000 2610	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 3190 1200 2940 3060 2660 2780 413 684 1650 2510 2680 2450

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

06324970 LITTLE POWDER RIVER ABOVE DRY CREEK NEAR WESTON, WY (LAT 44 55 37 LONG 105 21 10)

DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN,PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)
OCT 16 25 NOV	<.041 <.041	.38	.83 .72	<.047 .116	<.006 .009		.007 E.004	<.018 <.018	.099			8.1 10	.3
15 DEC	<.041	.41	.83	E.026	<.006	.146	.006	<.018	.018	<.1		8.9	1.1
12 JAN	.144	.47	.58	.052	E.003	.042	E.004	<.018	.015	.3	<.1	6.5	.3
10 FEB	.161	.50	.58	.131	E.005	<.022	E.005	<.018	.015	.1		6.1	
15 MAR	.051	.31	.24	.239	<.006	.051	E.003	<.018	.008	.3		5.2	
05 14 APR	.342	2.1 1.2	3.0 1.9	.368 .264	.017 .018	.943 .726	.400 .082	.349	.590 .270	6.0 3.5		38 17	
12 MAY	<.041	.74	1.2	<.047	<.006	.469	.019	<.018	.137	3.3		15	
08 JUN	<.041	.51	.73	<.047	E.003	.251	.007	<.018	.036	1.3		10	
06 JUL	<.040	.33	.64	<.050	<.006	.137	E.005	<.020	.039	1.0		8.0	
13 25	<.040 <.040	.56 .48	.96 5.9	<.050 .286	.006 .016	.333 5.2	.012	<.020 <.020	.075 1.51	2.1 27		12 16	
AUG 15	E.038	.66	1.0	<.050	<.006	.364	.010	<.020	.084	2.4		12	
SEP 11	E.026	.43	.51	<.050	E.003	.127	.006	<.020	.055	1.1		8.6	
DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	BORON, TOTAL RECOV- ERABLE (UG/L AS B) (01022)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)
OCT 16 25	MTEC MF WATER (COL/ 100 ML)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	INUM, DIS- SOLVED (UG/L AS AL)	MONY, DIS- SOLVED (UG/L AS SB)	DIS- SOLVED (UG/L AS AS)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS BA)	TOTAL RECOV- ERABLE (UG/L AS BA)	LIUM, DIS- SOLVED (UG/L AS BE)	DIS- SOLVED (UG/L AS B)	TOTAL RECOV- ERABLE (UG/L AS B)	DIS- SOLVED (UG/L AS CD)	WATER UNFLTRD TOTAL (UG/L AS CD)
OCT 16 25 NOV 15	MTEC MF WATER (COL/ 100 ML) (31633)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS B) (01020)	TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)
OCT 16 25 NOV 15 DEC 12	MTEC MF WATER (COL/ 100 ML) (31633) 1500 580	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS B) (01020)	TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)
OCT 16 25 NOV 15 DEC 12 JAN 10	MTEC MF WATER (COL/ 100 ML) (31633) 1500 580	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 1100 360 64	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000) 1.0 .8	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 35.4 31.7 67.0	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.12 <.06	DIS- SOLVED (UG/L AS B) (01020)	TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025) <.07 .04	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15	MTEC MF WATER (COL/ 100 ML) (31633) 1500 580 E26k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 1100 360 64 42	INUM, DIS- SOLVED (UG/L AS AL) (01106) <2 2 2	MONY, DIS- SOLVED (UG/L AS SB) (01095) .24 .28 .22	DIS- SOLVED (UG/L AS AS) (01000) 1.0 .8 .9	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 35.4 31.7 67.0 46.7	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 39.5 62.1 43.4	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.12 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 329 124 517	TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025) <.07 .04 .05	WATER UNFLIRD TOTAL (UG/L AS CD) (01027)
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14	MTEC MF WATER (COL/ 100 ML) (31633) 1500 580 E26k E12k	FORM, FECAL, 0.7 UM-MF (COLS./100 ML) (31625) 1100 360 64 42 E10k	INUM, DIS- SOLVED (UG/L AS AL) (01106) <2 2 2 3	MONY, DIS- SOLVED (UG/L AS SB) (01095) .24 .28 .22 .07	DIS- SOLVED (UG/L AS AS) (01000) 1.0 .8 .9 .8	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 35.4 31.7 67.0 46.7	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 39.5 62.1 43.4 30.4	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.12 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 329 124 517 358	TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025) <.07 .04 .05 .52	WATER UNFLITED TOTAL (UG/L AS CD) (01027)
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12	MTEC MF WATER (COL/ 100 ML) (31633) 1500 580 E26k E12k E18k 70	FORM, FECAL, O.7 UM-MF (COLS./100 ML) (31625) 1100 360 64 42 E10k E7k 140	INUM, DIS- SOLVED (UG/L AS AL) (01106) <2 2 2 3 2 2	MONY, DIS- SOLVED (UG/L AS SB) (01095) .24 .28 .22 .07 .05	DIS- SOLVED (UG/L AS AS) (01000) 1.0 .8 .9 .8 .4 .8	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 35.4 31.7 67.0 46.7 15.5 30.8	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 39.5 62.1 43.4 30.4 27.9 34.1	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.12 <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 329 124 517 358 147 250	TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025) <.07 .04 .05 .52 .35 .08	WATER UNFLITED TOTAL (UG/L AS CD) (01027)
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12 MAY 08	MTEC MF WATER (COL/ 100 ML) (31633) 1500 580 E26k E12k E18k 70	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 1100 360 64 42 E10k E7k 140	INUM, DIS- SOLVED (UG/L AS AL) (01106) <2 2 2 2 2 2 2 12	MONY, DIS- SOLVED (UG/L AS SB) (01095) .24 .28 .22 .07 .05	DIS- SOLVED (UG/L AS AS) (01000) 1.0 .8 .9 .8 .4 .8	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 35.4 31.7 67.0 46.7 15.5 30.8 18.1 26.1	TOTAL RECOVER AS BA) (01007) 39.5 62.1 43.4 30.4 27.9 34.1 45.3	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.12 <.06 <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 329 124 517 358 147 250 59 98	TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025) <.07 .04 .05 .52 .35 .08	WATER UNFLITRD TOTAL (UG/L AS CD) (01027)
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12 MAY 08 JUN 06	MTEC MF WATER (COL/ 100 ML) (31633) 1500 580 E26k E12k E18k 70 150	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 1100 360 64 42 E10k E7k 140 160	INUM, DIS- SOLVED (UG/L AS AL) (01106) <2 2 2 3 2 2 2 119 5	MONY, DIS- SOLVED (UG/L AS SB) (01095) .24 .28 .22 .07 .05 .09 .10 .21	DIS- SOLVED (UG/L AS AS) (01000) 1.0 .8 .9 .8 .4 .8 .8 1.3	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 35.4 31.7 67.0 46.7 15.5 30.8 18.1 26.1	TOTAL RECOVERAGE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.12 <.06 <.06 <.06 <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 329 124 517 358 147 250 59 98	TOTAL RECOV- ERABLE (UG/L AS B) (01022) 156	DIS- SOLVED (UG/L AS CD) (01025) <.07 .04 .05 .52 .35 .08 .05 .09	WATER UNFLITED TOTAL (UG/L AS CD) (01027)
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12 MAY 08 JUN 06 JUL 13 25	MTEC MF WATER (COL/ 100 ML) (31633) 1500 580 E26k E12k E18k 70 150	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 1100 360 64 42 E10k E7k 140 160 56	INUM, DIS- SOLVED (UG/L AS AL) (01106) <2 2 2 3 2 2 2 2 12 119 5	MONY, DIS- SOLVED (UG/L AS SB) (01095) .24 .28 .22 .07 .05 .09 .10 .21	DIS- SOLVED (UG/L AS AS) (01000) 1.0 .8 .9 .8 .4 .8 .8 1.3 E1.5	TOTAL (UG/L AS AS) (01002) 3 E1	DIS- SOLVED (UG/L AS BA) (01005) 35.4 31.7 67.0 46.7 15.5 30.8 18.1 26.1 59.0 57.4	TOTAL RECOV- REABLE (UG/L AS BA) (01007) 39.5 62.1 43.4 30.4 27.9 34.1 45.3 84.7 55.6	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.12 <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 329 124 517 358 147 250 59 98 132	TOTAL RECOV- ERABLE (UG/L AS B) (01022) 156 213	DIS- SOLVED (UG/L AS CD) (01025) <.07 .04 .05 .52 .35 .08 .05 .09	WATER UNFLITED TOTAL (UG/L AS CD) (01027)
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12 MAY 08 JUN 06 JUL 13	MTEC MF WATER (COL/ 100 ML) (31633) 1500 580 E26k E12k E18k 70 150 55 160 260	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 1100 360 64 42 E10k E7k 140 160 56 160 350	INUM, DIS- SOLVED (UG/L AS AL) (01106) <2 2 2 2 2 2 12 119 5 1	MONY, DIS- SOLVED (UG/L AS SB) (01095) .24 .28 .22 .07 .05 .09 .10 .21 .33 .11 .26	DIS- SOLVED (UG/L AS AS) (01000) 1.0 .8 .9 .8 .4 .8 1.3 E1.5 E1.2 <2.0	TOTAL (UG/L AS AS) (01002) 3 E1 M 2	DIS- SOLVED (UG/L AS BA) (01005) 35.4 31.7 67.0 46.7 15.5 30.8 18.1 26.1 59.0 57.4 42.5 96.7	TOTAL RECOV- REABLE (UG/L AS BA) (01007) 39.5 62.1 43.4 30.4 27.9 34.1 45.3 84.7 555.6 45.2	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.12 <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.10 <.10 <.10	DIS- SOLVED (UG/L AS B) (01020) 329 124 517 358 147 250 59 98 132 222 403	TOTAL RECOV- ERABLE (UG/L AS B) (01022) 156 213 381 287	DIS- SOLVED (UG/L AS CD) (01025) <.07 .04 .05 .52 .35 .08 .05 .09 .13 .14 <.07	WATER UNFLITED TOTAL (UG/L AS CD) (01027)

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

06324970 LITTLE POWDER RIVER ABOVE DRY CREEK NEAR WESTON, WY (LAT 44 55 37 LONG 105 21 10)

DATE	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)
OCT 16	2.8		.87	5.5		<10		<.16		94.7	9.4		3.2
25 NOV	E.6		.53	3.3		<10		E.04		43.5	46.0		2.3
15 DEC	1.7		.85	7.1		E20		<.08		163	77.0		8.0
12 JAN	<.8		.86	7.3		<30		.12		120	106		4.7
10 FEB	<.8		.42	3.2		<30		<.08		41.8	67.0		1.7
15	<.8		.84	5.7		<30		.08		104	163		2.8
MAR 05 14	<.8 <.8		.60 .99	3.9 3.7		110 130		.18 .19		17.8 22.2	99.3 92.1		.9 2.1
APR 12 MAY	<.8	7	.96	6.5	10.2	E20	3340	.11	6	44.5	80.0	151	2.3
08	.8	<1	.95	6.6	7.1	<30	420	E.04	<2	63.5	96.8	158	2.5
JUN 06	<4.0	<1	.55	8.8	6.9	<30	510	<.20	<2	84.0	44.1	85	3.9
JUL 13	<.8	1	.72	6.4	5.5	<10	1150	<.20	3	76.2	45.6	153	3.3
25 AUG	<.8		.70	1.6		20		.09		12.3	26.8		1.1
15 SEP	E.5		1.17	20.2		<30		E.09		47.6	247		3.0
11	<.8	<1	1.03	13.3	7.7	<30	720	<.20	<2	57.9	257	286	2.8
DATE	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 16 25	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	NIUM, TOTAL (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	LIUM, DIS- SOLVED (UG/L AS TL)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)	TOTAL RECOV- ERABLE (UG/L AS ZN)	NATURAL DIS- SOLVED (UG/L AS U)	MENT, SUS- PENDED (MG/L)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
OCT 16	DIS- SOLVED (UG/L AS NI) (01065)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703)	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 16 25 NOV	DIS- SOLVED (UG/L AS NI) (01065)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.08 E.02	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703)	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 16 25 NOV 15 DEC	DIS- SOLVED (UG/L AS NI) (01065) 3.49 3.18 3.61	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <2.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.08 E.02	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703) 18.2 9.74	MENT, SUS- PENDED (MG/L) (80154) 272 119 201	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 23 .58
OCT 16 25 NOV 15 DEC 12 JAN 10	DIS- SOLVED (UG/L AS NI) (01065) 3.49 3.18 3.61 3.63	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.3 1.9 1.7 1.4	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <2.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 3010 1060 3260 3050 2660	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.08 E.02 .88 .07 <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 2.2 1.0 3.1 1.2 3.9	DIS- SOLVED (UG/L AS ZN) (01090) 4 3 5 7	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703) 18.2 9.74 18.4 19.8 9.48	MENT, SUS- PENDED (MG/L) (80154) 272 119 201 181 118	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 23 .58 .87 .59
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR	DIS- SOLVED (UG/L AS NI) (01065) 3.49 3.18 3.61 3.63 1.78 2.38	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.3 1.9 1.7 1.4	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <2.0 <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 3010 1060 3260 3050 2660 2700	LIUM, DIS- SOIVED (UG/L AS TL) (01057) <.08 E.02 .88 .07 <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 2.2 1.0 3.1 1.2 3.9 4.4	DIS- SOLVED (UG/L AS ZN) (01090) 4 3 5 7 3	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703) 18.2 9.74 18.4 19.8 9.48	MENT, SUS- PENDED (MG/L) (80154) 272 119 201 181 118 63	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 23 .58 .87 .59 .48
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14	DIS- SOLVED (UG/L AS NI) (01065) 3.49 3.18 3.61 3.63	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.3 1.9 1.7 1.4	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <2.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 3010 1060 3260 3050 2660	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.08 E.02 .88 .07 <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 2.2 1.0 3.1 1.2 3.9	DIS- SOLVED (UG/L AS ZN) (01090) 4 3 5 7	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703) 18.2 9.74 18.4 19.8 9.48	MENT, SUS- PENDED (MG/L) (80154) 272 119 201 181 118	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 23 .58 .87 .59
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12	DIS- SOLVED (UG/L AS NI) (01065) 3.49 3.18 3.61 3.63 1.78 2.38 1.57	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.3 1.9 1.7 1.4 .7	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <2.0 <1.0 <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 3010 1060 3260 3050 2660 2700 364	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.08 E.02 .88 .07 <.04 <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 2.2 1.0 3.1 1.2 3.9 4.4	DIS- SOLVED (UG/L AS ZN) (01090) 4 3 5 7 3 6	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703) 18.2 9.74 18.4 19.8 9.48 17.8 2.01	MENT, SUS- PENDED (MG/L) (80154) 272 119 201 181 118 63 145	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 23 .58 .87 .59 .48 .27
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12 MAY 08	DIS- SOLVED (UG/L AS NI) (01065) 3.49 3.18 3.61 3.63 1.78 2.38 1.57 2.60	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.3 1.9 1.7 1.4 .7 1.8 .5 .9	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 3010 1060 3260 3050 2660 2700 364 667	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.08 E.02 .88 .07 <.04 <.04 E.03 <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 2.2 1.0 3.1 1.2 3.9 4.4 1.4	DIS- SOLVED (UG/L AS ZN) (01090) 4 3 5 7 3 6 6	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703) 18.2 9.74 18.4 19.8 9.48 17.8 2.01 5.40	MENT, SUS- PENDED (MG/L) (80154) 272 119 201 181 118 63 145 283	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 23 .58 .87 .59 .48 .27
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12 MAY 08 JUN 06	DIS- SOLVED (UG/L AS NI) (01065) 3.49 3.18 3.61 3.63 1.78 2.38 1.57 2.60 2.69	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.3 1.9 1.7 1.4 .7 1.8	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 3010 1060 3260 3050 2660 2700 364 667	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.08 E.02 .88 .07 <.04 <.04 E.03 <.04 .05	DIUM, DIS- SOLVED (UG/L AS V) (01085) 2.2 1.0 3.1 1.2 3.9 4.4 1.4 1.8	DIS- SOLVED (UG/L AS ZN) (01090) 4 3 5 7 3 6 6 6 6	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) 27	NATURAL DIS- SOLVED (UG/L AS U) (22703) 18.2 9.74 18.4 19.8 9.48 17.8 2.01 5.40 16.9	MENT, SUS- PENDED (MG/L) (80154) 272 119 201 181 118 63 145 283 376	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 23 .58 .87 .59 .48 .27 25 53
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12 MAY 08 JUN 06 JUL 13 25	DIS- SOLVED (UG/L AS NI) (01065) 3.49 3.18 3.61 3.63 1.78 2.38 1.57 2.60 2.69 2.01	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 9 13	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.3 1.9 1.7 1.4 .7 1.8 .5 .9 1.4	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 3010 1060 3260 2700 2660 2700 364 667 1390 2180	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.08 E.02 .88 .07 <.04 <.04 E.03 <.04 .05 .07	DIUM, DIS- SOLVED (UG/L AS V) (01085) 2.2 1.0 3.1 1.2 3.9 4.4 1.8 3.2 2.3	DIS- SOLVED (UG/L AS ZN) (01090) 4 3 5 7 3 6 6 6 6 6 8	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) 27 6	NATURAL DIS- SOLVED (UG/L AS U) (22703) 18.2 9.74 18.4 19.8 9.48 17.8 2.01 5.40 16.9 18.8	MENT, SUS- PENDED (MG/L) (80154) 272 119 201 181 118 63 145 283 376 54	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 23 .58 .87 .59 .48 .27 25 53 15
OCT 16 25 NOV 15 DEC 12 JAN 10 FEB 15 MAR 05 14 APR 12 MAY 08 JUN 06 JUN 06 JUL 13	DIS- SOLVED (UG/L AS NI) (01065) 3.49 3.18 3.61 3.63 1.78 2.38 1.57 2.60 2.69 2.01 1.60 1.88	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 5 13 5 6	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.3 1.9 1.7 1.4 .7 1.8 .5 .9 1.4 1.1	NIUM, TOTAL (UG/L AS SE) (01147) 1.7 1.5 1.9 2.3	DIS- SOLVED (UG/L AS AG) (01075) <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 3010 1060 3260 2700 2660 2700 364 667 1390 2180 2500 2080	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.08 E.02 .88 .07 <.04 <.04 E.03 <.04 .05 .07 <.08 .07	DIUM, DIS- SOLVED (UG/L AS V) (01085) 2.2 1.0 3.1 1.2 3.9 4.4 1.8 3.2 2.3 .9	DIS- SOLVED (UG/L AS ZN) (01090) 4 3 5 7 3 6 6 6 6 6 8 7	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) 27 6 9 11	NATURAL DIS- SOLVED (UG/L AS U) (22703) 18.2 9.74 18.4 19.8 9.48 17.8 2.01 5.40 16.9 18.8 15.0 11.5	MENT, SUS- PENDED (MG/L) (80154) 272 119 201 181 118 63 145 283 376 54 101	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 23 .58 .87 .59 .48 .27 25 53 15 .68 .88 .88

 $[\]tt E$ -- Estimated value. M -- Presence verified, not quantified. k -- Counts outside acceptable range (n0n-ideal colony count).

YELLOWSTONE RIVER BASIN Fixed Station Network

06326500 POWDER RIVER NEAR LOCATE, MT (LAT 46 25 48 LONG 105 18 34)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
OCT 25 NOV	0830	119	43	690	11.3	103	8.5	1820	7.0	7.0	530	121	54.6
28	0830	E90	92	699	11.3	85	8.0	2230	-1.0	.00	680	154	72.1
DEC 14	1300	E70		695	11.4	86	7.8	2280	-11.0	.00	750	170	78.2
JAN 04	1500	E100	20	700	8.4	64	7.9	2180	5.0	.00	680	160	68.8
FEB 07	1500	840	14	701	11.8	88	7.9	1990	-15.0	.00	630	150	62.4
MAR 28	1500	E550	950	690	12.7	116	8.4	2020	11.5	7.0		133	56.0
APR 17	0900	314	880	705	11.3	95	8.3	2570	10.0	4.5	640	143	67.4
MAY 24	0800	36	5.7	703	12.3	119	8.0	2550	17.0	10.0	620	130	70.8
JUN 27	0830	69		698	8.3	103	8.3	2940	27.0	21.0	670	138	79.0
JUL 17	1400	603	>1000	695	7.1	99	8.0	2100	30.0	27.0	580	135	58.2
AUG 22	0945	6.8	1.4	697	10.1	138	8.1	2710	28.5	26.3	570	121	64.0
SEP 27	1300	7.8		699	9.8	123	8.3	2900	17.0	22.0	480	108	51.6
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 25	SIUM, DIS- SOLVED (MG/L AS K)	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	BONATE WATER DIS IT FIELD MG/L AS HCO3	BONATE WATER DIS IT FIELD MG/L AS CO3	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT 25 NOV 28	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 25 NOV 28 DEC 14	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 25 NOV 28 DEC 14 JAN 04	SIUM, DIS- SOLVED (MG/L AS K) (00935) 6.80 7.48	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 212 308	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 78.0 84.5	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07	SIUM, DIS- SOLVED (MG/L AS K) (00935) 6.80 7.48 7.54	AD- SORP- TION RATIO (00931) 4 4	DIS- SOLVED (MG/L AS NA) (00930) 210 252 282	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 212 308 350	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 259 376 427	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 78.0 84.5	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 6.2 10.2	DIS- SOLVED (MG/L AS SO4) (00945) 667 821 802	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1350 1730
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR 28	SIUM, DIS- SOLVED (MG/L AS K) (00935) 6.80 7.48 7.54	AD- SORP- TION RATIO (00931) 4 4 4	DIS- SOLVED (MG/L AS NA) (00930) 210 252 282 253	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 212 308 350 322	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 259 376 427 393	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 78.0 84.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) .4 .3 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 6.2 10.2 12.1	DIS- SOLVED (MG/L AS SO4) (00945) 667 821 802 746	DIS- SOLVED (TONS PER AC-FT) (70303) 2.36 2.37 2.27	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1350 1730 1740
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR 28 APR 17	SIUM, DIS- SOLVED (MG/L AS K) (00935) 6.80 7.48 7.54 7.27 6.67	AD- SORP- TION RATIO (00931) 4 4 4	DIS- SOLVED (MG/L AS NA) (00930) 210 252 282 253 235	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 212 308 350 322 284	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 259 376 427 393 346	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 78.0 84.5 100 105	RIDE, DIS- SOLVED (MG/L AS F) (00950) .4 .3 .4 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 6.2 10.2 12.1 12.1	DIS- SOLVED (MG/L AS SO4) (00945) 667 821 802 746 688	DIS- SOLVED (TONS PER AC-FT) (70303) 2.36 2.37 2.27	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1350 1730 1740 1670
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR 28 APR 17 MAY 24	SIUM, DIS- SOLVED (MG/L AS K) (00935) 6.80 7.48 7.54 7.27 6.67	AD- SORP- TION RATIO (00931) 4 4 4 4	DIS- SOLVED (MG/L AS NA) (00930) 210 252 282 253 235 236	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 212 308 350 322 284 208	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 259 376 427 393 346 249	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 78.0 84.5 100 105 82.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) .4 .3 .4 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 6.2 10.2 12.1 12.1 17.5	DIS- SOLVED (MG/L AS SO4) (00945) 667 821 802 746 688 756	DIS- SOLVED (TONS PER AC-FT) (70303) 2.36 2.37 2.27 2.12	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1350 1730 1740 1670 1560
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR 28 APR 17 MAY 24 JUN 27	SIUM, DIS- SOLVED (MG/L AS K) (00935) 6.80 7.48 7.54 7.27 6.67 6.54 8.49	AD- SORP- TION RATIO (00931) 4 4 4 4 4 4	DIS- SOLVED (MG/L AS NA) (00930) 210 252 282 253 235 236 339	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 212 308 350 322 284 208 254	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 259 376 427 393 346 249 295	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2 7	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 78.0 84.5 100 105 82.5	RIDE, DIS- SOLVED (MG/L AS F) (00950) .4 .3 .4 .4 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 6.2 10.2 12.1 12.1 10.1 7.5	DIS- SOLVED (MG/L AS SO4) (00945) 667 821 802 746 688 756	DIS- SOLVED (TONS PER AC-FT) (70303) 2.36 2.37 2.27 2.12 2.69	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1350 1730 1740 1670 1560 1530
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR 28 APR 17 MAY 24 JUN 27 JUL 17	SIUM, DIS- SOLVED (MG/L AS K) (00935) 6.80 7.48 7.54 7.27 6.67 6.54 8.49 9.27	AD- SORP- TION RATIO (00931) 4 4 4 4 4 7	DIS- SOLVED (MG/L AS NA) (00930) 210 252 282 253 235 236 339 378	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 212 308 350 322 284 208 254 270	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 259 376 427 393 346 249 295 325	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452) 2 7 2	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 78.0 84.5 100 105 105 82.5 122 97.3	RIDE, DIS- SOLVED (MG/L AS F) (00950) .4 .3 .4 .4 .4 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 6.2 10.2 12.1 12.1 10.1 7.5 8.1 12.7	DIS- SOLVED (MG/L AS SO4) (00945) 667 821 802 746 688 756 1010	DIS- SOLVED (TONS PER AC-FT) (70303) 2.36 2.37 2.27 2.12 2.69 2.65	DIS- SOLVED (TONS PER DAY) (70302) 3530 1680 190	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1350 1740 1670 1560 1530 1980
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR 28 APR 17 MAY 24 JUN 27 JUL	SIUM, DIS- SOLVED (MG/L AS K) (00935) 6.80 7.48 7.54 7.27 6.67 6.54 8.49 9.27	AD- SORP- TION RATIO (00931) 4 4 4 4 4 6 7	DIS- SOLVED (MG/L AS NA) (00930) 210 252 282 253 235 236 339 378 435	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 212 308 350 322 284 208 254 270 216	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 259 376 427 393 346 249 295 325 259	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 2 7 2 2	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 78.0 84.5 100 105 122 97.3	RIDE, DIS- SOLVED (MG/L AS F) (00950) .4 .3 .4 .4 .4 .4 .4	DIS- SOLVED (MG/L AS SIO2) (00955) 6.2 10.2 12.1 12.1 12.1 10.1 7.5 8.1 12.7 11.7	DIS- SOLVED (MG/L AS SO4) (00945) 667 821 802 746 688 756 1010 1000	DIS- SOLVED (TONS PER AC-FT) (70303) 2.36 2.37 2.27 2.12 2.69 2.65 3.05	DIS- SOLVED (TONS PER DAY) (70302) 3530 1680 190 417	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 1350 1730 1740 1670 1560 1530 1980 1950

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

06326500 POWDER RIVER NEAR LOCATE, MT (LAT 46 25 48 LONG 105 18 34)

DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN,PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)
OCT 25		<.041	.21	.48	<.047	<.006		<.006		.099		4.4	1.7
NOV 28	1590	E.034	.31	.42	.186	<.006		<.006	<.018	.058		4.9	.6
DEC 14	1670	.041	.25	.58	.307	<.006		E.005	<.018	.033		4.4	.5
JAN 04 FEB	1550	.075	.24	.35	.373	E.005	.046	E.004	<.018	.021	.6	3.6	
07	1430	<.041	.26	.26	.375	<.006		<.006	<.018	.029		4.1	
MAR 28		.057	.27	1.3	.414	E.004	.396	.009	<.018	.489	4.6	4.3	
APR 17	1860	<.041	.24	1.1	.287	<.006	.798	.011	<.018	.345	8.7	4.8	
MAY 24	1860	<.040	.20	.26	.401	<.006	.070	<.006	<.020	.016	.5	5.0	
JUN 27	2140	<.040	.31	.59	<.050	<.006	.237	E.004	<.020	.080	2.4	6.0	
JUL 17	1490	<.040	.40	30	1.58	E.003	29	.014	<.020	12.1	300	7.6	
AUG 22	1960	<.040	.30	.30	<.050	<.006	.034	<.006	<.020	.008	.3	5.4	
SEP 27	2060	<.040	.27	.39	<.050	<.006	.107	E.003	<.020	.045	.9	6.3	
DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	BORON, TOTAL RECOV- ERABLE (UG/L AS B) (01022)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)
OCT 25	MTEC MF WATER (COL/ 100 ML)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	INUM, DIS- SOLVED (UG/L AS AL)	MONY, DIS- SOLVED (UG/L AS SB)	DIS- SOLVED (UG/L AS AS)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS BA)	TOTAL RECOV- ERABLE (UG/L AS BA)	LIUM, DIS- SOLVED (UG/L AS BE)	DIS- SOLVED (UG/L AS B)	TOTAL RECOV- ERABLE (UG/L AS B)	DIS- SOLVED (UG/L AS CD)	WATER UNFLTRD TOTAL (UG/L AS CD)
OCT 25 NOV 28	MTEC MF WATER (COL/ 100 ML) (31633)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS B) (01020)	TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)
OCT 25 NOV 28 DEC 14	MTEC MF WATER (COL/ 100 ML) (31633)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005)	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS B) (01020)	TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025)	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)
OCT 25 NOV 28 DEC 14 JAN 04	MTEC MF WATER (COL/ 100 ML) (31633) E37k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35 E27k	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 44.0	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06	DIS- SOLVED (UG/L AS B) (01020)	TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025) E.02	WATER UNFLTRD TOTAL (UG/L AS CD) (01027)
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07	MTEC MF WATER (COL/ 100 ML) (31633) E37k 21 E25k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35 E27k E18k	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095) .18 .10	DIS- SOLVED (UG/L AS AS) (01000) .7 .8	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 44.0 55.5	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 166 180 200	TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025) E.02 E.03	WATER UNFLIRD TOTAL (UG/L AS CD) (01027)
OCT 25 NOV 28 DEC 14 JAN 04 FEB	MTEC MF WATER (COL/ 100 ML) (31633) E37k 21 E25k E10k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35 E27k E18k	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095) .18 .10 .07	DIS- SOLVED (UG/L AS AS) (01000) .7 .8 .7	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 44.0 55.5 53.8 47.7	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 166 180 200	TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025) E.02 E.03 E.03	WATER UNFLIRD TOTAL (UG/L AS CD) (01027)
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR	MTEC MF WATER (COL/ 100 ML) (31633) E37k 21 E25k E10k 30	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35 E27k E18k E11k 39	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 2 2 1	MONY, DIS- SOLVED (UG/L AS SB) (01095) .18 .10 .07 .10	DIS- SOLVED (UG/L AS AS) (01000) .7 .8 .7 .5	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 44.0 55.5 53.8 47.7	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 166 180 200 199	TOTAL RECOV- ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025) E.02 E.03 E.03 <.04	WATER UNFLIRD TOTAL (UG/L AS CD) (01027)
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR 28	MTEC MF WATER (COL/ 100 ML) (31633) E37k 21 E25k E10k 30 <2	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35 E27k E18k E11k 39	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 2 2 1 5	MONY, DIS- SOLVED (UG/L AS SB) (01095) .18 .10 .07 .10	DIS- SOLVED (UG/L AS AS) (01000) .7 .8 .7 .5	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 44.0 55.5 53.8 47.7	TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 166 180 200 199 176	TOTAL RECOV- ERABLE (UG/L AS B) (01022) 162	DIS- SOLVED (UG/L AS CD) (01025) E.02 E.03 E.03 <.04 E.02	WATER UNFLIRD TOTAL (UG/L AS CD) (01027)
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR 28 APR 17	MTEC MF WATER (COL/ 100 ML) (31633) E37k 21 E25k E10k 30 <22 <5	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35 E27k E18k E11k 39 E10k E10k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 2 2 1 5	MONY, DIS- SOLVED (UG/L AS SB) (01095) .18 .10 .07 .10	DIS- SOLVED (UG/L AS AS) (01000) .7 .8 .7 .5 .7	TOTAL (UG/L AS AS) (01002) 6 5	DIS- SOLVED (UG/L AS BA) (01005) 44.0 55.5 53.8 47.7 40.4 	TOTAL RECOV-ERABLE (UG/L AS BA) (01007)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 166 180 200 199 176 237	TOTAL RECOV-ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025) E.02 E.03 E.03 <.04 E.02	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) 35
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR 28 APR 17 MAY 24 JUN 27 JUN 27 JUL 17	MTEC MF WATER (COL/ 100 ML) (31633) E37k 21 E25k E10k 30 <22 <5 27	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35 E27k E18k E11k 39 E10k E10k 34	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 2 2 1 5 2	MONY, DIS- SOLVED (UG/L AS SB) (01095) .18 .10 .07 .10 .1031	DIS- SOLVED (UG/L AS AS) (01000) .7 .8 .7 .5 .7 	TOTAL (UG/L AS AS) (01002)	DIS- SOLVED (UG/L AS BA) (01005) 44.0 55.5 53.8 47.7 40.4 48.1 45.3	TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 165 138 44.3	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 166 180 200 199 176 237 202	TOTAL RECOV-ERABLE (UG/L AS B) (01022)	DIS- SOLIVED (UG/L AS CD) (01025) E.02 E.03 E.03 <.04 E.02 <.04	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) 35 .23
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR 28 APR 17 MAY 24 JUN 27	MTEC MF WATER (COL/ 100 ML) (31633) E37k 21 E25k E10k 30 <2 <5 27 660	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) 35 E27k E18k E11k 39 E10k E10k 34 260	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 2 2 1 5 2 <2 3	MONY, DIS- SOLVED (UG/L AS SB) (01095) .18 .10 .07 .10 .1031 .21	DIS- SOLVED (UG/L AS AS) (01000) .7 .8 .7 .5 .7 1.2	TOTAL (UG/L AS AS) (01002) 6 5 <2 E1	DIS- SOLVED (UG/L AS BA) (01005) 44.0 55.5 53.8 47.7 40.4 48.1 45.3	TOTAL RECOV-ERABLE (UG/L AS BA) (01007) 165 138 44.3	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 166 180 200 199 176 237 202 268	TOTAL RECOV-ERABLE (UG/L AS B) (01022)	DIS- SOLVED (UG/L AS CD) (01025) E.02 E.03 E.03 <.04 E.02 <.04 <.07	WATER UNFLIRD TOTAL (UG/L AS CD) (01027) 35 .23 .06 E.05

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

06326500 POWDER RIVER NEAR LOCATE, MT (LAT 46 25 48 LONG 105 18 34)

DATE	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)
OCT 25	1.0		.26	3.3		<10		<.08		55.4	1.5		3.6
NOV 28	<.8		.30	4.2		<30		<.08		65.7	2.8		2.6
DEC 14	<.8		.39	4.2		<30		E.07		67.6	3.7		2.4
JAN 04	<.8		.34	3.5		<30		E.06		66.3	5.0		2.0
FEB 07	<.8		.39	4.0		<10		<.08		63.9	4.6		2.0
MAR 28 APR	<.8	6			14.6		11900		7			368	
17 MAY	<.8	5	.36	6.4	11.5	<10	8730	.10	6	102	1.8	271	3.6
24 JUN	E.5	<1	.29	5.0	9.7	<10	80	<.20	<1	68.1	10.3	15	3.8
27 JUL	E.7	1	.31	8.7	5.8	<30	1030	.20	<2	94.3	1.0	39	5.0
17 AUG	<.8	125	.20	7.7	199	<30	181000	<.08	191	69.0	.2	8930	5.8
22 SEP	<.8	<1	.22	9.1	3.5	<30	80	<.20	<2	63.0	7.8	16	4.7
27	<.8	М	. 29	2.8	5.1	<30	660	<.20	<2	63.4	14.4	39	5.1
DATE	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT	DIS- SOLVED (UG/L AS NI) (01065)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703)	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 25 NOV	DIS- SOLVED (UG/L AS NI) (01065)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	LIUM, DIS- SOLVED (UG/L AS TL) (01057)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703)	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
OCT 25 NOV 28 DEC	DIS- SOLVED (UG/L AS NI) (01065)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1250	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703) 10.2	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 25 NOV 28 DEC 14 JAN	DIS- SOLVED (UG/L AS NI) (01065) 1.38 1.48 2.05	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.5 1.9	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1250 1670 1830	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04 <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 1.2 1.1	DIS- SOLVED (UG/L AS ZN) (01090)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703) 10.2 12.2	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 25 NOV 28 DEC 14	DIS- SOLVED (UG/L AS NI) (01065)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1250	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04 <.04 E.03	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703) 10.2	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 25 NOV 28 DEC 14 JAN 04 FEB	DIS- SOLVED (UG/L AS NI) (01065) 1.38 1.48 2.05	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.5 1.9 1.9	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1250 1670 1830	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04 <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 1.2 1.1	DIS- SOLVED (UG/L AS ZN) (01090) 2 3 3	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703) 10.2 12.2 12.7 11.2	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR	DIS- SOLVED (UG/L AS NI) (01065) 1.38 1.48 2.05 .80 3.65	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.5 1.9 1.9 1.6	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1250 1670 1830 1800	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04 <.04 E.03 <.04 <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 1.2 1.1 1.5 .7	DIS- SOLVED (UG/L AS ZN) (01090) 2 3 3 3	TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	NATURAL DIS- SOLVED (UG/L AS U) (22703) 10.2 12.2 12.7 11.2 9.93	MENT, SUS- PENDED (MG/L) (80154) 166 128 135 40	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR 28 APR 17 MAY 24	DIS- SOLVED (UG/L AS NI) (01065) 1.38 1.48 2.05 .80 3.65	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.5 1.9 1.6 2.1	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1250 1670 1830 1800	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04 <.04 E.03 <.04 <.04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 1.2 1.1 1.5 .7	DIS- SOLVED (UG/L AS ZN) (01090) 2 3 3 4	TOTAL RECOV- REABLE (UG/L AS ZN) (01092) 41	NATURAL DIS- SOLVED (UG/L AS U) (22703) 10.2 12.2 12.7 11.2 9.93	MENT, SUS- PENDED (MG/L) (80154) 166 128 135 40 76	MENT, DIS- DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 53 172
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR 28 APR 17 MAY 24 JUN 27	DIS- SOLVED (UG/L AS NI) (01065) 1.38 1.48 2.05 .80 3.65 1.02	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 19 17	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.5 1.9 1.6 2.1	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1250 1670 1830 1800 1610	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04 <.04 E.03 <.04 .04	DIUM, DIS- SOLVED (UG/L AS V) (01085) 1.2 1.1 1.5 .7	DIS- SOLVED (UG/L AS ZN) (01090) 2 3 3 4 6	TOTAL RECOV- REABLE (UG/L AS ZN) (01092) 41 34	NATURAL DIS- SOLVED (UG/L AS U) (22703) 10.2 12.2 12.7 11.2 9.93 13.2	MENT, SUS- PENDED (MG/L) (80154) 166 128 135 40 76 911	MENT, DIS- DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 53 172 629
OCT 25 NOV 28 DEC 14 JAN 04 FEB 07 MAR 28 APR 17 MAY 24 JUN 27 JUL 17	DIS- SOLVED (UG/L AS NI) (01065) 1.38 1.48 2.05 .80 3.65 1.02 2.00	TOTAL RECOV- REABLE (UG/L AS NI) (01067) 19 17 7	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.5 1.9 1.6 2.1 4.0	NIUM, TOTAL (UG/L AS SE) (01147)	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1250 1670 1830 1610 1770	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04 <.04 E.03 <.04 <.0404 .18	DIUM, DIS- SOLVED (UG/L AS V) (01085) 1.2 1.1 1.5 .7 1.9 2.6	DIS- SOLVED (UG/L AS ZN) (01090) 2 3 3 3 4 6 4	TOTAL RECOV- REABLE (UG/L AS ZN) (01092) 41 34 5	NATURAL DIS- SOLVED (UG/L AS U) (22703) 10.2 12.2 12.7 11.2 9.93 13.2	MENT, SUS- PENDED (MG/L) (80154) 166 128 135 40 76 911 742 40	MENT, DIS- DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 53 172 629 3.9 28
OCT	DIS- SOLVED (UG/L AS NI) (01065) 1.38 1.48 2.05 .80 3.65 1.02 2.00 2.68	TOTAL RECOV-ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) 1.5 1.9 1.6 2.1 4.0 1.3 1.8	NIUM, TOTAL (UG/L AS SE) (01147) 3.1 3.6 2.1 2.2	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 <1.0 <1.0 <2.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 1250 1670 1830 1800 1610 1770 1640	LIUM, DIS- SOLVED (UG/L AS TL) (01057) <.04 <.04 E.03 <.04 <.040418 <.08	DIUM, DIS- SOLVED (UG/L AS V) (01085) 1.2 1.1 1.5 .7 1.9 2.6 1.5 1.4	DIS- SOLVED (UG/L AS ZN) (01090) 2 3 3 4 6 4 5	TOTAL RECOV- RECOV- ERABLE (UG/L AS ZN) (01092) 41 34 5 8	NATURAL DIS- SOLVED (UG/L AS U) (22703) 10.2 12.2 12.7 11.2 9.93 13.2 13.3 12.9	MENT, SUS- PENDED (MG/L) (80154) 166 128 135 40 76 911 742 40	MENT, DIS- DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 53 172 629 3.9 28

E -- Estimated value. M -- Presence verified, not quantified. k -- Counts outside acceptable range (non-ideal colony count). n -- Below the NDV.

YELLOWSTONE RIVER BASIN Fixed Station Network

06329500 YELLOWSTONE RIVER NEAR SIDNEY, MT (LAT 47 40 42 LONG 104 09 22)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
OCT 25	1400	6450	11	626	9.8	106	8.6	698	11.0	10.0	240	57.3	23.2
NOV 20	1300	4970		721	13.7	99	8.3	727	-2.0	.00	280	68.7	26.9
DEC 07	1200	6020	20	711	13.4	99	8.4	767	.00	.00	260	62.9	24.2
JAN 04	0900	6320	12	707	13.3	98	8.2	777	4.0	.00	260	64.9	23.7
FEB 07	0900	7340	11	717	14.3	105	7.9	758	-10.0	.00	270	66.5	24.4
MAR 28	0900	7280	450	707	14.5	107	8.0	808	2.0	.00	240	58.7	23.4
APR 16	1600	5760	230	715	11.3	100	8.4	952	6.0	7.0	300	70.7	29.3
MAY 23	1800	11300	99	709	10.1	108	8.0	306	21.0	15.0	100	27.1	8.77
JUN 26	1700	14200	67	716	8.7	111	8.4	383	26.0	24.0	120	29.1	10.8
JUL 17	0900	6110	170	706	7.1	95	8.6	550	25.0	26.0	180	43.4	16.4
AUG 21	2015	1230	27	627			8.3	888	29.0	25.5	260	58.1	28.3
SEP 26	1900	3440		709	9.8	111	8.4	767	25.0	18.0	220	49.6	24.4
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM AD- SORP- TION RATIO (00931)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 25	SIUM, DIS- SOLVED (MG/L AS K)	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS NA)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	BONATE WATER DIS IT FIELD MG/L AS HCO3	BONATE WATER DIS IT FIELD MG/L AS CO3	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
OCT 25 NOV 20	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 25 NOV 20 DEC 07	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
OCT 25 NOV 20 DEC 07 JAN 04	SIUM, DIS- SOLVED (MG/L AS K) (00935)	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 61.0	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302) 7850	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 451 575
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.76 4.01	AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 61.0 73.6 61.9	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 165 195	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 202 238	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 9.9 12.0	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 10.8	DIS- SOLVED (MG/L AS SO4) (00945) 187 230 201	DIS- SOLVED (TONS PER AC-FT) (70303) .61 .78	DIS- SOLVED (TONS PER DAY) (70302) 7850 7720 8160	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 451 575
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.76 4.01 3.57 3.77	AD-SORP-TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 61.0 73.6 61.9	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 165 195 182	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 202 238 222	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 9.9 12.0 11.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 10.8 9.9	DIS- SOLVED (MG/L AS SO4) (00945) 187 230 201	DIS- SOLVED (TONS PER AC-FT) (70303) .61 .78 .68	DIS- SOLVED (TONS PER DAY) (70302) 7850 7720 8160 8910	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 451 575 502
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.76 4.01 3.57 3.77 3.67	AD-SORP-TION RATIO (00931)	DIS- SOLVED (MG/L AS NA) (00930) 61.0 73.6 61.9 60.1 62.8	LINITY WAT DIS TOT IT FIELD MG/L AS CACC3 (39086) 165 195 182 188	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 202 238 222 229	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 9.9 12.0 11.0 12.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 10.8 9.9 12.3	DIS- SOLVED (MG/L AS SO4) (00945) 187 230 201 202 213	DIS- SOLVED (TONS PER AC-FT) (70303) .61 .78 .68 .71	DIS- SOLVED (TONS PER DAY) (70302) 7850 7720 8160 8910	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 451 575 502 522 525
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.76 4.01 3.57 3.77 3.67	AD- SORP- TION RATIO (00931) 2 2 2 2 2 2	DIS- SOLVED (MG/L AS NA) (00930) 61.0 73.6 61.9 60.1 62.8 70.0	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 165 195 182 188 154	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 202 238 222 229 181	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452) 4	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 9.9 12.0 11.0 12.0 12.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 10.8 9.9 12.3 9.3 5.5	DIS- SOLVED (MG/L AS SO4) (00945) 187 230 201 202 213 235	DIS- SOLVED (TONS PER AC-FT) (70303) .61 .78 .68 .71 .71	DIS- SOLVED (TONS PER DAY) (70302) 7850 7720 8160 8910 10400	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 451 575 502 522 525 552
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN 26	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.76 4.01 3.57 3.77 3.67 3.78 5.11	AD- SORP- TION RATIO (00931) 2 2 2 2 2 2 2	DIS- SOLVED (MG/L AS NA) (00930) 61.0 73.6 61.9 60.1 62.8 70.0	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 165 195 182 188 154 176	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 202 238 222 229 181 210	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 4 2	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 9.9 12.0 11.0 12.1 14.7 20.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 10.8 9.9 12.3 9.3 5.5	DIS- SOLVED (MG/L AS SO4) (00945) 187 230 201 202 213 235 303	DIS- SOLVED (TONS PER AC-FT) (70303) .61 .78 .68 .71 .71	DIS- SOLVED (TONS PER DAY) (70302) 7850 7720 8160 8910 10400 10900	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 451 575 502 522 525 552 656
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN 26 JUL 17	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.76 4.01 3.57 3.77 3.67 3.78 5.11	AD- SORP- TION RATIO (00931) 2 2 2 2 2 2 2 2 2 3	DIS- SOLVED (MG/L AS NA) (00930) 61.0 73.6 61.9 60.1 62.8 70.0	LINITY WAT DIS TOT IT FIELD MG/L AS CACCO3 (39086) 165 195 182 188 154 176 75	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 202 238 222 229 181 210 92	BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452) 4 2	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 9.9 12.0 11.0 12.1 14.7 20.1	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .5 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 10.8 9.9 12.3 9.3 5.5 7.6	DIS- SOLVED (MG/L AS SO4) (00945) 187 230 201 202 213 235 303 62.4	DIS- SOLVED (TONS PER AC-FT) (70303) .61 .78 .68 .71 .71 .75 .89	DIS- SOLVED (TONS PER DAY) (70302) 7850 7720 8160 8910 10400 10900 10200 6100	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 451 575 502 522 522 525 552 656 200
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN 26 JUL 17 AUG 21	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.76 4.01 3.57 3.77 3.67 3.78 5.11 1.96 2.26	AD- SORP- TION RATIO (00931) 2 2 2 2 2 2 2 2 3 .9	DIS- SOLVED (MG/L AS NA) (00930) 61.0 73.6 61.9 60.1 62.8 70.0 101 22.1	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 165 195 182 188 154 176 75 96	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 202 238 222 229 181 210 92 116	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 4 2 1	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 9.9 12.0 11.0 12.1 14.7 20.1 4.2 5.0	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .5 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 10.8 9.9 12.3 9.3 5.5 7.6 11.8 8.4	DIS- SOLVED (MG/L AS SO4) (00945) 187 230 201 202 213 235 303 62.4 85.7	DIS- SOLVED (TONS PER AC-FT) (70303) .61 .78 .68 .71 .71 .75 .89 .27	DIS- SOLVED (TONS PER DAY) (70302) 7850 7720 8160 8910 10400 10900 10200 6100 9200	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 451 575 502 522 525 552 656 200 240
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN 26 JUL 17 AUG	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.76 4.01 3.57 3.77 3.67 3.78 5.11 1.96 2.26 3.45	AD- SORP- TION RATIO (00931) 2 2 2 2 2 2 2 2 2 2 2 2 2	DIS- SOLVED (MG/L AS NA) (00930) 61.0 73.6 61.9 60.1 62.8 70.0 101 22.1 29.2 46.7	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 165 195 182 188 154 176 75 96 131	BONATE WATER WATER DIS IT FIELD MG/L AS HCO3 (00453) 202 238 222 229 181 210 92 116 137	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 4 2 1 11	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 9.9 12.0 11.0 12.1 14.7 20.1 4.2 5.0 6.8	RIDE, DIS- SOLVED (MG/L AS F) (00950) .5 .5 .5 .5 .5	DIS- SOLVED (MG/L AS SIO2) (00955) 3.9 10.8 9.9 12.3 9.3 5.5 7.6 11.8 8.4 9.0	DIS- SOLVED (MG/L AS SO4) (00945) 187 230 201 202 213 235 303 62.4 85.7 127	DIS- SOLVED (TONS PER AC-FT) (70303) .61 .78 .68 .71 .71 .75 .89 .27 .33	DIS-SOLVED (TONS PER DAY) (70302) 7850 7720 8160 8910 10400 10900 6100 9200 5870	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 451 575 502 522 525 552 656 200 240 356

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)
OCT 25 NOV	447	<.041	.17	.35	.112	.006		E.003	<.018	.030		2.8	.9
20	547	.059	.42	.30	.518	.006		.039	.024	.014		2.7	.3
DEC 07	492	<.041	.14	.20	.433	E.003		<.006	<.018	.021		3.4	.5
JAN 04	492	.094	.25	E.04	.593	.009	.052	<.006	<.018	.023	.5	2.3	
FEB 07	508	<.041	.21	.22	.482	<.006		E.003	<.018	.017		2.4	
MAR 28	505	.047	.23	1.0	.133	<.006	.367	.008	<.018	.328	3.2	2.9	
APR 16	645	<.041	.19	.70	.307	.006	.415	E.003	<.018	.160	3.2	3.3	
MAY 23	185	<.040	.18	.65	.195	.009	.420	.020	<.020	.199	4.1	4.3	
JUN 26	229	<.040	.13	.56	<.050	<.006	.498	E.003	<.020	.161	4.3	2.3	
JUL 17	332	<.040	.17	.58	E.023	<.006	.453	.006	<.020	.167	5.3	4.5	
AUG 21	543	<.040	.25	.32	E.024	<.006	.136	E.004	<.020	.030	1.0	4.6	
SEP 26	475	<.040	.21	.42	<.050	<.006	.159	E.004	<.020	.043	1.6	3.0	
DATE	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
ОСТ 25	MTEC MF WATER (COL/ 100 ML)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	INUM, DIS- SOLVED (UG/L AS AL)	MONY, DIS- SOLVED (UG/L AS SB)	DIS- SOLVED (UG/L AS AS)	DIS- SOLVED (UG/L AS BA)	LIUM, DIS- SOLVED (UG/L AS BE)	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS CD)	MIUM, DIS- SOLVED (UG/L AS CR)	DIS- SOLVED (UG/L AS CO)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE)
OCT 25 NOV 20	MTEC MF WATER (COL/ 100 ML) (31633)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)
OCT 25 NOV 20 DEC 07	MTEC MF WATER (COL/ 100 ML) (31633)	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)
OCT 25 NOV 20 DEC 07 JAN 04	MTEC MF WATER (COL/ 100 ML) (31633) E12k E15k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E3k E9k	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000) 4.4 4.4	DIS- SOLVED (UG/L AS BA) (01005) 52.2 66.4	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS CD) (01025) <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.6 <.8	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046) <10
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07	MTEC MF WATER (COL/ 100 ML) (31633) E12k E15k E4k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E3k E9k	INUM, DIS- SOLVED (UG/L AS AL) (01106)	MONY, DIS- SOLVED (UG/L AS SB) (01095)	DIS- SOLVED (UG/L AS AS) (01000) 4.4 4.4	DIS- SOLVED (UG/L AS BA) (01005) 52.2 66.4 55.5	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 154 194	DIS- SOLVED (UG/L AS CD) (01025) <.04 E.02	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.6 <.8	DIS- SOLVED (UG/L AS CO) (01035) .19 .22	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.8	DIS- SOLVED (UG/L AS FE) (01046) <10 <10
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28	MTEC MF WATER (COL/ 100 ML) (31633) E12k E15k E4k E8k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E3k E9k E1k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 2 1	MONY, DIS- SOLVED (UG/L AS SB) (01095) .23 .21 .20	DIS- SOLVED (UG/L AS AS) (01000) 4.4 4.4 4.4	DIS- SOLVED (UG/L AS BA) (01005) 52.2 66.4 55.5	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 154 194 162 182	DIS- SOLVED (UG/L AS CD) (01025) <.04 E.02 E.02	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.6 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .19 .22 .21 .18	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.8 1.7	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 <10
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16	MTEC MF WATER (COL/ 100 ML) (31633) E12k E15k E4k E8k	FORM, FECAL, 0.7 UM-MF (COLS., 100 ML) (31625) E3k E9k E1k E13k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 2 1 2	MONY, DIS- SOLVED (UG/L AS SB) (01095) .23 .21 .20 .19	DIS- SOLVED (UG/L AS AS) (01000) 4.4 4.4 4.4 4.8 6.1	DIS- SOLVED (UG/L AS BA) (01005) 52.2 66.4 55.5 56.7	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 154 194 162 182	DIS- SOLVED (UG/L AS CD) (01025) <.04 E.02 E.02 <.04 E.03	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.6 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .19 .22 .21 .18 .23	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.8 1.7 1.6	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 <10 <10
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23	MTEC MF WATER (COL/ 100 ML) (31633) E12k E15k E4k E8k E6k <2	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E3k E9k E1k E13k E7k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 2 1 2 1	MONY, DIS- SOLVED (UG/L AS SB) (01095) .23 .21 .20 .19	DIS- SOLVED (UG/L AS AS) (01000) 4.4 4.4 4.4 4.8 6.1 2.6	DIS- SOLVED (UG/L AS BA) (01005) 52.2 66.4 55.5 56.7 51.0	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 154 194 162 182 168	DIS- SOLVED (UG/L AS CD) (01025) <.04 E.02 E.02 <.04 E.03	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.6 <.8 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .19 .22 .21 .18 .23 .24	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.8 1.7 1.6 2.0 2.1	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 <10 <10 <10
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN 26	MTEC MF WATER (COL/ 100 ML) (31633) E12k E15k E4k E8k E6k <2	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E3k E9k E1k E13k E7k E5k E10k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 2 1 2 1 <1	MONY, DIS- SOIVED (UG/L AS SB) (01095) .23 .21 .20 .19 .18	DIS- SOLVED (UG/L AS AS) (01000) 4.4 4.4 4.4 4.8 6.1 2.6 4.1	DIS- SOLVED (UG/L AS BA) (01005) 52.2 66.4 55.5 56.7 51.0 47.7 56.0	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06 <.06 <.06	DIS- SOLVED (UG/L AS B) (01020) 154 194 162 182 168 162 218	DIS- SOLVED (UG/L AS CD) (01025) <.04 E.02 E.02 <.04 E.03 E.03	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.6 <.8 <.8 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .19 .22 .21 .18 .23 .24 .25	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.8 1.7 1.6 2.0 2.1 2.9	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 <10 <10 <10 <10
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN 26 JUL 17	MTEC MF WATER (COL/ 100 ML) (31633) E12k E15k E4k E8k E6k <2 <3 <2	FORM, FECAL, 0.7 0.7 UM-MF (COLS./ 100 ML) (31625) E3k E9k E1k E13k E7k E5k E10k E40k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 2 1 2 1 <1 5	MONY, DIS- SOLVED (UG/L AS SB) (01095) .23 .21 .20 .19 .18 .15 .27	DIS- SOLVED (UG/L AS AS) (01000) 4.4 4.4 4.8 6.1 2.6 4.1 4.4	DIS- SOLVED (UG/L AS BA) (01005) 52.2 66.4 55.5 56.7 51.0 47.7 56.0	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.0	DIS- SOLVED (UG/L AS B) (01020) 154 194 162 182 168 162 218	DIS- SOLVED (UG/L AS CD) (01025) <.04 E.02 <.04 E.03 E.03 E.03 E.02 <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.6 <.8 <.8 <.8 <.8 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .19 .22 .21 .18 .23 .24 .25	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.8 1.7 1.6 2.0 2.1 2.9 1.5	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 <10 <10 <10 <10
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN 26 JUL 17 AUG 21	MTEC MF WATER (COL/ 100 ML) (31633) E12k E15k E4k E8k E6k <2 <3 <2 E53k	FORM, FECAL, 0.7 UM-MF (COLS./100 ML) (31625) E3k E9k E1k E13k E7k E5k E10k E40k E40k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 2 1 2 1 <1 5 3	MONY, DIS- SOLVED (UG/L AS SB) (01095) .23 .21 .20 .19 .18 .15 .27	DIS- SOLVED (UG/L AS AS) (01000) 4.4 4.4 4.4 4.8 6.1 2.6 4.1 4.4	DIS- SOLVED (UG/L AS BA) (01005) 52.2 66.4 55.5 56.7 51.0 47.7 56.0 29.4	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.0	DIS- SOLVED (UG/L AS B) (01020) 154 194 162 182 168 162 218 64	DIS- SOLVED (UG/L AS CD) (01025) <.04 E.02 E.02 <.04 E.03 E.03 E.03 E.02 <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.6 <.8 <.8 <.8 <.8 <.8 E.5 E.4	DIS- SOLVED (UG/L AS CO) (01035) .19 .22 .21 .18 .23 .24 .25 .10	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.8 1.7 1.6 2.0 2.1 2.9 1.5	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 <10 <10 <10 <10
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN 26 JUL 17 AUG	MTEC MF WATER (COL/ 100 ML) (31633) E12k E15k E4k E8k E6k <2 <3 <2 E53k E26k	FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625) E3k E9k E1k E13k E7k E5k E10k E40k E40k	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 2 1 2 1 <1 5 3 3	MONY, DIS- SOLVED (UG/L AS SB) (01095) .23 .21 .20 .19 .18 .15 .27 .17	DIS- SOLIVED (UG/L AS AS) (01000) 4.4 4.4 4.8 6.1 2.6 4.1 4.4 4.3	DIS- SOLVED (UG/L AS BA) (01005) 52.2 66.4 55.5 56.7 51.0 47.7 56.0 29.4 30.4 48.1	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.0	DIS- SOLVED (UG/L AS B) (01020) 154 194 162 182 168 162 218 64 83 137	DIS- SOLVED (UG/L AS CD) (01025) <.04 E.02 <.04 E.03 E.03 E.03 E.03 <.04 <.04	MIUM, DIS- SOLVED (UG/L AS CR) (01030) E.6 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8	DIS- SOLVED (UG/L AS CO) (01035) .19 .22 .21 .18 .23 .24 .25 .10 .10 .13	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.8 1.7 1.6 2.0 2.1 2.9 1.5 1.7	DIS- SOLVED (UG/L AS FE) (01046) <10 <10 <10 <10 <10 <10 <10

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)
OCT 25	<.08	38.9	4.2	2.2	.64	1.1	<1.0	591	<.04	1.2	<1	<.002	<.004
NOV 20	<.08	48.0	7.1	2.6	1.38	1.6	<1.0	729	.36	1.3	1	<.002	<.004
DEC 07	<.08	43.2	5.1	2.1	2.29	1.5	<1.0	630	<.04	1.4	1	<.002	<.004
JAN 04	<.08	45.5	4.7	2.3	.94	1.5	<1.0	683	<.04	1.9	2	<.002	<.004
FEB 07	<.08	42.6	5.1	2.2	2.54	1.8	<1.0	673	<.04	2.5	2	<.002	<.004
MAR 28	<.08	42.2	6.6	1.9	1.50	1.1	<1.0	594	<.04	1.1	2	<.002	<.004
APR 16	<.08	65.9	3.1	2.3	.80	1.6	<1.0	807	E.03	2.4	2	<.002	<.004
MAY 23	<.08	17.2	2.3	1.1	.95	.5	<1.0	224	<.04	1.9	1	<.002	<.004
JUN 26	.09	22.8	. 4	1.3	.67	.6	<1.0	296	<.04	1.8	1	<.002	<.004
JUL 17	<.08	34.9	.5	2.1	.09	1.0	<1.0	447	<.04	2.4	1	<.002	<.004
AUG 21	<.08	43.6	15.7	2.8	.22	1.1	<1.0	698	<.04	1.6	2	<.002	<.004
SEP		43.1	2.7	2.4	.30	1.1	<1.0	603	<.04	1.0	7	<.002	<.004
26	E.07	43.1	2.7	2.4	.30	1.1	<1.0	003	<.04	1.0	,	<.002	<.004
DATE	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)
OCT 25	CHLOR, WATER, DISS, REC, (UG/L)	BHC DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L)	ATE, WATER, DISS, REC (UG/L)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	PYRIFOS DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	ATRA- ZINE, WATER, DISS, REC (UG/L)	AZINON, DIS- SOLVED (UG/L)	ELDRIN DIS- SOLVED (UG/L)
OCT 25 NOV 20	CHLOR, WATER, DISS, REC, (UG/L) (46342)	BHC DIS- SOLVED (UG/L) (34253)	ZINE, WATER, DISS, REC (UG/L) (39632)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933)	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, DIS- SOLVED (UG/L) (39572)	ELDRIN DIS- SOLVED (UG/L) (39381)
OCT 25 NOV 20 DEC 07	CHLOR, WATER, DISS, REC, (UG/L) (46342)	BHC DIS- SOLVED (UG/L) (34253)	ZINE, WATER, DISS, REC (UG/L) (39632)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	ATE, WATER, DISS, REC (UG/L) (04028)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933)	ZINE, WATER, DISS, REC (UG/L) (04041)	WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	AZINON, DIS- SOLVED (UG/L) (39572)	ELDRIN DIS- SOLVED (UG/L) (39381)
OCT 25 NOV 20 DEC 07 JAN 04	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	BHC DIS- SOLVED (UG/L) (34253) <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.005	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002	BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680) <.041	FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005	ZINE, WATER, DISS, REC (UG/L) (04041) E.007	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.004	AZINON, DIS- SOLVED (UG/L) (39572) <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005
OCT 25 NOV 20 DEC 07 JAN 04 FEB	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002	BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.005 E.006	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .020 < .020 < .020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) E.007 <.018	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.005	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005
OCT 25 NOV 20 DEC 07 JAN 04	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002	BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.005 E.006 E.006	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .020 < .020 < .020 < .020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) E.007 <.018 E.006 E.010	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.005 E.002	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002	BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.005 E.006 E.006	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041	FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) E.007 <.018 E.006 E.010	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.005 E.002 E.002	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002	BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.005 E.006 E.006 E.006	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) E.007 <.018 E.006 E.010 .021 <.018	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.005 E.002 E.004 E.003	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.005 E.006 E.006 E.006 .008 .013	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) E.007 <.018 E.006 E.010 .021 <.018	WATER FLTRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003	ATRA-ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.005 E.002 E.004 E.003 <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN 26 JUL	CHLOR, WATER, VATER, VISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.005 E.006 E.006 E.006 .008 .013 E.005 .055	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) E.007 <.018 E.006 E.010 .021 <.018 <.018 E.004 <.018	WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	ATRA-ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.005 E.002 E.004 E.003 <.006 E.003 <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN 26	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (39632) E.005 E.006 E.006 .008 .013 E.005	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041	FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020	PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ZINE, WATER, DISS, REC (UG/L) (04041) E.007 <.018 E.006 E.010 .021 <.018 <.018	WATER FILTRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.004 E.005 E.002 E.004 E.003 <.006	AZINON, DIS- SOLVED (UG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (UG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005

NATIONAL WATER-QUALITY ASSESSMENT PROGRAM--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)
OCT 25	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002
NOV 20	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002
DEC 07	<.021	<.020	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	E.001	<.006	<.002
JAN 04	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002
FEB 07	<.021	E.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	E.003	<.006	<.002
MAR 28	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002
APR 16	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	М	<.006	<.002
MAY 23	<.021	E.001	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	E.001	<.006	<.002
JUN 26	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002
JUL 17	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.050	.017	<.006	<.002
AUG 21	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	E.009	<.006	<.002
SEP 26	<.021	<.002	<.009	<.005	<.003	<.004	<.035	<.027	<.050	<.006	<.013	<.006	<.002
DATE	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)
DATE OCT 25	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	DDE DISSOLV (UG/L)	THION, DIS- SOLVED (UG/L)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	METON, WATER, DISS, REC (UG/L)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	CHLOR, WATER, DISS, REC (UG/L)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L)	MAZINE, WATER, DISS, REC (UG/L)
OCT	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	DDE DISSOLV (UG/L) (34653)	THION, DIS- SOLVED (UG/L) (39542)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	METON, WATER, DISS, REC (UG/L) (04037)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	CHLOR, WATER, DISS, REC (UG/L) (04024)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	MAZINE, WATER, DISS, REC (UG/L) (04035)
OCT 25 NOV 20 DEC 07	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	DDE DISSOLV (UG/L) (34653)	THION, DIS- SOLVED (UG/L) (39542)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	METON, WATER, DISS, REC (UG/L) (04037)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	CHLOR, WATER, DISS, REC (UG/L) (04024)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PARGITE WATER FLITRD 0.7 U GF, REC (UG/L) (82685)	MAZINE, WATER, DISS, REC (UG/L) (04035)
OCT 25 NOV 20 DEC 07 JAN 04	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007	DDE DISSOLV (UG/L) (34653) <.003	THION, DIS- SOLVED (UG/L) (39542) <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015	AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82676) <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010	PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679) <.011	PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007	DDE DISSOLV (UG/L) (34653) <.003 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006	WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) < .004 < .004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) < .007 < .007 < .007	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007	ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006	WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 E.003	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) < .004 < .004 < .004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007	ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006	WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 E.003	AMIDE WATER FLITED 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010	PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011	PARGITE WATER FLITED 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) < .007 < .007 < .007 < .007 < .007	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007 <.007	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 E.003 <.015	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023 <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011 <.011
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN 26	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007 <.007 <.007	ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006	WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 E.003 <.015 E.003 <.015 <.015	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011	PARGITE WATER FLIRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011 <.011 <.011
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN 26 JUN 17	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007 <.007 <.007 <.007	ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006	WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 E.003 <.015 E.003 <.015 <.015 <.015	AMIDE WATER FLITED 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	PANIL WATER FLIRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	PARGITE WATER FLITED 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023	MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011 <.011 <.011 <.011
OCT 25 NOV 20 DEC 07 JAN 04 FEB 07 MAR 28 APR 16 MAY 23 JUN 26 JUL	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003	THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007	ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.010 <.010 <.010 <.010	METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	METON, WATER, DISS, REC (UG/L) (04037) <.015 <.015 E.003 <.015 E.003 <.015 <.015 <.015 <.015	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023 <.023	MAZINE, WATER, WATER, DISS, REC (UG/L) (04035) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
OCT									
25	<.016	<.034	<.017	<.005	<.002	<.009	4.33	27	470
NOV 20	<.016	<.034	<.017	<.005	<.002	<.009	5.80	33	443
DEC	1.010	1.031	1.017	1.005	1.002	1.005	3.00	33	113
07	<.016	<.034	<.017	<.005	E.002	<.009	4.56	36	585
JAN 04	<.016	<.034	<.017	<.005	<.002	<.009	4.93	41	700
FEB		1.031		1.003		1.005	1.75		, 00
07	<.016	<.034	<.017	<.005	E.001	<.009	4.87	20	396
MAR	. 016	. 024	. 017		0.07	. 000	4 30	420	0.400
28 APR	<.016	<.034	<.017	<.005	.007	<.009	4.32	432	8490
16	<.016	<.034	<.017	<.005	E.002	<.009	5.70	226	3510
MAY									
23	<.016	<.034	<.017	<.005	E.002	<.009	1.44	220	6710
JUN 26	<.016	<.034	<.017	<.005	<.002	<.009	1.82	241	9240
JUL									
17	<.016	<.034	<.017	<.005	<.003	<.009	2.92	231	3810
AUG 21	<.016	<.034	<.017	<.005	<.002	<.009	5.22	28	93
SEP	<.010	~.UJ4	~.UI/	~.005	₹.002	~.009	5.22	20	23
26	<.016	<.034	<.017	<.005	<.002	<.009	4.42	49	455

E -- Estimated value. M -- Presence verified, not quantified. k -- Counts outside acceptable range (non-ideal colony count).

WIND RIVER ECOLOGY STUDY

YELLOWSTONE RIVER BASIN

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

06223750 -- WIND RIVER AB BULL LAKE CREEK, NR CROWHEART, WY (LAT 43 15 10 LONG 109 02 59)

DATE	TIME	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM (80173)	BED MAT. SIEVE DIAM. % FINER THAN 64.0 MM (80174)
AUG 10 13	0900 1000	60 	626 	8.3	8.6	311	22.5 BED	 4	 4	 4	 6	 21	 60

MAT.
SIEVE
DIAM.
FINER
DATE
THAN
128 MM
(80175)

AUG 10... --13... 94

431124108470101 -- WIND RIVER ABOVE PILOT WASTEWAY, NEAR MORTON, WY (LAT 43 11 12 LONG 108 47 01)

DATE	TIME	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM (80173)	BED MAT. SIEVE DIAM. % FINER THAN 64.0 MM (80174)	BED MAT. SIEVE DIAM. % FINER THAN 128 MM (80175)
AUG 06 11	1130 1530 4312	7.6 	8.2 	8.6 D RIVER A	232 T SWINGIN	23.8 IG BRIDGE.	 7 NEAR MOR	 7 TON. WY (9 LAT 43 12	 22 52 LOG 1	 45	 70	 97
DATE	TIME	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM (80173)	BED MAT. SIEVE DIAM. % FINER THAN 64.0 MM (80174)
AUG 08 08	1745 1810	150	625 	7.5 	8.2	177 	21.5	 5	 6	 9	 15	 30	 50

BED MAT.
SIEVE DIAM.
% FINER
DATE THAN
128 MM
(80175)

AUG 08... --08... 90

WIND RIVER ECOLOGY STUDY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

431320108535401 -- WIND RIVER AT US 26 BRIDGE, NEAR MORTON, WY (LAT 43 13 20 LONG 108 53 54)

DATE	TIME	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)
AUG 07	1200	3.8	626	7.8	8 6	167	22 8

 $431634109053701 \,\, -- \,\, \text{WIND RIVER AB LITTLE SAND DRAW, NR CROWHEART, WY (LAT \,\, 43 \,\, 16 \,\, 34 \,\, \text{LOG} \,\, 109 \,\, 05 \,\, 37)}$

DATE	TIME	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)
AUG 09	0830	6.5	621	8.4	299	18.9

37-C Lateral	470	Battle Creek, West Fork, at Battle Creek Campground,	
65-C Lateral		near Savery	405
Ray Canal below	470	Bear River	
at headworks		above reservoir, near Woodruff, UT	413
Access to water data	21	at Border	430
Accuracy of the records, surface water	16	at Evanston	411
Acid neutralizing capacity, definition of		below Pixley Dam, near Cokeville	419
Acme		below reservoir, near Woodruff, UT	
Goose Creek near	213	below Smiths Fork, near Cokeville	
Prairie Dog Creek near		near Utah-Wyoming State line	
Acre-foot (AC-FT, acre-ft), annual runoff, definition of		Beaver Creek at Mallo Camp, near Four Corners	
Acre-foot, definition of		Bechler Ranger Station, Boundary Creek near	
Adenosine triphosphate, definition of		Bed material, definition of	
Alcova		Bedload discharge, definition of	
Alcova Reservoir at	324	Bedload, definition of	
Pathfinder Reservoir near		Belfry, MT, Clarks Fork Yellowstone River near	
Sweetwater River near		Belle Fourche River	30
Alcova Reservoir at Alcova		at Wyoming-South Dakota State line	291
Algae	324	below Hulett	
Blue-green, definition of	23	below Moorcroft	
Fire, definition of		below Rattlesnake Creek, near Piney	
Green, definition of		near Alva	
Algal growth potential, definition of		Benthic organisms, definition of	
Alains, definition of	22	Beulah, Sand Creek near Ranch A, near	293
Alpine	160	Big Goose Creek	207
Greys River above reservoir, near		above PK Ditch, in canyon, near Sheridan	
Snake River above reservoir, near		East Fork, near Big Horn	
Alva, Belle Fourhce River near	289	West Fork, near Big Horn	205
Anchor Reservoir	1.40	Big Horn	100
near Anchor		Big Goose Creek, East Fork, near	
South Fork Owl Creek below		Big Goose Creek, West Fork, near	
Annual 7-day minimum, definition of		Coney Creek above Twin Lakes, near	
Annual mean, explanation of		Coney Creek below Twin Lakes, near	
Annual runoff, definition of		Little Goose Creek, in canyon, near	
Annual runoff, explanation of		Big Piney, New Fork River near	
Annual total, explanation of		Big Sandy Reservoir near Farson	379
Antelope Creek near Teckla		Big Sandy River	
Aquifer, water table, definition of		at Gasson Bridge, near Eden	
Arapahoe, Popo Agie River near		near Farson	
Archer, Crow Creek near	361	Bighorn Lake near St. Xavier	185
Arlington, Rock Creek above King Canyon Canal,		Bighorn River	
near Arlington		at Basin	
Aroclor, definition of		at Kane 159	, 489
Arrangement of records, water quality	19	at Lucerne	146
Artificial substrate, definition of	22	near St. Xavier, MT	
Arvada		Billings, MT, Yellowstone River at	487
Clear Creek near	255	Biochemical oxygen demand, definition of	23
Crazy Woman Creek at upper station, near	236	Biomass pigment ratio, definition of	23
Powder River at	241	Biomass, definition of	23
Wild Horse Creek near	245	Bitter Creek near Garland	181
Ash mass, definition of	22	Black Thunder Creek near Hampshire	265
		Blacks Fork	
Bacteria		near Little America	395
Fecal coliform, definition of	26	near Lyman	391
Fecal streptococcal, definition of		near Robertson	
Total coliform, definition of		Blue-green algae, definition of	
Baggs, Little Snake River below		Border	
Barnum, Middle Fork Powder River near		Bear River at	430
Base discharge (for peak discharge), definition of		Smiths Fork near	
Base flow, definition of		Bosler, Laramie River near	
Basin, Bighorn River at		Bottom material (see "Bed material")	

Boundary Creek near Bechler Ranger Station	467	Clear Creek (tributary to South Platte River)	
Box Elder Creek at Boxelder	329	at Parsley Boulevard, in Cheyenne	
Boysen Reservoir		Clostridium perfringens	23
near Shoshoni	134	Cody	
Wind River below	136	Buffalo Bill Reservoir near	176
Buckhorn, Cold Springs Creek at	293	Shoshone River above DeMaris Springs, near	178
Buffalo		Cokeville	
Burger Draw at mouth, near	472	Bear River below Pixley Dam, near	419
Clear Creek above Kumor Draw, near		Bear River below Smiths Fork, near	424
Dead Horse Creek near		Smiths Fork at	423
Powder River below Burger Draw, near		Cold Springs Creek at Buckhorn	293
Rock Creek near		Coliphages, definition of	
Buffalo Bill Reservoir	210	Color unit, definition of	
near Cody	176	Coney Creek	
Shoshone River below		above Twin Lakes, near Big Horn	201
South Fork Shoshone River above		below Twin Lakes, near Big Horn	
Buffalo Fork above Lava Creek, near Moran		Confined aquifer, definition of	
	442	Contents, definition of	
Bull Lake	70	Continuous-record station, definition of	
Bull Lake Creek above		Control structure, definition of	
near Lenore	82	Control, definition of	
Bull Lake Creek		Cooke City, MT, Clarks Fork Yellowstone River near	2-
above Bull Lake		Montana-Wyoming State line, near	57
near Lenore			
Burger Draw at mouth, near Buffalo	472	Cooperation Surface-water records	
Burris			
Dinwoody Creek above Lakes, near	66	Water-quality records	
Dry Creek Canal at headgate, near	72	Corwin Springs, MT, Yellowstone River at	, 463
Dry Creek near	70	Cottonwood Creek at High Island Ranch, near Hamilton	1.45
Upper Wind River A Canal at Headworks, near	68	Dome	
		Crazy Woman Creek at upper station, near Arvada	236
Caballo Creek at mouth, near Piney	275	Crow Creek (tributary to the South Platte River)	4.56
Cache Creek near Jackson		at 5th Street, in Cheyenne	
Casper, North Platte River below		at 19th Street, at Cheyenne	
Cells volume		near Archer	
Cells/volume, definition of		on C.P. Orgon property, in Cheyenne	469
Cfs-day (see "Cubic foot per second-day")		Crow Creek (tributary to North Fork Shoshone)	
Chemical oxygen demand, definition of		at mouth, at Pahaska	161
Chemical quality of stream water		Crowheart	
Cheyenne River at Edgemont, SD		Willow Creek near	
· ·	270	Wind River above Bull Lake Creek, near	509
Cheyenne	460	Wind River above Little Sand Draw, near	510
Clear Creek at Parsley Boulevard, in Cheyenne		Wind River near	88
Crow Creek at 5th Street, in		Cubic feet per second per square mile (ft ³ /s/mi ²), annual	
Crow Creek at 19th Street, at		runoff, definition of	16
Crow Creek on C.P. Orgon property, in		Cubic foot per second per square mile, definition of	24
Dry Creek at College Drive, in		Cubic foot per second, definition of	24
Dry Creek at Rawlins Street, in		Cubic foot per second-day, definition of	24
Dry Creek at Smalley Park, in			
Dry Creek at Vista Lane, in	469	Daily mean suspended-sediment concentration, definition of	of 24
Dry Creek at Windmill Road, in	469	Daily-record station, definition of	
Dry Creek tributary at Briarwood Road, in	469	Daniel, Green River at Warren Bridge, near	
Henderson Drain at Nationway, in	469	Data collection and computation, surface water	
Clarks Fork Yellowstone River		Data Collection Platform, definition of	
at Edgar, MT	485	Data logger, definition of	
near Belfry, MT		Data presentation, surface water	
near Montana-Wyoming State line, near Cooke		Data table of daily mean values, explanation of	
City, MT	57	Datum, definition of	
Classification of records, water-quality		Dayton	
Clear Creek (tributary to Powder River)	1/	East Pass Creek near	103
near Arvada	255	Highline Ditch, diversion by, near	
aboye Kumor Draw, near Buffalo		Tongue River near 195	
ADOVE NUMBEL DIAW. HEAL DIHIAIO	4.10	TOURIE KIVELIEAL 193	,, 471

Dead Horse Creek near Buffalo	233	Extractable organic halides, definition of	. 26
Decker, MT, Tongue River at State line, near	219	Extremes outside period of record, surface water,	
Deer Creek in canyon, near Glenrock	327	explanation of	. 14
Diamondville, Hams Fork near	394	Extremes, water quality, explanation of	. 19
Diatom, definition of	24		
Diel, definition of	24	Farson	
Dinwoody Creek above lakes, near Burris		Big Sandy Reservoir near	
Dinwoody Canal		Big Sandy River near	
Discharge, definition of		Fecal coliform bacteria, definition of	
Dissolved oxygen, definition of		Fecal streptococcal bacteria, definition of	
Dissolved, definition of		Filmore, Little Laramie River near	
Dissolved-solids concentration, definition of		Fire algae, definition of	. 26
Diversity index, definition of	25	Fish Creek	
Donkey Creek		above Mosquito Creek, near Wilson	
near Moorcroft	281	at Harmon's, at Wilson	
near Gillette	277	at Resor Bridge, near Teton Village	
Downstream-order system	11	at Wilson	
Drainage area, definition of		near Teton Village	470
Surface water		Fivemile Creek	100
Water quality		above Wyoming Canal, near Pavillion	
Drainage basin, definition of		near Shoshoni	
Dry Creek (tributary to Crow Creek)	23	Flagg Ranch, Snake River above Jackson Lake, at	
at College Drive, in Cheyenne	469	Flat Creek below Cache Creek, near Jackson	
at Rawlins Street, in Cheyenne		Flow-duration percentiles, definition of	
at Smalley Park, in Cheyenne		Fontenelle Creek near Herschler Ranch, near Fontenelle	
at Vista Lane, in Cheyenne		Forestly MT, Vollage and River below	
at Windmill Road, in Cheyenne		Forsyth, MT, Yellowstone River at	
tributary at Briarwood Road, in Cheyenne		Fort Laramie, Laramie River near Fort Washakie	334
Dry Creek (tributary to Wind River) near Burris			110
Dry Creek Canal at headgate, near Burris		Ray Canal at Headworks, nearSouth Fork Little Wind River above Washakie	110
Dry mass, definition of		Reservoir, near	106
Dry weight, definition of		South Fork Little Wind River below Washakie	100
Diff weight, definition of	23	Reservoir, near	108
	62	Trout Creek near	
Wind River above Red Creek, near Wind River near		North Fork Little Wind River near	
Willa River near	00	Four Corners, Beaver Creek at Mallo Camp, near	
Foot Foult Die Coose Creek naar Die Harm	100	Fremont Lake,	_00
East Fork Big Goose Creek near Big Horn East Fork of Smiths Fork near Robertson		Pine Creek above	364
		Pine Creek below	
East Pass Creek near Dayton		Frontier, Hams Fork below Pole Creek, near	
Eden, Big Sandy River at Gasson Bridge, near		,	
Edgar, MT, Clarks Fork Yellowstone River at		Gage datum, definition of	. 26
Edgemont, SD, Cheyenne River at	270	Gage height, definition of	
Encampment	205	Gage values, definition of	
Encampment River above Hog Park Creek, near		Gage, explanation of	
Encampment River at mouth, near		Gaging station, definition of	
Haggarty Creek above Belvidere Ditch, near	404	Gallatin River near Gallatin Gateway, MT	
Encampment River		Gardner River near Mammoth, Yellowstone National Park	
above Hog Park Creek, near Encampment		Garland, Bitter Creek near	
at mouth, near Encampment		Gas chromatography/flame ionization detector, definition of	of 26
Enterococcus bacteria, definition of		Gillette	
EPT Index, definition of		Donkey Creek near	277
Escherichia coli (E. coli), definition of		Stonepile Creek at mouth	
Estimated (E) value, definition of		Glendo Reservoir	
Etna, Salt River above reservoir, near		near Glendo	
Euglenoids, definition of	26	North Platte River below	335
Evanston, Bear River at		Glenrock, Deer Creek in canyon, near	327
Explanation of the records	11	Goose Creek	
Records of stage and water discharge	12	below Sheridan	212
Records of surface-water quality	17	near Acme	213

Granite Creek above Granite Creek Supplemental, near		Kearny, Piney Creek at	
Moose		Kendrick Irrigation study	
Green algae, definition of	27	Keyhole Reservoir near Moorcroft	286
Green River		Kinnear	
at Warren Bridge, near Daniel	362	Johnstown Ditch at Headworks, near	94
below Fontenelle Reservoir	374	Wind River near	96
below Green River	386		
near Green River	383	La Barge, Green River near	
near Greendale, UT	400	Laboratory measurements	
near La Barge	370	Laboratory Reporting Level, definition of	27
Greendale, UT, Green River near		Lake Creek,	
Greybull River at Meeteetse	152	at State Hwy 390, near Wilson	470
Greys River above reservoir, near Alpine		Lakes and Reservoirs	
Gros Ventre River at Zenith		Alcova Reservoir at Alcova	324
Guernsey Reservoir near Guernsey		Anchor Reservoir near Anchor	142
		Big Sandy Reservoir near Farson	379
Habitat quality index, definition of	27	Bighorn Lake near St. Xavier	179
Haggarty Creek above Belvidere Ditch, near Encampment		Boysen Reservoir near Shoshoni	130
Hamilton Dome, Cottonwood Creek at High Island Ranch,		Buffalo Bill Reservoir near Cody	170
near		Bull Lake near Lenore	78
Hampshire, Black Thunder Creek near		Glendo Reservoir near Glendo	333
Hams Fork	203	Guernsey Reservoir near Guernsey	337
below Pole Creek, near Frontier	302	Keyhole Reservoir near Moorcroft	286
near Diamondville		Pathfinder Reservoir near Alcova	322
Hanna, Medicine Bow River above Seminoe Reservoir,	394	Seminoe Reservoir near Leo	318
	216	Lamar River near Tower Falls Ranger Station,	
near		Yellowstone National Park	51
Hardness, definition of		Lander	
Hazelton, North Fork Powder River near		Little Popo Agie River near	117
Henderson Drain at Nationway, in Cheyenne		Popo Agie River at Hudson Siding, near	
Henrys Fork near Manila, UT		Squaw Creek at Smith Street, at	
High tide, definition of		Land-surface datum, definition of	
Highest annual mean, explanation of		Laramie River	
Highest daily mean, explanation of		near Bosler	347
Highline Ditch, diversion by, near Dayton		near Fort Laramie	354
Hilsenhoff's Biotic Index, definition of		Laramie River and Pioneer Canal near Woods	341
Horizontal datum (See "Datum")		Latitude-longitude system	12
Hulett, Belle Fourche River below		Lefthand Ditch at Headworks, near Riverton	
Hydrologic bench-mark network, definition of		Lenore	
Hydrologic benchmark station, definition of		Bull Lake Creek near	84
Hydrologic index station, definition of		Bull Lake near	
Hydrologic unit, definition of	27	Wyoming Canal near	
		Wind River above Crow Creek, near	
Identifying estimated daily discharge	16	Wind River below Wyoming Canal Diversion, near	
Inch, definition of	27	Leo, Seminoe Reservoir near	
Inches, annual runoff, explanation of	16	Light-attenuation coefficient, definition of	
Instantaneous discharge, definition of	27	Lipid, definition of	
Instantaneous, discharge, definition of		Little America, Blacks Fork near	
Peak flow, explanation of	16	Little Bighorn River at State line, near Wyola, MT	
Peak stage, explanation of		Little Goose Creek	100
Instrumentation, water quality		in canyon, near Big Horn	209
Introduction		at Sheridan	
		Little Laramie River near Filmore	
Jackson		Little Medicine Bow River at Boles Spring, near	J -1.
Cache Creek near	454	Medicine Bow	21/
Flat Creek below Cache Creek, near		Little Popo Agie River near Lander	
Snake River below Flat Creek, near		Little Powder River above Dry Creek, near Weston 262	
Johnstown Ditch at Headworks, near Kinnear		Little Snake River Little Snake River	, 470
Johnstown Ditch at Headworks, heat Killieat	74		409
Kane, Bighorn River at 159	. 489	below Baggsnear Slater, CO	400
Name promoti kriverai 159	409	near Maier CO	4(1)

Little Wind River		Morton	
near Riverton	121	Wind River above Pilot Wasteway, near	509
North Fork, near Fort Washakie	112	Wind River at Swinging Bridge, near	509
South Fork, above Washakie Reservoir, near		Wind River at US 26 Bridge, near	510
Fort Washakie	106	Most probable number (MPN), definition of	
South Fork, below Washakie Reservoir, near		Multiple-plate samplers, definition of	29
Fort Washakie	108	Murray Ditch above Headgate at Wyoming-South	
Locate, Powder River near		Dakota State line	297
•			
Location, explanation of		Nanograms per liter, definition of	29
Location, water quality		National Atmospheric Deposition Program/National	
Long-Term Method Detection Level, definition of		Tends Network, definition of	10
Lovell, Shoshone River near		National Geodetic Vertical Datum of 1929, definition of	29
Low flow, 7-day 10-year, definition of		National Stream Quality Accounting Network, definition of	
Low tide, definition of		National Water-Quality Assessment Program, definition of	10
Lowest annual mean, explanation of		Natural substrate, definition of	29
Lowest daily mean, explanation of		Nekton, definition of	29
Lucerne, Bighorn River at		Nephelometric turbidity unit, definition of	29
Lyman, Blacks Fork near	391	New Fork River near Big Piney	
		Newcastle, Stockade Beaver Creek near	
Macrophytes, definition of	28	NGVD of 1929 (see "National Geodetic Vertical	200
Madison River near West Yellowstone, MT	41	Datum of 1929")	29
Manila, UT, Henrys Fork near		North American Vertical Datum of 1988 (NAVD 1988),	رك
Mayoworth, North Fork Powder River below Pass		definition of	29
Creek, near	228	North Brush Creek near Saratoga	
Mean concentration of suspended sediment, definition of		North Fork Little Wind River near Fort Washakie	
Mean discharge, definition of		North Fork Powder River	112
Mean high tide, definition of			226
Mean low tide, definition of		below Pass Creek, near Mayoworth	
Mean sea level, definition of		near Hazelton	
		North Fork Shoshone River at Wapiti North Platte River	1/(
Measuring point, definition of			200
Medicine Bow River above Seminoe Reservoir, near Hann	a 316	above Seminoe Reservoir, near Sinclair	
Medicine Bow, Little Medicine Bow River at Boles		at Orin	
Spring, near		at Wyoming-Nebraska State line	
Meeteetse, Greybull River at		below Casper	
Membrane filter, definition of		below Glendo Reservoir	
Metamorphic stage, definition of		below Whalen Diversion Dam	
Method Detection Limit, definition of	28	near Northgate, CO	
Methylene blue active substances, definition of		Northgate, CO, North Platte River near	30.
Micrograms per gram, definition of	28		1.5
Micrograms per kilogram, definition of	28	Onsite measurements and sample collection	17
Micrograms per liter, definition of	29	Open or screened interval, definition of	
Microsiemens per centimeter, definition of	29	Organic carbon, definition of	
Middle Fork Powder River near Barnum		Organic mass, definition of	29
Milligrams per liter, definition of	29	Organism count	24
Minimum Reporting Level, definition of		Area, definition of	
Miscellaneous site, definition of		Volume, definition of	
Moorcroft		Organochlorine compounds, definition of	
Belle Fourche River below	282	Orin, North Platte River at	
Donkey Creek near		Other records available, surface water	
Keyhole Reservoir near		Owl Creek, South Fork, below Anchor Reservoir	144
Moorhead, MT, Powder River at			
Moose	<i>431</i>	Pacific Creek at Moran	
		Pahaska, Crow Creek at mouth	
Granite Creek above Granite Creek	150	Parameter Code, definition of	
Supplemental, near		Parkman, West Pass Creek near	
Snake River at	444	Partial-record station, definition of	
Moran		Particle size, definition of	
Buffalo Fork above Lava Creek, near		Particle-size classification, definition of	
Pacific Creek at		Pathfinder Reservoir near Alcova	
Snake River near	438	Pavillion, Fivemile Creek above Wyoming Canal, near	130

Peak flow (peak stage), definition of	30	Records, explanation of-continued	
Percent composition (percent of total), definition of	30	Surface-water quality-continued	
Percent shading, definition of	30	Sediment	18
Period of record, surface water, explanation of		Water temperature	. 18
Water quality, explanation of	19	Recoverable, bed (bottom) material, definition of	31
Periodic-record station, definition of		Recurrence interval, definition of	32
Periphyton, definition of		Redwater Creek at Wyoming-South Dakota State line	299
Pesticides, definition of		Remark codes, water quality	19
pH, definition of		Remarks, Surface water, explanation of	. 14
Phillips Canyon at Fish Creek Road, near Wilson		Water quality, explanation of	. 19
Phytoplankton, definition of		Replicate samples, definition of	
Picocurie, definition of	31	Return period (see "Recurrence interval")	. 32
Pine Creek		Revised records, surface water, explanation of	14
above Fremont Lake		Revisions, surface water, explanation of	
below Fremont Lake		water quality, explanation of	
Piney Creek at Kearny	253	River mileage, definition of	. 32
Piney		Riverton	
Caballo Creek at Mouth near		Lefthand Ditch at Headworks, near	100
Belle Fourche River below Rattlesnake Creek, near		Little Wind River near	121
Pioneer Canal (see Laramie River and Pioneer Canal)		Wind River at	102
Plankton, definition of		Robertson	
Polychlorinated biphenyls (PCB's), definition of		Blacks Fork near	387
Polychlorinated naphthalenes, definition of	31	East Fork of Smiths Fork near	389
Popo Agie River		Rock Creek (tributary to Medicine Bow River) above	
at Hudson Siding, near Lander		King Canyon Canal, near Arlington	312
near Arapahoe	119	Rock Creek (tributary to Clear Creek) near Buffalo	
Powder River	241	Runoff, definition of	. 32
at Arvada		Sage,Twin Creek at	418
at Moorhead, MT		Salt Creek near Sussex	230
at Sussex		Salt River above reservoir, near Etna	464
below Burger Draw, near Buffalo		Sand Creek (tributary to Belle Fourche River) near Ranch	A,
near Locate, MT Middle Fork, near Barnum		near Beulah	295
North Fork, below Pass Creek, near Mayoworth		Sand Creek (tributary to Laramie River) at	
North Fork, near Hazelton		Colorado-Wyoming State line	343
Prairie Dog Creek	220	Saratoga, North Brush Creek near	303
near Acme	215	Savery, West Fork Battle Creek at Battle Creek	
Precipitation		Campground, near	405
Primary productivity, definition of		Sea level, definition of	. 32
Carbon method, definition of		Sediment	. 18
Oxygen method, definition of		Sediment, definition of	32
Oxygen memod, definition of	31	Records of	
Quality-control samples, water quality	20	Total load, definition of	35
2 y		Seminoe Reservoir near Leo	318
Radioisotopes, definition of	31	Seven-day 10-year low flow, definition of	. 32
Ray Canal		Shell Creek	
at Headworks, near Fort Washakie	110	above Shell Reservoir	155
below 65-C Lateral		near Shell	
Records of surface-water quality	17	Shell Reservoir, Shell Creek above	155
Records, explanation of		Shell, Shell Creek near	157
Stage and water discharge		Sheridan	
Accuracy of the records		Big Goose Creek above PK Ditch, in canyon	207
Data collection and computation	13	Goose Creek below	212
Data presentation		Little Goose Creek at	211
Identifying estimated daily discharge	16	Shoshone River	
Other records available		above DeMaris Springs, near Cody	178
Surface-water quality		below Buffalo Bill Reservoir	179
Classification of records		near Lovell	182
Laboratory analyses	18	North Fork, at Wapiti	170
Onsite measurements and sample collection		South Fork, above Buffalo Bill Reservoir	
Presentation of water-quality records	19	South Fork, near Valley	172

Shoshoni		Suspended, definition of	. 33
Boysen Reservoir near	134	Recoverable, definition of	. 33
Fivemile Creek near	132	Total, definition of	. 33
Wind River above Boysen Reservoir, near	125	Suspended-sediment, definition of	
Sidney, MT, Yellowstone River near		Concentration	. 33
Silver Gate, MT, Soda Butte Creek at Park Boundary, at		Concentration, definition of	
Sinclair		Discharge, definition of	
North Platte River above Seminoe Reservoir, near	309	Load, definition of	
Slater Fork near Slater, CO		Sussex	. 5.
Slater, CO, Little Snake River near			221
Smiths Fork(tributary to Bear River)	102	Powder River at	
near Border,	421	Salt Creek near	
at Cokeville		Sweetwater River near Alcova	. 320
Snake River	423	Sybille Creek	
	122	above Mule Creek, near Wheatland	
above Jackson Lake, at Flagg Ranch		above Canal No. 3, near Wheatland	
above reservoir, near Alpine		Synoptic studies, definition of	. 34
at Moose			
below Flat Creek, near Jackson		Taxa richness, definition of	
near Moran		Taxonomy, definition of	. 34
Soda Butte Creek at Park Boundary, at Silver Gate, MT	477	Teckla, Antelope Creek near	. 264
Soda Butte Creek near Lamar Ranger Station,		Temperature preferences	
Yellowstone National Park		Cold, definition of	. 34
Sodium adsorption ratio, definition of	32	Cool, definition of	. 34
South Fork Little Wind River		Warm, definition of	
above Washakie Reservoir, near Fort Washakie		Teton Village	
below Washakie Reservoir, near Fort Washakie	108	Fish Creek, near	470
South Fork Owl Creek below Anchor Reservoir	144	Fish Creek at Resor Bridge, near	
South Fork Shoshone River		Thermograph, definition of	
above Buffalo Bill Reservoir	174		
near Valley	172	Thermopolis, Wind River at Wedding of Waters, near	
South Piney Creek at Willow Park	251	Time-weighted average, definition of	. 34
Special networks and programs	10	Tongue River	216
Specific electrical conductance (conductivity), definition of		at State line, near Decker, MT	
Squaw Creek at Smith Street, at Lander		near Dayton	
St. Xavier		Tons per acre-foot, definition of	
Bighorn River near	186	Tons per day, definition of	
Bighorn Lake near		Total coliform bacteria, definition of	
Stable isotope ratio, definition of		Total discharge, definition of	
Stage (see Gage height)		Total in bottom material, definition of	
Stage and water-discharge records, explanation of		Total length, definition of	
Stage-discharge relation, definition of		Total load, definition of	. 35
Station identification numbers		Total organism count, definition of	. 35
Station manuscript, surface water, explanation of		Total recoverable, definition of	. 35
Statistics of monthly mean data, explanation of		Total sediment discharge, definition of	. 35
Stockade Beaver Creek near Newcastle		Total sediment load, definition of	. 35
Stonepile Creek at mouth, near Gillette		Total, definition of	
Streamflow, definition of		Bottom material	
Substrate, artificial, definition of		Coliform bacteria	
		Trophic group, definition of	
Substrate, definition of		Filter feeder	. 35
Artificial, definition of		Herbivore	
Embeddedness Class, definition of		Invertivore	
Natural, definition of		Omnivore	
Summary of hydrologic conditions		Piscivore	
Summary statistics, explanation of			
Surface area of a lake, definition of		Trout Creek near Fort Washakie	
Surface-water-quality records, explanation of		Turbidity, definition of	
Surficial bed material, definition of		Twin Creek at Sage	418
Suspended sediment, definition of			
Mean concentration of, definition of		Ultraviolet (UV) absorbance (absorption), definition of	
Suspended solids, total residue, definition of	34	Upper Wind River A Canal at Headworks, near Burris	68

Valley, South Fork Shoshone River near	. 172	above Crow Creek, near Lenore	74
Vertical datum (see "Datum")	. 36	above Little Sand Draw, near Crowheart	510
Volatile organic compounds, definition of	. 36	above Red Creek, near Dubois	
		above Pilot Wasteway, near Morton	509
Wapiti, North Fork Shoshone River at	. 170	at Riverton	
Water data, access to		at Swinging Bridge, near Morton	
Water table, definition of	. 36	at US 26 Bridge, near Morton	
Water temperature, water-quality records	. 18	at Wedding of Waters, near Thermopolis	
Water year, definition of	. 36	below Boysen Reservoir	
Water-discharge records, stage and explanation of		below Wyoming Canal Diversion, near Lenore	
Water-quality records, explanation of	. 17	near Crowheart	
Classification of the records, explanation of	. 17		
Water-table aquifer, definition of		near Dubois	
WDR, definition of		near Kinnear	
Weighted average, definition of	. 36	Wolf Creek at Wolf	197
West Fork Battle Creek at Battle Creek Campground,		Woodruff, UT	
near Savery		Bear River above reservoir, near	
West Fork Big Goose Creek near Big Horn		Bear River below reservoir, near	
West Pass Creek near Parkman	. 191	Woods, Laramie River and Pioneer Canal near	341
West Yellowstone, MT, Madison River near	. 41	WSP, definition of	36
Weston, Little Powder River above Dry Creek, near 26	2, 498	Wyola, MT, Little Bighorn River at State line, near	188
Wet mass, definition of			
Wet weight, definition of	. 36	Wyoming Canal near Lenore	90
Whalen Diversion Dam, North Platte River below	. 339		
Wheatland		Yellowstone National Park	
Sybille Creek above Canal No. 3 near	. 351	Garnder River near Mammoth	53
Sybille Creek above Mule Creek, near	. 349	Lamar River near Tower Falls Ranger Station	
Wheatland Creek below Wheatland	. 353	Soda Butte Creek near Lamar Ranger Station	
Wild Horse Creek near Arvada	. 245	Yellowstone River at Yellowstone Lake Outlet	
Willow Creek near Crowheart	. 76	Yellowstone River	47
Willow Park, South Piney Creek at	. 251		487
Wilson		at Billings, MT	
Fish Creek above Mosquito Creek, near		at Corwin Springs, MT	
Fish Creek at	. 452	at Forsyth, MT	
Fish Creek at Harmon's, at	. 470	Basin NAWQA study unit	
Lake Creek at State Highway 390, near	. 470	near Sidney, MT	
Phillips Canyon at Fish Creek Road, near	. 470	at Yellowstone Lake Outlet	47
Wind River			
above Boysen Reservoir, near Shoshoni	. 125	Zenith, Gros Ventre River at	448
above Bull Lake Creek, near Crowheart	. 509	Zooplankton, definition of	36

CONVERSION FACTORS AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	2.54x10 ¹	millimeter
	2.54x10 ⁻²	meter
foot (ft)	3.048x10 ⁻¹	meter
mile (mi)	1.609x10 ⁰	kilometer
	Area	
acre	4.047x10 ³	square meter
	4.047x10 ⁻¹	square hectometer
	4.047x10 ⁻³	square kilometer
square mile (mi ²)	2.590x10 ⁰	square kilometer
	Volume	
gallon (gal)	3.785x10 ⁰	liter
3 (3 /	3.785x10 ⁰	cubic decimeter
	3.785x10 ⁻³	cubic meter
million gallons (Mgal)	3.785x10 ³	cubic meter
	3.785x10 ⁻³	cubic hectometer
cubic foot (ft ³)	2.832x10 ¹	cubic decimeter
_	2.832x10 ⁻²	cubic meter
cubic-foot-per-second day [(ft ³ /s) d]	2.447x10 ³	cubic meter
	2.447x10 ⁻³	cubic hectometer
acre-foot (acre-ft)	1.233x10 ³	cubic meter
	1.233x10 ⁻³	cubic hectometer
	1.233x10 ⁻⁶	cubic kilometer
	Flow	
cubic foot per second (ft ³ /s)	2.832x10 ¹	liter per second
, , ,	2.832x10 ¹	cubic decimeter per second
	2.832x10 ⁻²	cubic meter per second
gallon per minute (gal/min)	6.309x10 ⁻²	liter per second
	6.309x10 ⁻²	cubic decimeter per second
	6.309x10 ⁻⁵	cubic meter per second
million gallons per day (Mgal/d)	4.381x10 ¹	cubic decimeter per second
	4.381x10 ⁻²	cubic meter per second
	Mass	
ton (short)	9.072x10 ⁻¹	megagram or metric ton

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment for the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.